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s u m m a r y

Global change encompasses changes in the characteristics of inter-related climate variables in space and
time, and derived changes in terrestrial processes, including human activities that affect the environ-
ment. As such, projected global change includes groundwater systems. Here, groundwater is defined as
all subsurface water including soil water, deeper vadose zone water, and unconfined and confined aquifer
waters. Potential effects of climate change combined with land and water management on surface waters
have been studied in some detail. Equivalent studies of groundwater systems have lagged behind these
advances, but research and broader interest in projected climate effects on groundwater have been accel-
erating in recent years. In this paper, we provide an overview and synthesis of the key aspects of subsur-
face hydrology, including water quantity and quality, related to global change.

Adaptation to global change must include prudent management of groundwater as a renewable, but
slow-feedback resource in most cases. Groundwater storage is already over-tapped in many regions,
yet available subsurface storage may be a key to meeting the combined demands of agriculture, industry,
municipal and domestic water supply, and ecosystems during times of shortage. The future intensity and
frequency of dry periods combined with warming trends need to be addressed in the context of ground-
water resources, even though projections in space and time are fraught with uncertainty. Finally, poten-
tial impacts of groundwater on the global climate system are largely unknown. Research to improve our
understanding of the joint behaviors of climate and groundwater is needed, and spin-off benefits on each
discipline are likely.

Published by Elsevier B.V.
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1. Introduction

Global change affects water resources around the world in gen-
erally unknown ways. Potential impacts of global change on sur-
face water, particularly projected regional climate patterns and
trends (i.e., climate variability and change) have been studied in
some detail. Yet, little is known about how subsurface waters will
respond to climate change coupled with human activities (Holman,
2006; Green et al., 2007b; Bovolo et al., 2009). For convenience, we
refer to all subsurface water as ‘‘groundwater’’, including soil
water, deeper vadose zone water, and unconfined and confined
aquifer waters. Distinctions can be made between these compo-
nents of groundwater, noting interactions between them and sur-
face water.

The challenges of understanding climate-change effects on
groundwater are unprecedented because climate change may af-
fect hydrogeological processes and groundwater resources directly
and indirectly, in ways that have not been explored sufficiently
(Dettinger and Earman, 2007). The IPCC (2007a) stated that a lack
of necessary data has made it impossible to determine the magni-
tude and direction of groundwater change due solely to climate
change (Kundzewicz et al., 2007).

Observational data and climate predictions provide abundant
evidence that freshwater resources (both surface and groundwater
resources) are vulnerable and have the potential to be strongly af-
fected by climate change, with wide-ranging consequences for
society and ecosystems (Bates et al., 2008). According to Jorgensen
and Yasin al-Tikiriti (2003) the effect of historical climate change
on groundwater resources, which once supported irrigation and
economic development in parts of the Middle East, is likely2 the
primary cause of declining cultures there during the Stone Age. To-
day, climate change may account for approximately 20% of projected
increases in water scarcity globally (Sophocleous, 2004). Thus, there
is a need to evaluate and understand climatic variability over the
long term to better plan and manage groundwater resources well
into the future, while taking into consideration the increasing
stresses on those resources from population growth and industrial,
agricultural, and ecological needs (Warner, 2007).

In this paper, we appraise the state of the science of global
change related to all components of groundwater. Scientific issues
and methods are placed in the context of global programs aimed at
assessment of groundwater resources and adaptation to climate
change. The current emphasis is on regional case studies with
the potential for global analogues to inform decisions where de-
tailed studies are not presently feasible. In this synthesis of results
to date, we provide the type of soft information needed to general-
ise scientific knowledge and the controlling factors specific to each
case study.

1.1. What is global change?

Global change may include natural and anthropogenic influ-
ences on terrestrial climate and the hydrologic cycle. Greenhouse
gases are assumed to drive much of the contemporary climate
change, and global atmospheric CO2 concentration is the primary
indicator of greenhouse gases, as well as a primary regulator of glo-
bal climate (Petit et al., 1999). Atmospheric CO2 concentration has
been measured in the middle of the Pacific Ocean atop Mauna Loa,
Hawaii at the National Centre for Environmental Prediction (NCEP)
since 1958 (e.g., Keeling et al., 1976, 2004; Thoning et al., 1989).
Both CO2 concentration and its rate of change have increased con-
tinuously over most of our lifetimes, based on a simple power-law
fit to the data (Fig. 1). Seasonal and multi-decadal variations ap-
pear to explain most of the remaining short-term variability. For-
ward extrapolation of the fitted curve is avoided, and projections
of future greenhouse gas concentrations are based on complex
‘‘storylines’’ (IPCC, 2007a). Projected climate change is based pri-
marily on simulated responses to these storylines of emissions
and resulting greenhouse gases.

Atmospheric scientists are exploring complex interactions and
causative factors using available data and climate models. Ice-core
data have shown long-term correlation between atmospheric CO2

and (surrogate) temperature (Petit et al., 1999); however, the tem-
poral cross-correlation lag is not what might be expected from a
greenhouse model. Instead of temperature changes lagging behind
CO2 changes, it is the other way around by approximately
1300 years (Mudelsee, 2001). The Earth’s orbit and ‘‘Milankovitch
cycles’’ seem to explain the apparent paradox, possibly working
in tandem with global greenhouse warming and ocean circulation

2 Terms such as ‘‘likely’’ are strictly defined and used by the IPCC. In this paper, we
use such terms more loosely without intending to quantify likelihood.
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(Monnin et al., 2001). Loaiciga (2009) provided a concise and co-
gent discussion of several factors in the debate over dominant driv-
ers of climate as it relates to (ground)water resources. To our
knowledge, these types of issues in the theory and prediction of cli-
mate have not been fully resolved, but science tends to fill in gaps
and self-correct over time. Therefore, we take the current state of
atmospheric science as our best available knowledge, expecting
incremental and possibly fundamental improvements to climate
projection in the near future. The current level of confidence in cli-
mate projections is discussed further in Section 2.

1.2. Rising interest in impacts of climate change on subsurface water

In recent decades, a wide array of scientific research has been
carried out to better understand how water resources might re-
spond to global change. However, research has been focused dom-
inantly on surface-water systems, due to their visibility,
accessibility and more obvious recognition of surface waters being
affected by global change. Only recently, water resources managers
and politicians are recognising the important role played by
groundwater resources in meeting the demands for drinking water,
agricultural and industrial activities, and sustaining ecosystems, as
well as in the adaptation to and mitigation of the impacts of cli-
mate change and coupled human activities.

Projections from the Intergovernmental Panel on Climate
Change (IPCC) show significant global warming and alterations in
frequency and amount of precipitation from year 2000 to 2100
(Hengeveld, 2000; Le Treut et al., 2007, Fig. 1.3; Mearns et al.,
2007). These changes in global climate are expected to affect the
hydrological cycle, altering surface-water levels and groundwater
recharge to aquifers with various other associated impacts on nat-
ural ecosystems and human activities. Although the most notice-
able impacts of climate change could be changes in surface-
water levels and quality (Winter, 1983; Leith and Whitfield,
1998), there are potential effects on the quantity and quality of
groundwater (Zektser and Loaiciga, 1993; Bear and Cheng, 1999).

1.3. Transboundary water resources

Climatic zones cross international political boundaries, as do
surface-water and groundwater resources. Surface-water rights
have been set historically, and changes in supply have obvious

implications for surface-water management and allocation.
Groundwater basins face similar issues. Groundwater may also
provide critical storage for prolonged periods of shortages in water
resources. Withdrawals from transboundary aquifers have impor-
tant regional management and political implications. Issues associ-
ated with transboundary aquifers have been addressed in more
detail (Puri and Aureli, 2005), including a global map of such trans-
boundary groundwater resources (IGRAC, 2009).

1.4. Global science and policy: international programs and projects

A number of international programs and projects have been
established to facilitate and financially support research activities
aimed at improving our understanding of groundwater resources
under the pressures of global change. Platforms, fora and networks
enhance communication among scientists, and channel the results
and recommendations derived from scientific research into the
political process. Appendix A (electronic supplement) provides a
review of groundwater-related international programs and pro-
jects, their specific areas of intervention, and the institutions and
organisations engaged. Links to relevant organisational web-based
materials may be found therein. This resource is provided to help
fill a common knowledge gap between researchers, implementing
(‘‘action’’) agencies and policy makers.

Political decision makers around the world are becoming
increasingly aware of the opportunities that sustainable use of
groundwater resources may offer in the face of the uncertain con-
sequences related to climate change. Likewise, the challenges
posed to groundwater resources, and their vulnerability to con-
tamination and over-exploitation, are being increasingly recogni-
sed. Thanks to the efforts of groundwater-related scientific
research and the transfer of science-based and policy-relevant
key messages into the political process, groundwater and climate
change related issues are now among the priorities on the political
agenda in many regions. However, continued support by interna-
tional programs and projects in terms of both research and imple-
mentation will be required to advance this progress.

1.5. Trends in research publication and conferences

Of more than 300 articles cited in this paper, we have synthe-
sized over 200 publications directly related to climate change

Fig. 1. Historical changes in atmospheric CO2 concentrations ([CO2]� = [CO2] � 275 ppmv) measured at the Mauna Loa Observatory (www.esrl.noaa.gov/gmd/ccgg/trends/).
The independent variable (T� = Year � 1800) is used for the fitted exponential curve. A polynomial fit to the residual (‘‘deviation from the exponential curve’’) explains most of
the residual decadal-scale oscillation, with the remainder being seasonal fluctuations in monthly [CO2].
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and groundwater. Fig. 2 shows the rate of journal publications per
year and cumulative number of papers from 1990 through 2010.
Most work on the subject has been conducted in the last two dec-
ades. Although some key work started in the 1980s, there was
some hesitation followed by a resurgence of interest in climate
change in all fields, including subsurface hydrology. To date, the
rate peaked in 2007, and more than half of the cumulative papers
were published after 2005.

