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typically increase, at least up to a point (Kleiber, 1961; Gillooly et al., 2001; Brown et al.,
2004). These increases can have cascading effects throughout ecological communities
by altering both individual phenotypes and the interactions that occur among individuals
and species (O’Connor, 2009; Petchey, Brose & Rall, 2010; O’Connor, Gilbert & Brown,
2011; Dell, Pawar & Savage, 2014; Gilbert et al., 2014; Osmond et al., 2017). Although
temperature clearly influences the biochemical processes operating within organisms
(Johnson, 1962; Feller, 2010), how temperature simultaneously influences the full range of
processes that govern the dynamics of complex ecological systems is far from understood.

Consumer–resource interactions are sensitive to temperature changes because both
foraging rate per se and the strength of the consumer–resource interaction are driven
by multiple temperature-dependent processes (Dell, Pawar & Savage, 2014; Gilbert et al.,
2014; Allan et al., 2015). This temperature dependance has strong implications for
community dynamics and function because of the relationships among interaction
strengths, population and community stability (e.g., the occurrence and shape of
population cycles), and the overall structure of food webs (O’Connor et al., 2009; Petchey,
Brose & Rall, 2010; McCann, 2011; Binzer et al., 2012; Gilbert et al., 2014; Gibert et al.,
2016; Gibert & DeLong, 2017). Theory predicts a variety of changes in stability and
dynamical behavior of consumer–resource communities with changes in temperature,
depending upon assumptions about which processes are temperature-dependent and the
nature of that dependance (e.g., monotonically increasing or unimodal) (Vasseur &
McCann, 2005; Ohlberger et al., 2011; O’Connor, Gilbert & Brown, 2011; Binzer et al., 2012;
Fussmann et al., 2014; Amarasekare, 2015; Gibert et al., 2016; Osmond et al., 2017).

One often overlooked aspect of current theory predicting the effect of warming on
community dynamics is the mismatch between the temperature-dependence of rates
and the time-scale of the community dynamics. Most models assume that model
parameters are a function of temperature, using some function that describes a measured
short-term effect of temperature on biological rates. For example, the Boltzmann–
Arrhenius function is often used to invoke the kinetic effect of temperature on vital rates
or interactions among species (Vasseur & McCann, 2005; Petchey, Brose & Rall, 2010;
O’Connor, Gilbert & Brown, 2011; Fussmann et al., 2014; Gilbert et al., 2014; Osmond et al.,
2017; Wang et al., 2019). This temperature-dependence is then assumed to persist in
the same quantitative and qualitative way across many generations. However, when
organisms experience a new temperature, they may acclimate or show cross-generational
plasticity that alters their response to temperature (Alexander & McMahon, 2004; Osmond
et al., 2017; Luhring & DeLong, 2017). Thus, models parameterized with short-term
thermal responses can produce mixed results when compared with an observed long-term
response (Yang et al., 2016). Thus, the emergence of community dynamics at different
temperatures is likely to reflect a population’s response to temperature post-acclimation,
when the temperature dependance of biological processes may have changed.

In response to increasing temperature, populations may show changes in the amplitude
or period of cycles (Nelson, Bjørnstad & Yamanaka, 2013; Meisner, Harmon & Ives, 2014;
Salt et al., 2017) or the persistence or stability of the system (Beisner, McCauley &
Wrona, 1997; Jiang & Kulczycki, 2004; Salt et al., 2017). These patterns of change appear
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to be driven by shifts in organism performance and species interactions with temperature,
but it is not clear whether the assumptions of temperature effects on parameters used
in the theoretical literature align well with the dynamics observed in the empirical
literature. This uncertainty is in part due to potential differences between long- and
short-term responses to temperature. To resolve this problem, we could measure species
interactions in situ or infer them from the dynamics themselves by determining what
parameter values and model structures can reproduce the observed dynamics.

Here we examine the predator–prey cycles of the ciliate Didinium nasutum (hereafter
Didinium) foraging on the ciliate Paramecium bursaria (hereafter Paramecium) as they
pass through a population cycle. The Didinium-Paramecium predator prey system is a
classic laboratory tool for studying predator–prey dynamics (Gause, 1934; Luckinbill, 1973;
Salt, 1974; Jost & Ellner, 2000; Minter et al., 2011; Montagnes et al., 2012; DeLong &
Vasseur, 2013; Li et al., 2013; Li & Montagnes, 2015; Salt et al., 2017). The advantages of
this system are clear: short generation times, small spatial footprint, specialization of
Didinium on Paramecium making for a very strong predator–prey interaction, and ease
of estimating population abundances. This system has been used to reveal numerous
aspects of predator–prey interactions, and, as with many other ciliates, the Didinium-
Paramecium system is a useful model for understanding thermal biology across a wide
range of temperatures (Weisse et al., 2002; Yang et al., 2013). The breadth of temperatures
that a predator can tolerate is constrained by the breadth of temperature their prey can
tolerate, unless alternative prey are available. Therefore, we measured the population
dynamics of this system at six temperatures that span almost the full range of positive
growth of P. bursaria (Luhring & DeLong, 2017) to determine how the predator–prey cycle
changes with temperature. We then used ordinary differential equation (ODE) fitting
to estimate the model parameters (i.e., the mechanisms of change in this system) and
show how the net effect of temperature on dynamics is linked to changes in model
parameters. Finally, we evaluated how each parameter influences the dynamics on their
own. Together, these results indicate a complex suite of temperature effects on both
predator and prey that lead to striking variation in ecological dynamics.

