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ABSTRACT 

Biomass could be a renewable source of energy and chemicals that would not 
add CO2 to the atmosphere. It will become economically competitive as its 
cost decreases relative to energy costs, and biotechnology is expected to 
accelerate this trend by increasing biomass productivity. Pressure to slow 
global warming may also make biomass more attractive. 

Substantial dependence on biomass would entail massive changes in land 
use, risking serious reductions in biodiversity through destruction of habitat 
for native species. Forests could be managed and harvested more intensively, 
and virtually all arable land unsuitable for high-value agriculture or silvicul-
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ture might be used to grow energy crops. We estimate that it would require an 

area equal to that farmed in 1988, about 130 million hectares, just to supply 

the United States with transportation fuel. 

Planning at micro to macro scales will be crucial to minimize the ecological 
impacts of producing biomass. Cropping and harvesting systems will need to 

provide the spatial and temporal diversity characteristic of natural ecosystems 

and successional sequences. To maximize habitat value for interior-dependent 

species, it will be essential to maintain the connectivity of the habitat net­

work, both within biomass farms and to surrounding undisturbed areas. 

Incorporation of these ecological values will be necessary to forestall costly 

environmental restoration, even at the cost of submaximal biomass produc­

tivity. Since it is doubtful that all managers will take the longer view, some 

sort of intervention will very likely be necessary. Given concerns about global 

warming, both bioenergy proponents and conservationists have an incentive 

to work together. 

I-INTRODUCTION 

Various types of biomass-municipal waste, farm and forest wastes, low­

quality wood, and herbaceous and short-rotation woody crops-have been 

actively promoted as renewable sources of energy and chemical feedstocks (1) 
that do not contribute net carbon dioxide to the atmosphere (2-7). Indeed, the 
US Environmental Protection Agency has projected that biomass could be­

come the world's largest single energy source following intervention to 

protect the climate (8). It is important to recall, however, that a biomass cycle 
would add net CO2 to the atmosphere if carbon stored in standing trees, 
debris, and soil were released (9). 

Even if biomass proved to be a renewable alternative to fossil feedstocks 
that did not hasten global climate change, increasing dependence on biomass 

would lead to more intensive harvesting of forests and other natural ecosys-· 
tems, and a substantial demand for land to grow herbaceous and short-rotation 

woody crops (10, 11). The demand for biomass would compete for arable 
land with other human needs, such as food and fiber production, and would 

increase the pressure to convert "idle" land-land used primarily by other 

species-to human uses (l0, 11). 

This is an ominous prospect, since human activities, primarily the conver­
sion of complex natural ecosystems to monoculture agroecosystems and the 
harvesting of natural ecosystems at unsustainable levels (12), are eliminatiag 

other species at thousands -of times the pre-human rate (13). Indeed, one 

quarter of the world's biological density may be lost during the next 20--30 

years (12). The economic implications of this loss are profound, yet, it is 
crucial to preserve global biodiversity for ethical, as well as economic, 
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reasons (12). Although our focus in this paper is on US biodiversity, the 
issues raised and principles enunciated will be widely applicable to other 
temperate climates. 

The extent of habitat destruction from biofuels development will depend on 
the intensity with which natural ecosystems are harvested and the amount of 
"idle" land brought into production. Competing human demands have pri­
marily spared land in the United States that is marginal for current uses-both 
natural land and land recovering from previous human disturbance-to pro­
vide habitat for native species (14-18). Such marginal land will be attractive 
for biomass farms (19). 

Although low-cost biofuels-biomass wastes and low-quality wood-are 
supplying an increasing percentage of US energy usage, energy crops are not 
economically competitive with fossil fuels (2). However, new technologies 
promise to relax some of the constraints inhibiting widespread implementa­
tion. For example, biotechnology may be used to improve energy crop 
production (20) and conversion to ethanol or other high-quality feedstocks 
(1), while new combustion technology (73) or gas turbines based on aero­
space jet engines (7, 21) may increase the efficiency and lower the cost of 
generating electricity from biomass. Thus, while the developments that pro­
duce an economically sound biomass technology are not directly at issue in 
this paper, we strongly suspect that technological developments will make 
biomass more competitive with other alternatives to fossil feedstocks. In fact, 
we consider possible side effects of the economic success of chemical and 
energy industries based on genetically engineered biomass crops and pro­
cesses to be much more serious than possible failures of biotechnology that 
are currently of concern in regulatory circles. 