Another indication of global interest in this topic is evinced by
the number of meetings focused on climate and groundwater
internationally (Kundzewicz and Döll, 2009). It is difficult to gauge
the scope and impact of different conferences and special sessions
focused on climate change and groundwater. Most groundwater-
oriented conferences and society meetings now include sessions
on climate change. To a lesser extent, groundwater is working its
way into climate conferences (e.g., World Climate Conference-3,
20093; UN Climate Conference 20094). The combination of publica-
tions and meetings indicates a strong increase in interest and
research activity.

2. Global climate projections

As will be discussed in Section 3, aquifers are recharged mainly
by precipitation or through interaction with surface-water bodies.
Ultimately, groundwater systems are affected by climate change
influences on surface water and precipitation (as well as other cli-
mate variables). In order to quantify potential effects of climate
change on groundwater systems, future projections of climate
are needed at the scales of application.

2.1. Global climate models

Climate models are tools for studying local, regional or global
climate behavior and its variability over changing conditions on
the Earth. They come in different forms, ranging from simple cli-
mate models (SCMs) of the energy-balance type to Earth-system
models of intermediate complexity (EMICs) to comprehensive
three-dimensional (atmosphere–ocean) general circulation models
or global climate models (GCMs).

GCMs are the most sophisticated tools available for simulation

of the current global climate and future climate scenario projec-
tions. Their formulation usually takes into account the behavior
and interaction of flow systems in the biosphere, hydrosphere, cry-
osphere, atmosphere and geosphere in the climate system. Since
the very early GCMs were developed in the 1960s and 1970s, there
has been considerable growth in knowledge of climate processes
and in the complexity of climate research. Over the last decades,
not only has the spatial resolution of GCMs increased, but the
physical processes incorporated into these models has increased
from simple rain and CO2 emissions to complex biogeochemical
(including water vapor) feedbacks (Le Treut et al., 2007, Fig. 1.2).
The dominant terrestrial processes that affect large-scale climate
over the next few decades are included in current climate models.
Some processes important on longer time scales (e.g., global glaci-
ation), however, are not yet included. Development of the oceanic
component of these newer GCMs continues. They model freshwa-
ter fluxes, improved river and estuary mixing schemes, sea ice, etc.
(Randall et al., 2007, Table 8.1). GCMs are able to simulate extreme
warm temperatures, cold air outbreaks and frost days reasonably
well. However, simulation of extreme precipitation is dependent
on resolution, parameterisation and the thresholds chosen. In gen-
eral, models tend to produce too many days with weak precipita-
tion (<10 mm d�1) and too little precipitation overall in intense
events (>10 mm d�1) (Randall et al., 2007).

Considerable advances in model design have not reduced the
variability of model results, because climate predictions are intrin-
sically affected by uncertainty and deterministic chaos (Lorenz,
1963). Lorenz (1975) defined two distinct kinds of prediction prob-
lems: (1) prediction of actual properties of the climate system in
response to a given initial state due to non-linearity and instability
of the governing equations and (2) determination of responses of
the climate system to changes in the external forcings. Estimating
future climate scenarios as a function of the concentration of atmo-
spheric greenhouse gases is a typical example of predictions of the
second kind (Le Treut et al., 2007).

Uncertainties in climate predictions (of the second kind) arise
mainly from model uncertainties and errors. A number of compre-
hensive ‘model intercomparison projects’ (MIPs) were set up in the
1990s under the auspices of the World Climate Research Pro-
gramme to undertake controlled conditions for model evaluation
(e.g., Taylor, 2001). By far the most ambitious organised effort to
collect and analyze GCM output from standardised experiments
was undertaken in the last few years. The Multi-Model Data set
(MMD) hosted by the Program for Climate Model Diagnosis and
Intercomparison (PCMDI) has allowed hundreds of researchers
from outside the modelling groups to scrutinise the models from
a variety of perspectives. Randall et al. (2007, Table 8.1) compared
the features of a wide range of GCMs related to the atmospheric,
oceanic, land surface, sea ice, and coupling components of each
model. Use of multiple simulations from a single model (i.e. Monte
Carlo, or ensemble, approach) has proved a necessary and comple-
mentary approach to assess the stochastic nature of the climate
system. Such single-model ensemble simulations clearly indicated
a large spread in the climate projections (Le Treut et al., 2007).

The ability of any particular GCM to reproduce present-day
mean climate and its historical characteristics with respectable
realism and good overall performance in comparison with the
other models are presumed to indicate that it can be used to pro-
ject credible future climates (i.e., up to the 2080s). The IPCC
(2007a) states, ‘‘There is considerable confidence that climate models
provide credible quantitative estimates of future climate change, par-
ticularly at continental scales and above. This confidence comes from
the foundation of the models in accepted physical principles and from
their ability to reproduce observed features of current climate and past
climate changes. Confidence in model estimates is higher for some
climate variables (e.g., temperature) than for others (e.g., precipita-

Fig. 2. Rate of peer-reviewed journal paper publications addressing groundwater
and climate change from 1990 to 2010�. A total of 198 papers addressing subsurface
water and climate change are included. �Final references were compiled in February
2011, so some papers published late in 2010 may be missing.

3 http://www.wmo.int/wcc3/page_en.php.
4 http://unfccc.int/meetings/cop_15/items/5257.php.
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tion).’’ The atmosphere–ocean coupled climate system shows vari-
ous modes of variability that range widely from intra-seasonal to
inter-decadal time scales (e.g., Northern Annular Mode (NAM);
Interdecadal Pacific Oscillation (IPO), etc.). Successful simulation
and prediction over a wide range of these phenomena increase
confidence in the GCMs used for climate predictions of the future
(Randall et al., 2007). In addition, the IPCC (2007a) assessment of
the recent scientific literature shows that the global statistics of
the extreme events in the current climate, especially temperature,
are generally simulated well by the current models. These models
have been more successful in simulating temperature extremes
than precipitation extremes (Randall et al., 2007).

However, there remains uncertainty with respect to what the
future ‘‘picture’’ of global climate will be. GCMs are forced with
concentrations of greenhouse gases and other constituents derived
from various emissions scenarios ranging from non-mitigation sce-
narios to idealised long-term scenarios. The IPCC (2007b) Fourth
Assessment Report considered six scenarios for projected climate
change in the 21st century. These included a subset of three IPCC
Special Report on Emission Scenarios (SRES; Nakićenović and
Swart, 2000) non-mitigation emission scenario simulations: B1,
A1B and A2, representing ‘low’, ‘medium’ and ‘high’ scenarios,
respectively. Additionally, three climate change commitment
experiments were performed: one where concentrations of green-
house gases were held fixed at year 2000 values (constant compo-
sition commitment) and the models were run to 2100 (termed
20th century stabilisation), and two where concentrations were
held fixed at year 2100 values for A1B and B1, and the models were
run for an additional 100–200 years.

The projected warming by 2100 is largest in the high green-
house gas growth scenario A2, intermediate in the moderate
growth A1B, and lowest in the low growth B1 (Meehl et al.,
2007). The close agreement of warming for the early century, with
a range of only 0.05 �C among the SRES cases, shows that the
warming is similar for all non-mitigation scenarios over the next
decade or two (Meehl et al., 2007, Table 10.5). Increases in precip-
itation at high latitudes in both summer and winter seasons are
very consistent across models. The increases in precipitation over
the tropical oceans and in some of the monsoon regimes (e.g.,
South Asian and Australian seasonal monsoons) are notable, and
while not as consistent locally, considerable agreement is found
at the broader scale in the tropics (Neelin et al., 2006). There are
widespread decreases in mid-latitude summer precipitation, ex-
cept for increases in eastern Asia. Decreases in precipitation over
many subtropical areas are evident in the multi-model ensemble
mean, and consistency in the direction of change among the mod-
els is often high (Wang, 2005), particularly in some regions like the
tropical Central American-Caribbean (Neelin et al., 2006).

Meehl et al. (2007, Fig. 10.12) showed global changes in mean
annual precipitation, evaporation, soil water content, and runoff
for the model ensemble for the SRES A1B scenario for the period
2080–2099. Overall, precipitation over land was projected to in-
crease by about 5%, while precipitation over ocean increased 4%,
but with both positive and negative regional changes (Meehl
et al., 2007). Emori and Brown (2005) predicted increases of over
20% at most high latitudes, as well as in eastern Africa, central Asia
and the equatorial Pacific Ocean. Substantial decreases, reaching
20%, may occur in the Mediterranean region (Rowell and Jones,
2006), the Caribbean region (Neelin et al., 2006) and the subtropi-
cal western coasts of each continent. Annual average evaporation
was projected to increase over much of the ocean, with spatial
variations tending to relate to those in the surface warming. Over
land, rainfall changes tend to be moderated by both evapotranspi-
ration and runoff. Runoff is notably reduced in southern Europe
and increased in Southeast Asia and at high latitudes, where there
is consistency among models in the direction of change. Mean an-

nual decreases in projected soil water content (SWC, derived from
land-surface schemes within GCMs) were indicated for the sub-
tropics and the Mediterranean region. While the magnitudes of
change in SWC are quite uncertain, there is good consistency in
the direction of change in many regions of the world.

Although such broad generalisations of projected climate
change may be useful for comparing responses at a global scale,
GCMs cannot provide information at scales finer than their compu-
tational grid (typically of the order of 200 km), and processes at
these unresolved scales are important. Thus, the usefulness of
the raw output from a GCM for climate change assessment in spe-
cific regions is limited. To bridge the spatial resolution gaps for
GCMs to produce realistic local climate projections, downscaling
techniques are usually applied to the GCM output.

2.2. Downscaling

Downscaling addresses the disparity between the coarse spatial
scales of GCMs and observations from local meteorological stations
(Wilby and Wigley, 1997; Hewitson and Crane, 2006). GCMs do not
accurately predict local climate, but the internal consistency of
these physically-based climate models provides most-likely esti-
mates of ratios and differences (scaling factors) from historical
(base case) to predicted scenarios (Loaiciga et al., 1996) for climatic
variables, such as precipitation and temperature.