MATERIALS AND METHODS
We acquired Didinium from Carolina Biological Supply (Burlington, NC, USA), and we
isolated Paramecium from a pond at the Spring Creek Prairie Audubon Center southwest
of Lincoln, Nebraska, USA (Novich et al., 2014). Stock cultures of both species were
maintained in the laboratory at 23 �C in medium made from protozoan concentrate
(Carolina Biological Supply, Burlington, NC, USA) mixed with filtered and autoclaved
pond water acquired from the source pond for Paramecium (1:9 ratio of concentrate to
water).

We assembled six mL microcosms in 60 mm diameter plastic Petri dishes with lids, with
predator and no-predator treatments. We randomly assigned microcosms to predator
dishes (six replicates) and predator free dishes (four replicates). For predator dishes, we
added 5.9 mL of 40 mm filtered Paramecium stock culture (initial density of ~30 cells per
mL) to each dish. We rinsed didinia in sterile medium and then added two individuals to
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each predator dish in a 0.1 mL aliquot. We added this same volume of rinse medium
to each predator-free dish to control for possible microbial contributions from the
Didinium stock culture to the experimental dishes. Predator free dishes contained 5.9 mL
culture medium plus six paramecia transferred in a 0.05 mL aliquot. We assigned replicate
dishes randomly to one of six temperatures (17, 20, 23, 25, 27 and 31 �C) and kept
them in Percival incubators on a 12:12 h light:dark schedule.

We sampled cultures daily for the first 5 days and then sampled them every 1–3 days
until day 18. We took a 0.1 mL sample from each dish daily and replaced this with 0.1 mL
sterile medium plus 0.1 mL autoclaved pond water to account for evaporation.
We conducted a complete visual census of the Didinium population by scanning the entire
dish through the microscope. For Paramecium, we used a scaled sampling regime,
counting the paramecia in the 0.1 mL sample when abundant and conducting a complete
census of paramecia in the dishes when they were rarer (~<100 cells) (DeLong & Vasseur,
2012). We averaged densities across replicates to create an average trajectory for each
temperature. This provides a useful smoothing effect that is often essential for differential
equation fitting (Jost & Ellner, 2000) and that provides a data set with reduced sampling
error and stochasticity induced noise. In a few dishes, the Didinium population went
extinct within a day or two, reducing our replicate population numbers to 4, 6, 4, 5, 6
and 3 at the temperatures of 17, 20, 23, 25, 27 and 31 �C, respectively. In one replicate at
23 �C, the Didinium population increase showed a pronounced lag, while the Paramecium
population showed a growth, crash, and regrowth, generating deviations in dynamics
well beyond the other replicates. We therefore excluded this replicate from the analysis.

At the peak of each Didinium population trajectory, we photographed 7–19 individual
didinia with a Leica M165C microscope and digital camera, measured cell length and
width, and calculated cell volume using the formula for a prolate spheroid.

We used the following ODE model to describe the time series of Didinium population
density (C, for consumer) and Paramecium population density (R, for resource):

dR
dt

¼ ðr � rslopeRÞR� aRC
1þ ahRþmðC � 0:167Þ (1a)

dC
dt

¼ e
aRC

1þ ahRþmðC � 0:167Þ � Cðde�RCdÞ (1b)

In this model, r is the maximum population growth rate of Paramecium, and rslope is the
slope of the relationship between population density and realized per capita growth
rate. This expression is equivalent to the logistic growth model, where rslope = r/K, with
K being carrying capacity, and is the typical form of population growth for Paramecium
(Jiang & Kulczycki, 2004; Gibert et al., 2017). We chose this expression because fitting
routines converge more easily with it than with the logistic growth model. The two
equations are linked by a type II functional response (Beddington, 1975; DeAngelis,
Goldstein & O’Neill, 1975; Skalski & Gilliam, 2001), where a is the space clearance rate of
the Didinium (i.e., the volume of habitat cleared of prey per predator per time), h is the
handling time for Didinium, m is interference competition among Didinium, e is the
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efficiency of converting Paramecium into new Didinium, d is the Didinium maximum
death rate, and Cd sets the density-dependence of death rate. The C-0.167 term allows
interference to go to zero when there is only one predator (the density is 0.167 individuals
per mL when there is one predator in the dish). Several previous works suggest the
necessity of including prey-dependent mortality for Didinium dynamics (Minter et al.,
2011; DeLong, Hanley & Vasseur, 2014; Li & Montagnes, 2015), and the function
introduced here allows mortality rates to decline as prey become more abundant.