In reviewing the environmental implications of large-scale biomass har­
vesting and production, analysts have noted such potential impacts as compe­
tition for arable land with food production, water pollution, loss of soil 
fertility, and the spread of bioengineered organisms (10, 11,22-25). Concern 
is largely focused on impacts affecting primary human needs for food and 
shelter. This article addresses the potential for increasingly intensive use of 
land to reduce biological diversity by eliminating habitat for native species 
and by destroying lands with special qualities. These concerns have not been 
widely enough addressed, given the large role that natural vegetation (pri­
marily trees from existing forests) and dedicated biomass crops may play in 
meeting demands for organic feedstocks. 

Since energy demands will very likely dominate biomass markets, we focus 
on supplying segments of the US energy economy. Although biomass can be 
used to produce organic chemicals and plastics currently made from oil 
(26-30), chemical feedstock markets are so much smaller than energy mar­
kets-2.5 Quads out of 72 Quads total US consumption in 1982 (l)-that 
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concerns about demands for biofuels will probably dominate all other en­
vironmental concerns about biomass technology. 

Given the prospects for a potentially large increase in biomass production, 
it is time to develop strategies for mitigating the loss of habitat for native 
species-and the resulting loss of biological diversity-that might follow 
intensive harvesting of natural vegetation and growing of dedicated biomass 
crops on a large scale in the United States. The preservation of natural 
biodiversity in the context of a growing demand for land to grow biomass will 
require the development and use of biomass production systems that provide 
both a sustainable yield of biomass and adequate habitat for native species 
(12). 

Even though sustainable agricultural practices that maintain biodiversity 
have been identified and promoted, the push to maximize production and 
minimize cost has routinely led to monoculture agroecosystems (15) that 
virtually eliminate natural biological diversity, providing habitat for a limited 
range of plant and animal species ( 12). Implementation of biomass cropping 
systems that preserve naturally diverse ecosystems may require producers to 
accept submaximal biomass yields. Incentives or regulations may therefore be 
necessary to ensure economic viability and adequate implementation. The 
costs to the economy of limiting yields will be offset by the future benefits of 
maintaining our natural resources. 

Although the prospects for biodiversity of large-scale use of biofuels are 
ominous, the threat to biodiversity from global warming is equally serious. 
Therefore, there are strong reasons for conservationists to work with bioener­
gy advocates to develop a technology and guidelines for use that are mutually 
acceptable. Incentives for biomass advocates to cooperate in negotiations are 
also strong: failure to address large-scale environmental problems will lead to 
public pressure that may limit the technology's development. 

The next three sections consider the potential demand for biofuels from 
three perspectives-US biomass production, the amount of land required to 
meet various US fuel demands, and considerations regarding market penetra­
tion. Subsequent sections discuss some of the likely impacts on the natural 
environment and mechanisms for minimizing those impacts. 

II-ESTIMATING BIOMASS PRODUCTION 

There are at least three major sources of biofuels whose expanded use might 
reduce biodiversity: biomass from relatively natural ecosystems (primarily 
existing forests-including forest industry residues and wastes), agricultural 
residues and wastes, and dedicated energy crops. Many plant species have 
been suggested as suitable biomass crops, and alternatives for various geogra­
phic areas and ecosystems are being investigated (2, 19, 31). Examples 
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include several species of fast-growing hardwood trees (3 ,  32), perennial 
grasses ( 19 ,  3 1) ,  cattails (33, 34), water hyacinth (35) , and algae (36,37), as 
well as traditional crops such as sugar cane (38) and maize (39, 40). 

Of particular concern from a biodiversity perspective are the potential 
impacts of managing forests more intensively for increased wood production 
and converting natural lands to dedicated energy farms. Table 1 shows a 
breakdown of current US land uses and estimates of annual biomass produc­
tion under three scenarios: current land uses, more intensive forestry, and the 
use of land for energy farming. Our analysis, following that of Pimentel and 
coworkers (11), indicates that the current total net primary biomass produc­
tion by all vegetation in the United States is about 47 EJ per year (yr-1). This 
is a very approximate estimate, being based on annual biomass productivity 
estimates for broad classes of land. Even so, the estimated 47 EJ yr-1 of total 
current net US primary biomass production is less than the 76 EJ yr-I of 
current US fossil fuel use, suggesting that great pressures could arise to 
manage our land more intensively. 