Improvements to climate projections will likely come by devel-
oping regional and GCMs that couple groundwater and atmo-
spheric processes (Gutowski et al., 2002; Cohen et al., 2006). The
primary challenge is the difference in scale between the large (con-
tinental) scale of GCMs and the local scale of groundwater or sur-
face-water models, the latter requiring daily data, with higher
spatial resolution of a few square kilometers (Loaiciga et al.,
1996; Bouraoui et al., 1999).

Downscaling techniques are grouped into two main types: (a)
dynamic climate modelling and (b) empirical statistical downscal-
ing. Downscaling methods have matured since the Third Assess-
ment Report (IPCC, 2001) and have been more widely applied.
Nevertheless, large-scale coordination of multi-model downscaling
of climate change simulations has been achieved only in some re-
gions (Christensen et al., 2007). A clearer picture of the robust as-
pects of regional climate change is emerging due to improvement
in model resolution, the simulation of processes of importance for
regional change and the expanding set of available simulations
(Christensen et al., 2007).

2.2.1. Dynamic downscaling
This technique involves nesting a higher resolution Regional

Climate Model (RCM) within a coarser resolution GCM. RCMs use
the GCM to define time-varying atmospheric boundary conditions
around a finite domain from which the physical dynamics of the
atmosphere are modeled using horizontal grid spacing of about
20–50 km or less. The main limitation of RCMs is that they are
computationally demanding (much like the GCMs) and, therefore,
place constraints on the feasible domain size, the duration of sim-
ulations, and the number of experiments that can be performed.
RCMs are attractive to those seeking process understanding and
causative simulation, but most downscaling is currently empirical.

2.2.2. Statistical downscaling
Statistical downscaling techniques combine existing and past

empirical knowledge to address the disparity between coarse spa-
tial scales of GCMs and point meteorological observations. This
methodology uses a statistically-based model to determine a rela-
tionship between regional or local climate variable(s) (known as
predictands) and large-scale climate variables (referred to as
predictors). The derived relationships between the predictors and
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predictands are applied on similar predictors from GCM simula-
tions in the statistical model to estimate the corresponding local
or regional climate characteristics. Available statistical downscal-
ing models can be grouped as:

� Synoptic weather typing, which involves grouping local meteo-
rological data in relation to prevailing patterns of atmospheric
circulation, and constructing future climate scenarios either
by re-sampling from observed data distributions, or by generat-
ing synthetic sequences of weather patterns using combined
Monte Carlo and Markov chain techniques and re-sampling
from observed data.
� Stochastic weather generation, which involves modifying

parameters of conventional Markov chain weather generators
scaled in direct proportion to corresponding parameters in
GCMs to generate local climate data.
� Regression-based models, which use different mathematical

transfer functions and a statistical fitting procedure to derive
empirical relationships between local predictands and regional
scale predictors. Individual downscaling schemes differ accord-
ing to the choice of predictor variables of statistical fitting
procedures.

Examples of statistical downscaling methods include the Statis-
tical DownScaling Model (SDSM) (Wilby et al., 2002), and principle
component K-nearest neighbor (PCA K-nn) (Bates et al., 1994;
Schnur and Lettenmaier, 1998; Zorita and von Storch, 1999; Yates
et al., 2003). Newer methods, blending the attributes of each down-
scaling technique described above have recently been developed
(e.g., multivariate statistical downscaling) (Cannon, 2008, 2009).
Groves et al. (2008) conditioned K-nn climate sequences to gener-
ate a set of biased, ranked (wet to dry) sequences for resampling.

The statistical downscaling models are computationally inex-
pensive, easily applied to output from different GCMs (Stoll et al.,
2011), and can be used to provide local information most often
needed in many climate change impact applications. In addition,
they offer a framework for testing the ability of physical models
to simulate the empirically-found links between large-scale and
small-scale climate (von Storch et al., 1993; Noguer, 1994; Osborn
et al., 1999). However, the model’s basic assumption (i.e., statistical
relationships developed for present day climate also hold under
different forcing conditions of future climates) may not be valid,
and model calibration requires high quality data.

As discussed in Section 5 on assessments, downscaled daily
temperature generally compares well with observed data, but daily
precipitation amounts often do not, particularly seasonal amounts,
wet spell length, etc. This is due to the generally low predictability
of daily precipitation amounts at local scales by regional forcing
factors. Khan et al. (2006) compared SDSM, Long Ashton Research
Station Weather Generator (LARS-WG) model (Semenov and
Barrow, 1997; Semenov et al., 1998) and an Artificial Neural
Network (ANN) model with respect to various measures of uncer-
tainty in the downscaled results of daily precipitation, daily maxi-
mum and minimum temperatures. The study used 40 years of
observed and downscaled daily precipitation, daily maximum
and minimum temperature data using National Centre for Environ-
mental Prediction reanalysis predictors starting from 1961 to 2000.
The uncertainty assessment results indicated that SDSM
reproduced various statistical characteristics of observed data with
95% confidence, the ANN was the least capable in this respect, and
the LARS-WG was in between SDSM and ANN.

To overcome the discrepancy between downscaled and ob-
served precipitation, shifts in climate projected by a GCM or
through downscaling can be used as input to a stochastic weather
generator (Wilks and Wilby, 1999) (represented as the alternative
route in Fig. 3). This shift factor or ‘‘delta’’ approach for downscal-

ing starts with preparation of coincident predictor and predictand
data sets. The predictor data set is obtained from the GCM output
in the grid corresponding to the local study area, whereas the pre-
dictand is a long series of observed daily weather information (e.g.,
temperature, precipitation, solar radiation, sunshine hours, etc.) at
the meteorological station representing the local area. The calibra-
tion dataset is a climate re-analysis dataset (e.g., National Centre
for Environmental Prediction (NCEP); Kalnay et al., 1996) for the
historical period. A set of parameters are derived using multiple
linear regressions relating the predictors to the predictands based
on the output of the GCM time periods. These parameters are then
used as input for stochastic weather generation of data for differ-
ent future time periods (Fig. 3).

Scibek and Allen (2006b) compared the results for temperature
and precipitation downscaled from a GCM (CGCM1) (Flato et al.,
2000) using two methods for a small valley in south-central British
Columbia, Canada. The two downscaling methods (SDSM and
principal component K-nearest neighbor – PCA K-nn) yielded
comparable estimates of mean monthly temperature, and small
calibration bias (Fig. 4a and b). Precipitation was found to have var-
iable seasonal/monthly predicted changes, and results varied
somewhat between downscaling methods (Fig. 4c and d). The
SDSM downscaled precipitation series were too low in the late
spring to summer months, especially June, but fit the observed nor-
mals reasonably well in other months. Thus, precipitation was
underestimated by roughly 40% compared to observed during the
summer, even after downscaling with a well-calibrated model.
Overall, PCA K-nn downscaling of the same dataset yielded worse
results than SDSM downscaling. Other variables used in calibra-
tion, such as precipitation variability (standard deviation), number
or percentage of wet days, wet spell length and dry spell length,
gave similar results for both methods, although the standard devi-
ation was notably better for SDSM. Both downscaling methods
underestimated number of wet days by about 30% in May and June,
underestimated wet spell length by about 1 day, and underesti-
mated dry spell length by about 30% in all months except June
and July. To overcome the discrepancy in downscaling accuracy,
Scibek and Allen (2006b) assumed that the relative and/or absolute
changes in precipitation and temperature, respectively, between
present and future climate scenarios have strong physical basis
and meaning. Thus, change factors were computed using SDSM
(relative for precipitation, and absolute for temperature), and these
factors were used in LARS-WG to generate daily time series. Cli-
mate data series were applied to a spatially-distributed recharge
model and, ultimately, into a groundwater flow model. A similar
approach was used by Scibek and Allen (2006a) for a different
study area in southwestern British Columbia, Canada, and by
Candela et al. (2009) in Majorca, Spain. Additionally, Allen et al.
(2010) used state-of-the-art downscaling methods to predict vari-
ations in recharge for the trans-national Abbotsford-Sumas aquifer
in Canada and the United States. They found that the variability in
recharge predictions indicates that the seasonal performance of the
downscaling tool is important, and that a range of GCMs should be
considered for water management planning.

Finally, Yang et al. (2005) developed statistical models for gen-
erating sequences of potential evaporation (PE), possibly condi-
tioned on rainfall, and applied to data from southern England.
Daily PE data were used to develop a downscaling procedure.
The authors noted that sufficient PE data are rarely available to
identify long term trends. Thus, they made use of limited daily data
to study sub-weekly structure, and used this information to
downscale weekly sequences. In this way the dual objectives of
downscaling weekly data and simulating daily PE sequences could
both be achieved, since daily sequences can be simulated by
generating a weekly sequence and then downscaling it in time.
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3. Hydrogeology of the subsurface

This section outlines current research and understanding of cli-
mate-change effects on subsurface hydrology and surface–subsur-
face hydrologic interactions. Climate change, including
anthropogenic-global warming and natural climate variability,
can affect the quantity and quality of various components in the
global hydrologic cycle in the space, time, and frequency domains
(Loaiciga et al., 1996; Sharif and Singh, 1999; Milly et al., 2005;
Holman, 2006; IPCC, 2007b). The components of the surface hydro-
logic cycle affected by climate change include atmospheric water
vapor content, precipitation and evapotranspiration patterns, snow
cover and melting of ice and glaciers, soil temperature and SWC,
and surface runoff and stream flow (Bates et al., 2008). Such
changes to the atmospheric and surface components of the global
hydrologic cycle will likely result in changes to the subsurface
hydrologic cycle within the soil, vadose zone, and aquifers of the
world (Van Dijck et al., 2006). However, the potential effects of cli-
mate change on groundwater and groundwater sustainability are
poorly understood. Alley et al. (1999) define groundwater sustain-
ability as development and use of groundwater resources in such a
manner that can be maintained for an indefinite time without
causing unacceptable environmental, economic, or social conse-
quences. The relation between climate variables and groundwater
is considered more complicated than with surface water (Holman,
2006; IPCC, 2007a). This understanding is confounded by the fact
that groundwater-residence times can range from days to tens of
thousands of years, which is likely to delay and disperse the effects

of climate change, and challenge efforts to immediately detect re-
sponses in the groundwater (Chen et al., 2004).