Despite the fact that we cannot know with certainty what the right model is for the
Didinium-Paramecium interaction, our chosen model contains key components of all
consumer–resource interactions and displayed a high degree of compatibility with the data
(see Results), suggesting the model reflects real aspects of the thermal biology of this
system. In general, ODE models are particularly useful for protist microcosm dynamics,
since cell division and death can happen at any time and reproduction does not occur
during discrete breeding periods. However, ODE models have the downside of often
predicting exceedingly low population abundances (much less than one individual) from
which populations can still rebound. These low abundances are generally taken to reflect
densities for populations with large spatial scales. In the case of whole populations
contained within microcosms, these low abundances can be thought of as functionally
zero.

We fit Eq. (1) to the time series data using the Potterswheel toolbox version 4.1.6 in
MATLAB 2017a (Raue et al., 2009; DeLong, Hanley & Vasseur, 2014). We used the average
time series rather than individual replicate populations to avoid fitting stochasticity and
noise in the data sets and to aid in the identification of confidence intervals on the
parameters. Fits to individual replicate time series were possible for some replicates but
not others, as stochasticity and limited number of observations made identifying a good
model and robust parameter estimates impossible in some cases. Furthermore, differences
among replicates arose through stochasticity, such that the variation across replicates
reflects variation not caused by the underlying deterministic drivers of the system, and it is
these underlying mechanisms that are of interest in this study. The Potterswheel fitting tool
searches parameter space to identify parameter sets for which the solution to Eq. (1)
provides a fit to the data for which further changes in parameters do not lead to an
improved fit. The fitting approach minimizes a χ2 deviance across all measurements.

We used profile likelihood estimation to characterize uncertainty of the parameter
estimates (Raue et al., 2009). Profile likelihood calculates the parameter value for which an
increase in the model’s χ2 goodness of fit statistic reaches a particular threshold. We set
this threshold to a 68.5% confidence interval (CI) because pushing the parameters
farther than this from the mean estimate frequently caused integration failure of the
solvers. Thus, our uncertainty estimates are approximately the standard deviation of the
parameter (Raue et al., 2009). The profile-likelihood is estimated in log increments,
preventing negative confidence interval estimates. We prioritized profile likelihood
confidence intervals, but in cases where these were unattainable, we used CIs estimated
with the Hessian matrix of Eq. (1) provided by the Potterswheel toolbox.
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We first fit Eq. (1) to each time series with all parameters unconstrained. This process
indicated that the conversion efficiency (parameter e) was very similar across temperatures
(mean = 0.055, with CIs 0.028–0.097 inclusive of all temperatures). We tested whether
fixing the conversion efficiency to the mean value impaired fits, and at all temperatures, χ2

values increased by only 0.2–6.4, indicating little impact on fit quality. We therefore
inferred that conversion efficiency is somewhat invariant with temperature. We also
determined that the density-dependent mortality parameter (Cd), while necessary to
include given poor fits without it, was nonetheless very difficult to estimate. We detected
good fits in the area of Cd = 40, and we also determined that Cd could be fixed at 40 without
loss of fit quality.

Previous evaluations demonstrated that the Potterswheel ODE fitting approach
provides robust parameter estimation without generation of spurious covaration among
parameter estimates (DeLong et al., 2018). Nonetheless, we evaluated the ability of our
ODE fitting methods to recover model parameters from dynamics. We did this in two
steps. First, we used ODE solvers to generate simulated model dynamics from Eq. (1), and
then second, we used the same fitting routines as used in the main analysis to identify
model parameters of these simulated datasets. We repeated the testing for each of the
six estimated parameter sets (one set for each temperature). We also restricted the
timespan of the test simulation to the time frame of the observed dynamics, which includes
all time steps with positive abundances and the three time periods of zero abundance
after the last non-zero abundance time point. At all six temperatures, the ODE fitting
returned exactly the parameters used to generate the simulations (Fig. S1). We repeated
this analysis after introducing noise to the time series by adding a number drawn from a
random normal distribution (�x = 0; σ = 0.1) and repeating the fitting process at each
temperature 10 times. We were still able to recover parameters, albeit less exactly than
without noise (Fig. S2). All MATLAB files required to conduct fitting and test parameter
recovery are available in the Supplemental Materials.