The US Congress Office of Technology Assessment (OT A) has speculated 
that full stocking of US commercial forestland with highly productive tree 
species could raise productivity from 2--4 metric tons per hectare per year (t 
ha-I y-l) to approximately 5-10 t ha-I yr-I (41). It is unlikely that all 200 
million hectares of commercial forestland would be available for such in­
tensive management, given public concerns and logistical constraints (41). If 
80-200 million hectares of US commercial forestland were more intensively 
managed, as shown in Table 1, about 8--40 EJ yr-I could be produced, 
increasing total forest production to 16-44 EJ yr-I and total US biomass 
production to about 5 1-79 EJ yr -I. 

Wright et al have argued that, while energy crops require relatively even 
and fertile land�ropland or at least potential cropland-they can be grown 
on land that is subject to drought, erosion, or seasonal flooding (19). About 
100 million hectares---40 million hectares of uncultivated cropland and about 
60 million hectares of potential cropland�ould be readily available for 
growing energy crops (Table 1). Yields of 8-17 dry t ha-I yr-I have become 
common for short-rotation hardwoods in research trials (32), and yields for 
herbaceous energy crops have reached 12-40 dry t ha-I yr-I (42). Assuming 
an average productivity of 10-28 t ha -I yr-I dry biomass for a 1 : 1 mixture of 
herbaceous and short-rotation woody crops, this land could produce about 
20-56 EJ of biofuels annually, increasing total US biomass production to 
about 59-96 EJ yr-1 (see Table 1). 

To put these current and potential biomass productivity estimates into 
perspective, consider current human uses of biomass in the United States. 
Although biofuels supplied only 3 EJ of primary energy in the United States in 
1987 (about 3 .5% of the total) (43), Pimentel and coworkers have estimated 



Table 1 Breakdown of current US land uses and estimates of annual biomass production under three scenarios: current land uses, more intensive forestry, and 
the use of land for energy farming 

Forestland Prime land 
Total current available for Potential wood Total biomass available Potential Total biomass 

biomass more intensive production from production with for energy energy crop production with 
Areaa productionb forestrya,C more intensive more intensive crops' production f energy cropsg 

Category (106 hal (EI) (106 hal forestryd (E I) forestry' (E J) (106 hal (EI) (EJ) 

Cropland (90) 170 20 20 40h 8-22 24-38 
Pastureland (90) 50 3 3 24i 5-13 6-1 5 
Rangeland (75, 89) 340 11 II 20i 4-11 14-21 
Forestland (11, 41, 156) 290 12 80-200 8 -40 16-44 l7i 3-10 14-20 
Other 70 <1 1 

Total (11) 920 47 80-200 8-40 51-79 101 20-56 59-96 

• These relative areas do not necessarily reflect general priorities from a biodiversity perspective at the local level (see Section VII), 
"Biomass production was calculated by multiplying the area of each. class of land by its estimated total biomass productivity. The followillg dry mass productivity estimates were taken 

from Table V of (II): 6 t ha-' yr-I for cropland, 3 t ha-' yr-I for pastureland. 2 t ha-' yr-I for forestland, and 0.5 t ha-' yr-I for other lands, The productivity estimate for rangeland of 
1.6 t ha-' yr-I is a weighted average of productivity estimates for various classes of rangeland published by the USDA Forest Service (75). An energy contellt of 20 GJ C I was assumed 
(43). 

eWe assume that between 40% and 100% of US commercial forestland would be available for more intensive management (41), 
dBiomass production was calculated for commercial forestland available for intensive management using a productivity estimate of 5-10 t ha-' yr-I (41), or 100--200 GJ ha-' yr-I 

based on an energy content of 20 GJ C 1 dry biomass (43), 
'Biomass production was calculated as in footnote b, except for production from the 8 0-200 million hectares of intensively managed commercial forestland. which was calculated as 

in footnote d, 
'We assume a I : I mix of herbaceous and short-rotation woody energy crops, which leads to a productivity range of 10-28 dry t ha-I yr-I, or 200-560 GJ ha -I yr-I based on an 

energy content of 20 GJ Cl dry biomass (43). [Yields of 8-17 dry t ha-I yr-I have become common for short-rotation hardwoods in research trials (32), and yields for herbaceous energy 
crops have reached 12-40 dry t ha-I yr-I (42),] 

g Biomass production potentials for each land class under a scenario of large-scale energy farming are the sum of potential energy crop production and biomass production on the land 
not used for energy crops, calculated as described in footnote b after deducting the land in each class used for energy crops. 

hTotai cropland less 130 million hectares used to grow crops in 1988 (19). 
i Land considered by the US Department of Agriculture to have medium to high potential for conversion to cropland (8 8). 
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