3.1. Precipitation, evapotranspiration, and surface water

Scientists who study the Earth’s climate generally concur that
human activities are enhancing the Earth’s natural greenhouse ef-
fect and that these activities will likely lead to an increase in global
warming. Because the capacity of the atmosphere to hold water in-
creases exponentially with temperature, global precipitation is ex-
pected to increase. However, spatial variability in projected
precipitation indicates both positive and negative changes in regio-
nal precipitation, as well as changes in seasonal patterns (IPCC,
2007a). Any changes in precipitation patterns can affect surface-
water processes and resources. Warming trends may also affect
global evapotranspiration patterns, which have direct implications
for the sustainability of surface- and subsurface-water resources.
There is little agreement on the direction and magnitude of pre-
dicted evapotranspiration patterns (Barnett et al., 2008). However,
higher air temperatures are likely to increase evapotranspiration,
which may result in a reduction in runoff and SWC in some regions
(Chiew and McMahon, 2002). Precipitation and evapotranspiration
are particularly important because they directly affect groundwa-
ter recharge and indirectly affect human groundwater withdrawals
or discharge. Even small changes in precipitation may lead to large
changes in recharge in some semiarid and arid regions
(Woldeamlak et al., 2007). For example, Sandstrom (1995) showed
that a 15% reduction in precipitation, with no change in
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Fig. 3. Weather input generation process for the recharge estimation. NCEP is the National Center for Environmental Prediction, and LARS-WG is the Long Ashton Research
Station Weather Generator.
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temperature, resulted in a 40–50% reduction in recharge. The
forecasted changes in the global spatiotemporal patterns of evapo-
transpiration and precipitation and resulting responses to surface-
water systems are not discussed in detail here. The current section
describes recent research findings regarding how atmospheric and
surface-water changes will generally affect subsurface hydrologic
processes in the soil and vadose zone that control infiltration and
recharge to groundwater resources.

Predicted increased precipitation intensity and variability will
likely increase the risks of flooding and drought in many regions
(Bates et al., 2008). The increased frequency of heavy precipitation
events increases the risk of rain-generated floods. In seasons of
above average precipitation, recharge is likely to increase (relative
to seasonal average conditions), and water demand, such as for
irrigated agriculture, will decline because of lower temperature
and solar radiation and higher humidity in such periods
(Rosenberg et al., 1999). In contrast, the proportion of land surface
in extreme drought is predicted to increase under future climate
change, as is a tendency for drying in continental interiors during
summer, especially in the sub-tropics, low and mid-latitudes (IPCC,
2007a; Bates et al., 2008). Miller et al. (2009) showed that light to
severe drought in the Central Valley, California, USA might result in
a decrease in surface water diversions by as much as 70% and

significant declines in the water table for much of the Central Val-
ley aquifer that do not recover within the 30-year simulation
period.

The increased variability in precipitation, temperature, and
evapotranspiration that is predicted under many climate-change
scenarios will likely have varied effects on different aquifers and
different locations within an aquifer depending on spatial variabil-
ity in hydraulic properties and distance from the recharge area(s).
For example, Chen et al. (2002) observed that groundwater level
responses to precipitation variability in a mid-continent carbon-
ate-rock aquifer are different from well to well because of the
spatial differences in permeability of overlying sediments and re-
charge characteristics. Additionally, groundwater levels at some
locations of the aquifer responded to high-frequency precipitation
events while groundwater levels in other areas did not respond.
High-frequency events are buffered in some areas because of the
long distance to the recharge area or by slow infiltration rates in
low permeability materials. The groundwater-level response to
high-frequency events may indicate the existence of highly perme-
able channels or preferential-flow paths from land surface to the
water table (Chen et al., 2002).

Other studies indicate that even modest increases in near-
surface air temperatures, predicted under most IPCC scenarios, will
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Fig. 4. Mean monthly temperature (a and b) and precipitation (c and d) at Grand Forks, BC: observed and downscaled from CGCM1 model runs for current and future climate
scenarios using SDSM (a and c) and K-nn (b and d) (Scibek and Allen, 2006a).
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substantially alter the hydrologic cycle in snowmelt-dominated re-
gions via seasonal shifts in streamflow because of the fundamental
ability of the snowpack to act as a reservoir for water storage
(Cayan et al., 2001; Stewart et al., 2004; Mote et al., 2005; Barnett
et al., 2008; Tague et al., 2008). For example, Eckhardt and Ulbrich
(2003) predicted a smaller proportion of the winter precipitation
will fall as snow due to warming trends in mountainous regions
of central Europe and that the spring-snowmelt peak will likely
be reduced while the flood risk in winter will probably increase.
Unless additional reservoir storage is created to account for the
earlier snowmelt runoff, the use of groundwater may increase,
where available, to offset the lack of surface water later in the sea-
son when water demands are typically higher.

Spatial differences in groundwater dynamics in mountainous
regions also can play a substantial role in determining streamflow
responses to warming (Tague et al., 2008; Tague and Grant, 2009).
Tague et al. (2008) suggested that groundwater dynamics, such as
subsurface drainage, are as important as topographic differences in
snow regimes in determining the response of mountain landscapes
to climate change. The changes in streamflow, shifting spring and
summer streamflow to the winter, will likely increase competition
for reservoir storage and in-stream flow for endangered species
(Payne et al., 2004) and lead to summer water shortage throughout
the western United States (Tague et al., 2008) and other similar
semiarid and arid regions globally.

Most studies of climate-change effects on surface-water basins,
particularly in mountainous regions (Viviroli et al., 2011), do not
explore subsurface hydrologic responses. How will forecasted
changes to the surface hydrologic regime affect infiltration,
evapotranspiration, SWC distribution, and ultimately recharge?
Singleton and Moran (2010) noted that recharge mechanisms, stor-
age capacity, and residence times of high elevation aquifers are
poorly understood. Moreover, the net change in recharge in moun-
tain aquifers due to changes in the timing of snowpack melting is
generally not known in sign (positive or negative) or magnitude,
making it difficult to predict the response of mountain groundwa-
ter systems to climate change (Singleton and Moran, 2010). How
will mountain-front recharge (MFR) and recharge in other types
of mountainous systems be affected by predicted changes in the
snowmelt-dominated regions where MFR is very important? A
negative feedback between early timing of snowmelt and
evapotranspiration may exist in snowmelt-dominated watershed
(Barnett et al., 2008). Earlier snowmelt results in increased SWC
in the season when potential evapotranspiration is relatively low
(Barnett et al., 2008), which may increase infiltration and recharge
in mountainous regions. When potential evapotranspiration is
greater later in the year, the shift in snowmelt timing may reduce
SWC and increase evaporative resistance, which again reduces the
effect of evapotranspiration change (Barnett et al., 2008) but has an
unknown effect on net infiltration and recharge. These and other
questions remain regarding subsurface hydrologic responses to
climate-change effects on surface-water hydrology.

3.2. Soil water and vadose zone hydrology

Climate change and variability are expected to have profound
effects on soil water and temperature (Jasper et al., 2006;
Jungkunst et al., 2008). Soil water content and temperature are
important factors in terrestrial biogeochemical reactions, land–
atmosphere interactions, and a critical determinant of terrestrial
climate. Variability in vadose-zone hydrology, shallow water tables
that support soil-moisture content, and ultimately the water re-
sources in many aquifers are also affected by SWC and temperature
(Cohen et al., 2006; Fan et al., 2007). Spatial variations in SWC also
influence atmospheric processes, such as the cumulus convective
rainfall (Pielke, 2001). Jungkunst et al. (2008) noted that some soil

types, such as hydromorphic soils, will likely exhibit a higher cli-
mate-change feedback potential than other, well-aerated soils be-
cause soil organic matter losses in hydromorphic soils are
predicted to be much greater than those from well-aerated soils.

Climate-related variables that have a substantial control on
SWC include spatiotemporal patterns in precipitation, evapotrans-
piration, and surface-water conditions. Land use, soil texture,
slope, and other biological, chemical, and physical characteristics
also are known to affect SWC (Jasper et al., 2006) with associated
effects on groundwater and baseflow to streams (Wang et al.,
2009). Seneviratne et al. (2010) provided an extensive review of
interactions and feedbacks between SWC and climate, specifically
atmospheric temperature and precipitation.

The vadose zone is the region between the land surface and sat-
urated zone through which recharge can occur, and represents com-
plex interactions between thermal-hydrologic-geochemical
processes that can affect groundwater quantity and quality
(Glassley et al., 2003). The vadose zone of some semiarid and arid re-
gions has slowly evolving, dynamic characteristics that pose impor-
tant challenges for long-term understanding of the effects of climate
change and variability on the vadose zone and (or) subsequent pro-
cesses affecting the groundwater (Phillips, 1994; Glassley et al.,
2003). For example, Glassley et al. (2003) showed that vadose-zone
pore-water chemistries in the southwestern United States are likely
to be in a continuously evolving state, in the process of chemically
and thermally adjusting to relatively recent, post-glacial climate
changes, and are not at a steady state (Phillips, 1994).

3.3. Saturated groundwater

Groundwater in the saturated zone is an important component
of the global water balance comprising approximately 30% of the
Earth’s freshwater resources and approximately 96% of liquid
freshwater (excluding icecaps and glaciers) (UNESCO, 2008). The
use of groundwater can mitigate droughts, because many aquifers
have a large storage capacity and are potentially less sensitive to
climate change than surface-water bodies, which often rely on
groundwater discharge to maintain baseflow conditions (Dragoni
and Sukhija, 2008). However, the ability to use groundwater stor-
age to buffer rainfall deficits that affect surface-water resources
will be constrained by the need to protect groundwater-dependent
environmental systems (Skinner, 2008).

Groundwater has and will continue to respond to changes in cli-
mate. Paleoclimate-change conditions and subsequent responses in
recharge, discharge, and changes in storage are preserved in the re-
cords of groundwater major and trace-element chemistry, stable
and radioactive isotope composition, and noble gas content (Fan
et al., 1997; Bajjali and Abu-Jaber, 2001; Edmunds and Milne,
2001; Castro et al., 2007; Hendry and Woodbury, 2007). Other
important components of hydrogeological systems include ground-
water-fed lakes in some arid and semiarid regions (Gasse, 2000),
pore-water chemistry of the vadose zone (Zuppi and Sacchi, 2004),
and subsurface-thermal regimes (Taniguchi, 2002; Miyakoshi
et al., 2005; Uchida and Hayashi, 2005; Taniguchi et al., 2008).