Paramecium populations in the predator free control dishes increased in density
through time, but these populations did not achieve an identifiable carrying capacity at
all temperatures. We therefore used this data only to calculate rate of growth r for
Paramecium in predator free conditions. We extracted data from days 2 and 4 and used the

standard exponential growth model: r ¼ ln
N4
N2
2 , where N2 and N4 are population densities

at time 2 and 4, respectively. There was a decline in density from the initial inoculation to
day 2, so we did not use this first time step. We calculated r for each replicate separately to
estimate error.

Finally, we evaluated the effects of variation in parameters due to temperature on the
dynamics. We first solved our model for the mean parameter set. We then varied each
parameter on its own from the minimum to the maximum fitted values across
temperatures and solved the model again using the mean fitted values for the other
parameters. Thus, for each parameter we show three sets of dynamics reflecting three
parameters sets: (1) the minimum parameter set contains the minimum fitted value of the
focal parameter and the means for the other parameters, (2) the mean parameter set uses

DeLong and Lyon (2020), PeerJ, DOI 10.7717/peerj.9377 6/18

http://dx.doi.org/10.7717/peerj.9377/supp-5
http://dx.doi.org/10.7717/peerj.9377/supp-6
http://dx.doi.org/10.7717/peerj.9377#supplemental-information
http://dx.doi.org/10.7717/peerj.9377
https://peerj.com/


the mean of all parameters and thus is the same in all contrasts, and (3) the maximum
parameter set contains the maximum fitted value of the focal parameter along with the
means of all other parameters. These contrasts show how variation in specific parameters
alters the predator–prey dynamics while holding the other parameters constant.

RESULTS
The dynamics of the interactingDidinium-Paramecium populations showed a clear shift in
shape from colder to warmer temperatures (Figs. 1 and 2). As temperature increased, the
period of the population cycle decreased, while the amplitude of the Didinium cycle
increased and then decreased and the amplitude of the Paramecium cycle started to decline
around 23 �C (Figs. 1A and 1B). In state space, these shifts were seen in a reduction in the
radius of the trajectory as populations increased, decreased, and finally went extinct
(Fig. 1C). The time to extinction decreased as temperature increased (Fig. 1).

Based on our fitting results, we infer that six of the parameters governing these
interactions changed with temperature (Fig. 3). Most parameters (Paramecium growth
rate, Paramecium strength of density dependance, space clearance rate, interference, and
handling time) showed a unimodal response, peaking at intermediate temperatures,
typically near 27 �C, but at 20 �C in the case of handling time. In contrast, maximum
Didinium mortality showed a monotonic increase with temperature. Finally, in the
predator free dishes, Paramecium rate of population growth r peaked at 23 �C, but overall,
rate of growth for Paramecium was much lower in the predator-free dishes than in the
presence of predators, especially at higher temperatures (Fig. 3A).
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Figure 1 Dynamics of interacting Didinium nasutum and Paramecium bursaria populations. Points
are population densities averaged across replicates on each day. (A) and (B) show how the dynamics
change for each population with temperature separately, with (A) showing Paramecium and (B) showing
Didinium. (C) shows the state space trajectories for the populations together.

Full-size DOI: 10.7717/peerj.9377/fig-1
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The shifts in dynamics in this system due to changes in temperature were influenced
strongly by all temperature-dependent parameters (Fig. 4). The changing amplitude in the
system (Fig. 1) was influenced by variation in Paramecium rate of growth and density
dependance as well as Didinium mortality. The shifts in period were more related to a
combination of the effect of temperature on space clearance rate, mutual interference, and
handling time (Figs 4G and 4H).

Didinium cell volume shifted with temperature. From the initial size (4.8 × 10−4 mm3

in stock cultures maintained at 23 �C), mean Didinium cell volume increased with
temperature from 17 to 21 �C and then decreased with further increases in temperature
(Fig. 5).

DISCUSSION
Predicting how changes in temperature alter population and community dynamics
depends on developing a thorough understanding of how temperature alters the
underlying drivers of population growth and species interactions. Currently, however,
numerous assumptions about the temperature dependance of parameters governing
species interactions are still required to make predictions about the effects of warming on
population and community dynamics. A more complete depiction of the effect of
temperature on underlying mechanisms driving population dynamics is needed, especially
over broad temperature ranges and taking into account organismal acclimation. Here we
used a combined theoretical-empirical approach to characterize dynamics across
temperature and uncover the temperature dependance of the drivers of these patterns.

Figure 2 Dynamics of interacting Didinium nasutum and Paramecium bursaria populations. Points are population densities averaged across
replicates on each day. (A–F) are Paramecium bursaria and (G–L) are Didinium nasutum. Temperatures are shown from cool to warm colors from
left to right. Shaded areas represent SE of the across-replicate mean at each time point, and the heavy lines show fits of our model (Eq. 1) to the
data. Full-size DOI: 10.7717/peerj.9377/fig-2
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