Groundwater archives act as low-pass filters and provide low-
resolution time-series of reconstructed temperatures and informa-
tion on atmospheric-moisture transport patterns (Gasse, 2000).
Hiscock and Lloyd’s (1992) paleohydrogeologic reconstruction of
the North Lincolnshire Chalk aquifer in England revealed that re-
charge during the late Pleistocene (approximately the last
140,000 years) has been restricted to periods when the climate
and sea-level position were similar to those of the present day. For-
est clearance since about 5000 years ago is likely to have resulted
in increased recharge rates and enhanced the rate of Chalk perme-
ability development (Hiscock and Lloyd, 1992). Falling global-sea
levels during the last five glacial periods of the Pleistocene Ice Ages
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likely resulted in increased hydraulic heads in inland aquifers rel-
ative to those in the continental shelf, enhancing groundwater flow
toward the coast (Faure et al., 2002). Faure et al. (2002) suggested
that the resulting ‘‘coastal oases’’ that formed from the groundwa-
ter discharge as springs along the exposed continental shelf had
profound effects on biodiversity, human evolution, and carbon
storage during periods of severe climatic stress. At present sea lev-
els, submarine groundwater discharge is a well established phe-
nomenon that contributes substantial mass flux to oceans
(Burnett et al., 2006). Gasse (2000) recommended that future
paleohydrological research needs to develop solid chronologies,
but also to analyze the mechanisms of water storage and losses
in aquifers, obtain quantitative reconstructions of hydrological cy-
cles, and identify atmospheric-moisture transport patterns at re-
gional scales that affect groundwater resources.

Groundwater resources have been affected by a number of non-
climatic forcings, especially since the 1950s, such as contamina-
tion, reduction in streamflow (reduction in recharge), and lowering
of the water table and loss of storage due to groundwater mining
(primarily for irrigated agriculture). As Kundzewicz et al. (2007)
noted, climate-related changes to groundwater to date have been
relatively small compared with non-climate drivers. Additionally,
groundwater systems often respond more slowly and have a more
substantial temporal lag to climate change than surface-water sys-
tems (Chen et al., 2004; Hanson et al., 2004, 2006; Gurdak et al.,
2007; Kundzewicz et al., 2007; Gurdak, 2008). Persistent and se-
vere dry periods have altered the hydraulic properties of aquifers,
such as the transmissivity of a regional karst aquifer in France
(Laroque et al., 1998). Current vulnerabilities in water resources
are strongly correlated with climate variability, due largely to pre-
cipitation variability, especially for semiarid and arid regions
(Kundzewicz et al., 2007; Ouysse et al., 2010). Such regions are par-
ticularly vulnerable to climate change if groundwater reservoirs
are not available. Even if groundwater resources are currently
available, communities become more vulnerable to climate change
if the ratio of stored groundwater volumes to recharge is smaller
and if there are no other local water resources, such as in the iso-
lated alluvial aquifers of Yemen (van der Gun, 2010). The IPCC also
noted that groundwater levels correlate more strongly with precip-
itation than with temperature, but temperature becomes more
important for shallow aquifers (Kundzewicz et al., 2007). The com-
plexity is exacerbated because predictions of global precipitation
spatiotemporal patterns are less certain than are predicted temper-
ature patterns due to climate change. As a result, the IPCC (2007b)
stated that there is no evidence for ubiquitous climate-related
trends in groundwater.

The following sections outline what is known about climate-
change effects on components of the groundwater system, includ-
ing recharge, discharge, flow and storage, groundwater quality, and
surface–subsurface hydrological interactions.

3.3.1. Recharge
Understanding the dynamics and processes interactions affect-

ing recharge over time is fundamental to assessment of groundwa-
ter quality and quantity, and requires a reliable prediction of
critical climate variables (Jyrkama and Sykes, 2007; Gurdak et al.,
2008; Herrera-Pantoja and Hiscock, 2008). Aquifer recharge is
most frequently considered to be the vertical, volumetric flux of
water across the water table, but also includes interaquifer flow
from underlying or adjacent hydrogeologic formations. The former
component of recharge occurs via two general pathways in many
environments: diffuse recharge to the water table and focused re-
charge that occurs at locations where surface-water flow is con-
centrated at land surface, including stream channels, lakes,
topographic depressions, irrigated-agricultural land, and (or) other
macropore, preferential-flow pathways (Small, 2005). Thus,

recharge is a sensitive function of the climate (precipitation and
temperature regimes), local geology and soil, topography, vegeta-
tion, surface-water hydrology, coastal flooding, and land-use activ-
ities (such as urbanisation, woodland establishment, crop rotation,
and irrigation practices) (de Vries and Simmers, 2002; Holman,
2006; McMahon et al., 2006; Green et al., 2007a; Candela et al.,
2009). Understanding of the controls on recharge is improving
(Scanlon et al., 2002, 2006), but knowledge of recharge rates and
mechanisms is often poor (Kundzewicz et al., 2007).

Excess rainfall or runoff that is not used or stored in reservoirs
ultimately becomes part of the soil or groundwater system or flow
to oceans (Sherif and Singh, 1999). Recharge will be affected under
forecasted changes in precipitation patterns. For the purposes of
understanding climate-change effects on recharge and groundwa-
ter resources, Sherif and Singh (1999) divided groundwater re-
sources into four categories:

1. Confined aquifers with upper impermeable layers where
recharge only occurs from precipitation where the water-bear-
ing formations outcrop at land surface.

2. Unconfined (phreatic) aquifers in wet regions where rainfall is
high and evapotranspiration is low. These aquifers are highly
renewable because precipitation exceeds evapotranspiration
throughout much of year and are not expected to face substan-
tial threats to climate change.

3. Unconfined aquifers in semiarid and arid regions that are likely
to have shifting annual balances between precipitation and
evapotranspiration and a general drying trend under most cli-
mate-change forecasts. Sherif and Singh (1999) suggested that
recharge may be less to these aquifers, resulting in less ground-
water availability but an increase in demand from growing pop-
ulation and less reliable surface-water resources.

4. Coastal aquifers vulnerable to rising sea levels (Döll, 2009) and
salt-water intrusion.

Climate change and variability will likely have numerous effects
on recharge rates and mechanisms (Vaccaro, 1992; Green et al.,
2007a; Kundzewicz et al., 2007; Aguilera and Murillo, 2009). Many
climate-change studies have predicted reduced recharge
(Herrera-Pantoja and Hiscock, 2008); however, the effects of cli-
mate change on recharge may not necessarily be negative in all
aquifers during all periods of time (Jyrkama and Sykes, 2007;
Döll, 2009; Gurdak and Roe, 2010). For example, Dettinger and Ear-
man (2007) concluded that it is unknown whether the overall re-
charge will increase, decrease, or stay the same at any scale in
the western United States. While many studies have shown a pre-
dicted decrease in recharge rates under future climate, other stud-
ies have shown an increase in recharge rates. Kruger et al. (2001)
predicted as much as a 30% reduction in recharge of a lowlands
aquifer in Germany, while nearby mountainous regions are pre-
dicted to have negligible changes to recharge rates. Jyrkama and
Sykes (2007) showed that climate change will likely result in in-
creased recharge rates and a shifting spring melt from spring to-
ward winter, allowing more water to infiltrate and possibly
become recharge across a watershed in Ontario, Canada. Kovalev-
skii (2007) showed that many regions of Russia would likely have
increased recharge rates under future climate, resulting in im-
proved groundwater resources in some regions while other regions
will be adversely affected by waterlogged soils, more swampy
lands and landslides, and a decrease in soil productivity. Allen
et al. (2004) and Scibek and Allen (2006a) showed that predicted
climate change would likely result in only moderate changes in re-
charge and associate water-level changes in two aquifers in wes-
tern Canada. Yusoff et al. (2002) found that recharge in aquifers
of eastern England is likely to decrease under ‘medium–high’
greenhouse gas emission but increase under ‘medium–low’
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greenhouse gas emissions. Finally, Green et al. (2007a) simulated
highly variable recharge depending upon the combination of soil
and vegetation types. Recharge tended to increase in the subtrop-
ics, while remaining relatively unchanged or reduced in a Mediter-
ranean climate of Australia.

Climate variability, especially variability in precipitation, can
have substantial effects on recharge and groundwater levels. For
example, Thomsen (1989) noted that recharge in most of western
Denmark at the end of the nineteenth century was only half of the
recharge during the period 1964–1983 because of much greater
winter rainfall. A similar study of recharge sensitivity in Western
Australia by Sharma (1989) concluded that a ±20% change in rain-
fall would result in a ±30% change in recharge beneath natural
grasslands and ±80% change in recharge beneath a pine plantation,
indicating that recharge is greatly influenced by land use and pre-
cipitation variability. Subsequently, Green et al. (2007a) demon-
strated the potential importance of changes in the timing of
rainfall regimes. Eckhardt and Ulbrich (2003) predicted that mean
monthly recharge and streamflow will be reduced by up to 50% un-
der change precipitation regimes, that may lead to issues of local
water quality, groundwater withdrawals, and hydropower
generation.

Groundwater recharge and corresponding vulnerability indices
have been mapped globally (Döll, 2009). As noted above, estimates
of recharge vary spatially with vegetation, soils and land use, and
change in time depending upon the emissions scenario. For the
2050s time period, Döll (2009) estimated that approximately 18%
of the global population would be affected by decreased recharge
of at least 10%, up to a third of the population may experience in-
creased recharge of at least 10%. The latter increases may have pro-
nounced effects in areas with already shallow water tables, which
may be more significant than sea level rise in coastal aquifers
(Kundzewicz and Döll, 2009).

Temperature-depth profiles in deep boreholes are useful for
estimating ground-surface temperature history and recharge, be-
cause climate change at the ground surface is stored in the subsur-
face thermal regime (Taniguchi, 2002; Miyakoshi et al., 2005). This
method and its development are covered in greater detail in Sec-
tion 4.2.2. In the context of estimating recharge, Taniguchi
(2002) showed that subsurface thermal profiles near Tokyo, Japan
reveal that recharge rates increased from the 1890s to 1940s and
decreased from the 1940s to 1990s, in large part, for climatic vari-
ations in precipitation regime. The spatiotemporal response of re-
charge to precipitation variability may affect the aquifer yield,
discharge, and groundwater flow networks, such as gaining
streams may become losing streams and groundwater divides
may move position (Dragoni and Sukhija, 2008). For example,
Winter (1999) showed that climatic conditions affect the direction
of groundwater flow and the relation between surface-water
bodies and subsurface-water resources. Cambi and Dragoni
(2000) showed that forecasted decreases in precipitation and re-
charge will result in a decrease in the discharge of the Bagnara
spring, Italy and a decrease in the regional groundwater flow.

Permafrost-groundwater dynamics respond to climate change
at many scales, particularly in sub-permafrost groundwater that
is highly climate dependent (Haldorsen et al., 2010). Recharge is
likely to increase in areas of Alaska that experience permafrost
thaw (Kitabata et al., 2006; Dragoni and Sukhija, 2008). Addition-
ally, Walvoord and Striegl (2007) proposed that long-term
(>30 year) streamflow records of the Yukon River in Alaska indicate
a general upward trend in groundwater contribution to stream-
flow, which is caused by climate warming and permafrost thawing
than enhances infiltration and supports deeper groundwater flow
paths. In the Qinghai-Tibet Plateau of China, groundwater flow
may play a more important role in permafrost degradation than
climate change (Cheng and Wu, 2007), where degrading perma-

frost caused regional lowering of the groundwater table, which
has resulted in falling lake levels, shrinking wetlands, and degener-
ating grasslands. Additionally, SWC may decrease as permafrost
degrades, increasing the likelihood of desertification in the region
(Cheng and Wu, 2007). Climate change is expected to reduce snow
cover and soil frost in boreal environments of Finland, which will
increase winter floods and cause the maximum recharge and water
levels to occur earlier in the year in shallow unconfined aquifers
(Okkonen et al., 2009; Okkonen and Klove, 2010). In a national
assessment of flooding in Finland, Veijalainen et al. (2010) found
some evidence of reduced surface-water availability, but warned
about spatially variable hydrologic conditions.

Climate parameters that affect recharge, groundwater, and
pore-pressure fluctuations can often trigger slope instability and
landslide activity (Dehn et al., 2000). Dehn et al. (2000) explained
that changes in precipitation patterns and air temperature have
substantial control on future landslide activities. Additionally,
changes in recharge, which ultimately affect groundwater levels,
have implications for slope stability, geomorphology, and other
engineering considerations. Areas that experience increases in re-
charge may have increased slope instability (Dragoni and Sukhija,
2008). For example, Soldati et al. (2004) identified relationships be-
tween climate change and the temporal distribution of landslides,
which in some cases is caused by rising groundwater levels.

Groundwater is a crucial component of the hydrologic cycle and
many water-resource projects. Thus, potential effects of climate
change on recharge deserve more attention than have been re-
ceived to date (Dettinger and Earman, 2007). Scientists currently
lack the necessary tools and data, such as long-term continuous
monitoring of recharge processes, to confidently predict recharge
responses to future climate change in most environments. To date,
it is unknown in many regions of the world whether recharge will
increase or decrease under predicted climate change. Given the
many complexities assumed within the paleoclimate-analogue ap-
proach, uncertainties exist, as with any approach to make future
predictions, and scenarios from the analogue approach may not
be valid beyond 20 years (Dragoni and Sukhija, 2008). Further-
more, the uncertainty that is inherent to the spatial and temporal
variations in temperature and precipitation from any given cli-
mate-change scenario is translated to the uncertainties of pre-
dicted evapotranspiration, runoff, and recharge (Strzepek and
Yates, 1997). It is clear that the changing conditions of the location
and timing of recharge and associated effects on groundwater sup-
plies are insufficiently understood under future climate change
and variability (Sophocleous, 2004; Gurdak et al., 2007). However,
there is abundant evidence that water resources, especially in
many semiarid and arid regions, are particularly vulnerable to
the effects of climate change, especially if recharge conditions
change or worsen (Aguilera and Murillo, 2009; Barthel et al.,
2009; Novicky et al., 2010). The use of groundwater to offset
declining surface-water availability will be hampered by declining
recharge rates, especially in the most water-stressed regions
(Kundzewicz et al., 2007).

3.3.2. Discharge
Groundwater discharge is the loss of water from an aquifer to a

surface-water body, the atmosphere, or abstraction for human
uses. Groundwater depletion occurs when rates of groundwater re-
charge are less than rates of discharge. Over the last 50 years,
groundwater depletion from direct or indirect effects of climate
change and (or) human activities, such as groundwater pumping
for irrigated agriculture or urban centers (Bouraoui et al., 1999;
Dams et al., 2007), has expanded from a local issue to one that af-
fects large regions in many countries throughout the world
(Brouyere et al., 2004; Alley, 2007; Hsu et al., 2007; Martin-Rosales
et al., 2007; Moustadraf et al., 2008). Changing global groundwater
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discharge has even contributed to sea-level rise during the past
century. In particular, the rise in sea level would have been even
greater if substantial quantities of water had not been stored in
land-surface reservoirs or channeled into aquifers by irrigation re-
turn-flow (Sahagian et al., 1994).

Some groundwater resources could be substantially affected by
climate change even if the present groundwater pumping rates are
not increased, such as in the Edward aquifer in Texas, USA (Loaiciga
et al., 2000) and the Chalk aquifer in eastern England (Yusoff et al.,
2002). Direct or indirect effects of climate change on groundwater
discharge include soil degradation, changes in water demand, and
changes in irrigation or land-use practices (Brouyere et al., 2004).

The notable increase in groundwater depletion beginning in the
mid-1900s is consistent with the increase in population in many
regions and the development of high-capacity well pumps that
are used to support agricultural industries and public and private
drinking-water supplies. The High Plains (or Ogallala) aquifer in
the United States, as with many aquifers worldwide, has had sub-
stantial water-level declines since the 1950s that range from 3 to
more than 50 m depending on the relative magnitudes of discharge
and recharge in the aquifer (McMahon et al., 2007). Declining base-
flow in the Sand Hills of Nebraska, USA has also been correlated
with soil texture (Wang et al., 2009).

Alley (2006) suggested that the effects of discharge and ground-
water development often take many years to become evident and
thus, there is a tendency to neglect the data collection and analysis
that is needed to support informed groundwater management un-
til the problems materialise. This type of reactionary stance to
groundwater management is flawed in many ways because,
although some groundwater systems are renewable, many ground-
water resources contain ‘‘fossil’’ groundwater, especially in arid
and semiarid regions, and thus are non-renewable natural re-
sources. For example, the groundwater that is removed from stor-
age in many arid regions was recharged during wetter periods
under paleoclimate conditions (Alley, 2007).

Under some climate scenarios, many regions may receive more
precipitation. Woldeamlak et al. (2007) showed that under wet-
climate scenarios, runoff was the most sensitive component, and
when combined with the predicted increases in groundwater dis-
charge, may result in rising groundwater levels and winter precip-
itation that increase the risk of flooding. Under dry-climate
scenarios, recharge was the most sensitive component and
decreases in all seasons, resulting in annual groundwater level
declines by as much as 3 m. This could have adverse effects on local
aquatic life in local wetlands and riverine ecosystems that rely on
groundwater discharge to support baseflow (Woldeamlak et al.,
2007).

Submarine groundwater discharge (SGD), or the net groundwa-
ter discharge that occurs beneath the ocean, is a large component
of the global hydrologic cycle, accounting for as much as
12,000 km3 per year (Speidel and Agnew, 1988) and may otherwise
provide fresh water for human needs (Taniguchi, 2000; Burnett
et al., 2006). Quantifying submarine groundwater discharge and
the biogeochemical effects on the ocean has important implica-
tions for understanding climate-change effects on oceanic pro-
cesses (Windom et al., 2006). For example, high dissolved
nitrogen–phosphorus ratios in SGD relative to surface waters
may drive the coastal oceans toward phosphorus limitation within
the coming decades, perhaps changing the present nitrogen-
limited coastal primary production (Slomp and Van Cappellen,
2004; Taniguchi et al., 2008).

3.3.3. Flow and storage
Alley (2001) noted the critical importance of groundwater stor-

age in successfully dealing with climate change and variability. In
particular, changes in groundwater storage and agricultural

groundwater pumping in active semiarid basins are substantial,
yet little understood, components of the water balance (Ruud
et al., 2004). The use of groundwater storage to modulate the ef-
fects of drought increases in importance as surface-water storage
becomes more limited, especially during drought periods (Alley,
2001).

Prior to development, the water in storage of most aquifers
worldwide was based on local-climate conditions, ecological de-
mands, and interactions with surface water. Water-table declines
and loss of storage worldwide during the second half of the twen-
tieth century were consistent with the development of high-
capacity well pumps, aquifer development for human use, and a
warming climate (Kertesz and Mika, 1999). Although some regions
of the world, including parts of Russia (Dzhamalov et al., 2008),
may have sufficiently reliable groundwater storage under future
climate change and variability, the rate of global groundwater
depletion was approximately 1.6 � 1011 m3/year during the second
half of the twentieth century (Brown, 2001). Postel (2001) esti-
mated that if this rate of groundwater depletion (loss of storage)
continues, the number of people globally that will live in water-
stressed countries will increase from 500 million to 3 billion over
the next 25 years. This problem will likely be compounded by fu-
ture global-population growth, which correlates with higher
groundwater pumping rates that further threaten the groundwater
sustainability of many aquifers at the global scale (Loaiciga, 2003).
Taniguchi et al. (2008) showed that population growth and the
associated increase in demand for water resources, groundwater
pumping, and temporary loss of groundwater storage, have re-
sulted in substantial land-subsidence problems for many Asian ur-
ban centers. In response to land subsidence, regulation and
groundwater management in Tokyo and Osaka, Japan has reduced
groundwater pumping and stopped land subsidence (Taniguchi
et al., 2008). However, other problems have arisen, including dam-
age to underground infrastructures caused by the buoyant forces of
the rising groundwater levels. Bultot et al. (1988) simulated
changes in groundwater storage of three aquifers in Belgium in re-
sponse to climate change (a doubling of CO2 in their study) that
were largely dependent on aquifer specific hydrogeologic proper-
ties, such as transmissivity, presence of perched lens, or confining
units. Changes to infiltration rates also affected groundwater stor-
age and may increase groundwater storage if infiltration rates are
high.

The water-table declines and loss of groundwater storage in the
High Plains aquifer in the United States were consistent from about
the 1940s, when aquifer development became widespread across
the aquifer, until about the early 1980s when rates of water-table
drawdown diminished (Rosenberg et al., 1999). Rosenberg et al.
(1999) noted that this turn-around occurred despite a very large
increase in the total acreage of irrigated agriculture between the
early 1980s and mid-1990s, which should have worsened water-
table declines. Dugan and Sharpe (1996) attributed the changes
in water tables over this period to a number of technological (i.e.,
more efficient irrigation methods) and economic factors, but also
in large measure to the fact that precipitation in the High Plains
was well above normal between 1980 and 1999 (Garbrecht and
Rossel, 2002).

The responsiveness of the High Plains aquifer, and other similar
aquifers, is strongly suggestive that natural and human-induced
changes in climate, including temperature, precipitation, humidity,
and solar radiation can profoundly affect the availability and future
sustainability of groundwater resources (Rosenberg et al., 1999).
The above normal precipitation across the High Plains aquifer re-
gion between 1980 and the late-1990s can be attributed to tele-
connections from natural variations in sea-surface temperatures
and atmospheric pressures across the Atlantic and Pacific Oceans
(Garbrecht and Rossel, 2002). During the 1980s and early 1990s,
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the Pacific Decadal Oscillation (PDO) (Mantua and Hare, 2002) was
in the positive phase of variability and the Atlantic Multidecadal
Oscillation (AMO) (Kerr, 2000) was in the negative phase of vari-
ability, which generally results in wetter conditions and lower fre-
quency of drought for the High Plains region (McCabe et al., 2004).

Natural-climate variability, as represented by effects from the
PDO or AMO, occurs on all time scales, from annual to decadal, cen-
tennial, and millennial time scales. Ghil (2002) noted that the com-
plex nature of climate variability on multiple time scales is a major
obstacle to the reliable characterisation of global climate change
resulting from human activities. Anthropogenic effects on aquifers,
such as groundwater pumping and resulting loss of storage, are of-
ten on the same time scale as some natural-climate variabilities,
which confound analyses and make it difficult to distinguish be-
tween the two (Hanson et al., 2004; Gurdak et al., 2007; Mayer
and Congdon, 2008). These natural variations in climate, when
combined, can have profound effects on the surface-hydrologic cy-
cle largely because of the magnitude and phase relation that can
cause average or extreme climate forcings (Hanson and Dettinger,
2005), such as drought, low flow in streams, changes to water qual-
ity, and adverse effects on stream ecosystems (Caruso, 2002). As a
result, recent research efforts have characterised subsurface hydro-
logic and geochemical responses to climate variability on interan-
nual to multidecadal time scales because variability on these time
scales has the most tangible implications for water-resource
management (Chen et al., 2002, 2004; Hanson et al., 2004, 2006;
Hanson and Dettinger, 2005; Gurdak et al., 2007). Climate forcings
on these timescales, such as the PDO, AMO, and the El Niño/South-
ern Oscillation (ENSO), have been identified as having substantial
control on recharge and water-table fluctuations of the High Plains
aquifer (Gurdak et al., 2007, 2008; McMahon et al., 2007), other
aquifer systems of the southwestern United States (Hanson et al.,
2004, 2006; Barco et al., 2010), and a number of other aquifers
worldwide (Ngongondo, 2006), including those in many small,
tropical islands in the Pacific, Indian, and Atlantic oceans (White
et al., 2007). A number of studies have relied on long-term histor-
ical hydrologic time series to identify climate-variability effects on
groundwater levels (Chen et al., 2004; Gurdak et al., 2007; White
et al., 2007). Many of these studies have identified quasi-periodic
variations in hydrologic time series that reflect a range of natural
and anthropogenic climate forcings (Hanson and Dettinger,
2005). For example, groundwater levels in the Santa Clara-
Calleguas Basin of coastal Southern California reflect climate forc-
ings on time scales that range from days to decades and represent
teleconnections between recurrent and persistent climatic
patterns over large parts of the Earth’s surface, such as ENSO
(Hanson et al., 2003).

Many questions remain with regard to the control of natural cli-
mate forcings on subsurface hydrologic processes and how anthro-
pogenic global warming may affect the frequency and magnitude
of these forcings, which, in turn, affect the hydrologic cycle of
the surface and subsurface (Gurdak et al., 2009). For example, what
is the confidence in predictions of future subsurface-hydrologic re-
sponse to climate forcings on interannual to multidecadal time-
scales in light of anthropogenic warming of Earth and the likely
effects on the magnitude and frequency of the known climate forc-
ings (such as ENSO, PDO, or AMO)? Hanson and Dettinger (2005)
suggested that GCMs have the ability to simulate and transmit cli-
mate-variability processes, such as precipitation, streamflow, and
changes in groundwater levels that are consistent with ENSO and
PDO variability, and that these models hold promise for predicting
natural-climate variability and anthropogenic-climate change
effects on groundwater. Additional research on the climate vari-
ability may help advance water-management practices especially
in communities that rely more on groundwater during dry periods
(e.g., during the La Niña phase of ENSO variability in the

southwestern US) or prolonged climate change, and in those com-
munities that rely more on surface water during wet periods (e.g.,
during the El Niño phase in the southwestern US) (Alley, 2001).

One of the key findings by the IPCC is that past processes within
the hydrologic cycle may not provide a reasonable guide to future
climate conditions and hydrologic processes (IPCC, 2007a; Bates
et al., 2008). Groundwater is an essential component of the hydro-
logic cycle and the future climate conditions may have substantial
consequences for groundwater management and infrastructure
(Ludwig et al., 2010). The assumption that the hydroclimatic sys-
tem will fluctuate within an unchanging envelope of variability,
termed stationarity, is a fundamental and inherent concept in the
training and practice of most hydrologists and water-resource
engineers (Milly et al., 2008). However, stationarity of the hydrocli-
matic system is not a reasonable assumption under natural-
climate variability that has low-frequency and internal variability
(such as ENSO, PDO, or AMO (McCabe et al., 2004)) or under
substantial anthropogenic change of the Earth’s climate that we
currently face. Milly et al. (2008) have suggested that stationarity
assumptions must be replaced by non-stationary conceptual and
statistical models for relevant variables in the hydroclimatic sys-
tem to optimise water systems and management.

3.3.4. Groundwater quality
Most studies of the effects of climate change and variability on

groundwater have focused on processes that affect recharge, dis-
charge, changes in storage and the associated physical processes
that govern subsurface-water flow. Relatively few studies of cli-
mate change and variability effects on groundwater have focused
on processes that will affect groundwater quality. Groundwater
quality is a function of the chemical, physical, and biological char-
acteristics of the resource. Thus, groundwater quality can be ex-
pected to respond to changes in climate and linked human
activities because of the influences of recharge, discharge, and land
use on groundwater systems. Groundwater quality is a value-spe-
cific concept because the quality of water is related to specific
water-use standards. The protection and enhancement of ground-
water quality has been a high-priority environmental concern be-
cause of the direct implications for drinking-water health
standards (Alley, 1993). Also, if groundwater becomes too saline
because of rising sea levels, for example, the water quality may
be a limiting factor for other uses of groundwater, such as agricul-
ture, industry, or ecosystem needs. Therefore, sustainability of
water supplies under future climate change and variability is not
only dependent on the quantity and quality of groundwater re-
sources, but also on the physical hydrogeologic characteristics of
the aquifer, laws, regulations, and socioeconomic factors that con-
trol the demand and use of groundwater (Reilly et al., 2008).

Global change may affect the quality of groundwater in many
ways (Alley, 2001; Dragoni and Sukhija, 2008). Changes to recharge
rates, mechanisms, and locations can affect contaminant transport,
which may lead to erroneous conclusions about temporal trends in
groundwater quality, particularly if only a few samples have been
collected over time (Alley, 2001). For example, recharge during rel-
atively dry periods may have a greater concentration of salts and
total-dissolved solids (TDS), while recharge during relatively wet
periods may have a relatively lower TDS concentration (Sukhija
et al., 1998). Climate variability on interannual to multidecadal
timescales also has been linked with changes in spatiotemporal-
precipitation patterns that can result in substantial infiltration
events that mobilise large, pore-water chloride and nitrate reser-
voirs in the vadose zone of aquifers in semiarid and arid regions
(Gurdak et al., 2007; Gurdak, 2008). Groundwater quality may
deteriorate substantially if these large chemical reservoirs reach
the water table.
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Coastal regions support approximately one-quarter of the glo-
bal population, but contain less than 10% of the global-renewable
water supply and are undergoing rapid-population growth
(Kundzewicz et al., 2007). The IPCC has a very high confidence that
sea-level rise, spatiotemporal changes in precipitation and evapo-
transpiration, which affect recharge, and increased groundwater
pumping will result in more groundwater salinisation in many
coastal regions (Oude Essink, 1996, 2001, 2004; Klein and Nicholls,
1999; Sharif and Singh, 1999; Pierson et al., 2001; Beuhler, 2003;
Ranjan et al., 2006a,b; IPCC, 2007a; Kundzewicz et al., 2007;
Moustadraf et al., 2008; Barrocu and Dahab, 2010; Oude Essink
et al., 2010; Yechieli et al., 2010). For example, Vandenbohede
et al. (2008) simulated a likely 15% increase in recharge across a
Belgian coastal aquifer over the next 100 years. Simulations
showed that a 0.4 m sea-level rise resulted in an increased ground-
water flow of fresh water toward low-lying inland areas and a de-
creased groundwater flow toward the sea, while the increase in
recharge resulted in more groundwater flow toward both low-ly-
ing inland areas and the sea (Vandenbohede et al., 2008). There-
fore, brackish and salt water present in low-lying areas will be
pushed back, and salt-water intrusion may occur from the low-
lying areas into dunes, which could affect the ecology of the dunes
and the drainage system used in most low-lying areas (Van-
denbohede et al., 2008). Lambrakis and Kallergis (2001) showed
that over-pumping, combined with a dry period, has led to a sub-
stantial decline in groundwater quality of many Greek coastal
aquifers. Factors included abstraction from great depths, a lack of
reliable water-resource management, and salt-water intrusion
resulting in a rise of the fresh/salt-water interface. When simulated
groundwater pumping was discontinued, the reverse process of
groundwater freshening was a relatively long process in those
Greek coastal aquifers, ranging from 15 to 10,000 years depending
on the local geochemical conditions and flow regime (Lambrakis
and Kallergis, 2001). Such long periods of groundwater freshening
highlight the importance of minimising the initial saltwater intru-
sion to maintain fresh groundwater resources in coastal environ-
ments. The salinisation of groundwater may, in turn, affect the
water quality in many rivers and estuaries (Burkett et al., 2002).
Due to increasing concentration of human settlements, agricultural
development and economic activities, the shortage of fresh
groundwater for domestic, agricultural, and industrial purposes
becomes more striking in coastal low-lying deltaic areas like the
Mississippi, Nile, Mekong, Ganges, Po, and Rhine-Scheldt deltas
(Oude Essink, 1996). The rising water levels of the Mediterranean
Sea and falling levels of the Dead Sea will likely cause water levels
to rise and fall, respectively, in adjacent coastal aquifers in Israel,
with local coastal topography, recharge rates, and permeability
also having an important effect on future water levels (Yechieli
et al., 2010).

Climate change may also affect groundwater quality by causing
a decline of fresh groundwater through reduced recharge and (or)
increased pumping. This may disrupt the current balance of the
freshwater/saline water boundary, resulting in saline water
intrusion in not only coastal basins, but inland aquifers as well,
such as the carbonate rock aquifer in the Winnipeg region of
Canada (Grasby and Betcher, 2002; Chen et al., 2004). An indirect
effect of climate change is increased groundwater pumping, which
could affect hydraulic heads in many aquifers, allowing upward
leakage of groundwater with poorer-water quality, such as in the
High Plains aquifer (McMahon et al., 2007). Alley (2001) also noted
that the combined effects of groundwater development and
climate change may lead to less dilution of contaminants in
streams during low flow than was assumed in setting stream-
discharge permits.

A wide range of additional climate-change effects on groundwa-
ter quality are possible. Kovalevskii (2007) showed that under

projected climate change, many regions of Russia will likely have
increased rates of recharge that may increase rates of contaminant
transport and groundwater vulnerability to various types of non-
point- and point-source contamination. The combination of the
heat-island effect from urbanisation and global warming on sub-
surface temperatures has implications for groundwater quality be-
cause of changes to subsurface biogeochemical reactions (Knorr
et al., 2005; Taniguchi et al., 2008). Future research is needed to
better understand the full range of effects on groundwater quality
from changes in the subsurface thermal regime and various bio-
geochemical reactions (Aureli and Taniguchi, 2006). Climate
change and the global trend of increasing urbanisation may also in-
crease flood vulnerability (Aureli and Taniguchi, 2006). Flooding in
urban areas could increase loading of common urban contaminants
like oil, solvents, and sewage to groundwater.

Nutrient transport rates, particularly nitrogen (N) and phospho-
rus (P), beneath agricultural lands may also be sensitive to climate
change. A study of N and P in Sweden (Destouni and Darracq, 2009)
illustrated subsurface controls on nutrient loading to coastal areas
that were relatively insensitive to projected climate due to a lagged
response to historical nutrient inputs. On the other hand, subsur-
face feedback to the climate system is likely due to emissions of
greenhouse gases such as N2O, which Destouni and Darracq
(2009) noted as a neglected feedback mechanism.

Relatively few studies have explored climate-change effects on
pesticide fate and transport in the subsurface. Using a source-path-
way (or transport)-receptor conceptual framework, Bloomfield
et al. (2006) identified that the main climate drivers for changing
pesticide fate and behavior are changes in rainfall seasonality
and intensity, and increased temperatures. However, indirect im-
pacts, such as land-use change are likely to have a more substantial
effect on pesticides in surface water and groundwater than the di-
rect effects of climate change on pesticide fate and transport.
Bloomfield et al. (2006) noted the overall effect of climate change
on pesticide fate and transport is likely to be highly variable and
challenging to predict because of the uncertainties associated with
climate predictions.

Long-term monitoring efforts will likely provide the necessary
data to observe and understand climate-related spatiotemporal
trends in groundwater quality (McMahon et al., 2007; Dragoni
and Sukhija, 2008). Groundwater-remediation practices may con-
sider climate-change prediction in site design. Warner (2007) noted
that climate change, including shifting rainfall patterns, rising sea
levels, and fluctuating river levels may be a future cause for concern
with regard to the potential failure of a fixed-in-place remediation
strategy, such as in situ permeable reactive barrier (PRB), to capture
its intended plume because of the climate-induced shifts in hydrau-
lic gradients. The relatively short-life expectancy of most engi-
neered groundwater-remediation systems do not currently
include the development of economically viable remediation sys-
tems for the long-term and uncertain nature of climate predictions.
Warner (2007) suggested that flexibility in design of remediation
systems, such as increasing the length of a PRB, may account for fu-
ture shifts in the hydraulic gradient caused by climate change, or
more likely, from human activities and groundwater pumping.

3.4. Surface–subsurface hydrological interactions

Climate change has substantial implications for surface-water
processes (Gosling et al., 2010), including groundwater/surface-
water interactions. Some studies suggest that climate change will
result in less surface-water availability, which will likely increase
the need for groundwater development (Chen et al., 2004; Hsu
et al., 2007). For example, climate change may extend the dry sea-
son of no or very low flows in some semiarid and arid regions,
which can have a substantial effect on the overall water resources
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of the region if no deep and (or) reliable groundwater resources are
available (Giertz et al., 2006). Surface-water storage structures can
play a vital role in augmenting groundwater recharge, especially in
semiarid and arid regions (Sharda et al., 2006). Accurate low-flow
stream measurements are important for groundwater-fed streams
to assess the potential effects of climate change and variability, and
to assess in-stream flow requirements and the nature of ground-
water–surface interactions (Berg and Allen, 2007). Cohen et al.
(2006) showed that the responses in surface-water bodies to cli-
mate change were controlled in part by groundwater hydrodynam-
ics and position within the watershed; water-table fluctuations
were consistent and had larger-amplitude fluctuations with lake
levels within the upland portions of a watershed in central Minne-
sota, USA. Cohen et al. (2006) also noted that groundwater-
supported evapotranspiration varied with topography and aqui-
fer-hydraulic conductivity, and indicated that small yet important
feedbacks exist between groundwater and atmospheric processes
on decadal and longer time scales. Moreover, Ferguson and
Maxwell (2010) demonstrated that the hydrologic sensitivity of a
watershed to climate change depends on feedbacks between
groundwater, overland flow, and land-surface water and energy
balance. The magnitude and seasonality of groundwater feedbacks
to surface hydrologic processes is highly sensitive to climate
change (Ferguson and Maxwell, 2010).

An increased frequency of droughts has implications for sur-
face–groundwater interactions. For example, the summer of 2003
was the hottest in Europe in more than 500 years, linked to an esti-
mated 500 deaths in the Netherlands alone, and could become a
close-to-normal summer by about 2050 (Kabat et al., 2005). The
extremely low freshwater discharge by the river Rhine in 2003 re-
sulted in groundwater seepage of seawater to the low-lying delta,
which threatened substantial areas of Dutch agriculture and horti-
culture. As a result, studies are underway to develop freshwater ca-
nals and additional summer water storage facilities for the region.
Across regions of the High Plains aquifer in Kansas, USA, stream-
flow declines are historically caused by high rates of groundwater
pumping, but also correlate with climate variability since the mid-
1980s (Brikowski, 2008). Brikowski (2008) showed that projected
climate change for the region will likely continue streamflow de-
clines at historical rates, resulting in severe consequences for sur-
face-water supply and the strong possibility of unsustainable
surface storage of water resources in the region, which will likely
create even more pressure on the groundwater resources of the al-
ready-stressed High Plains aquifer. Similar findings have been
identified in other climate regions, including humid, tropical and
arctic catchments. For example, Kingston and Taylor (2010) dem-
onstrated that warming scenarios will increase evapotranspiration
and lead to reductions and changes in the seasonality of ground-
water contributions to discharge of the River Mitano catchment
in Uganda. Both observations and modelling suggest that cli-
mate-warming induced permafrost degradation will markedly in-
crease baseflows of arctic and subarctic rivers and streams
(Walvoord and Striegl, 2007; Bense et al., 2009; St. Jacques and
Sauchyn, 2009).

Because natural-climate variations often play an important role
in successful conjunctive management of groundwater and sur-
face-water resources (Hanson and Dettinger, 2005), understanding
future climate change (natural variability and anthropogenic
change) effects will be crucial, especially for groundwater/sur-
face-water resources already close to the limits of sustainability
and under forecasted drought conditions. It is clear that groundwa-
ter withdrawals can strongly affect streamflow during dry periods
(Lee and Chung, 2007). Therefore, it is critically important to accu-
rately understand the links between climate change and variations
and the cycles of supply and demand that drive recharge and with-
drawal of water resources. Accurate projections of climate change

and variations and simulations of the responses in the water-re-
sources system are required (Hanson and Dettinger, 2005).

4. Observational methods for exploring subsurface global
change

Methods available to detect temporal changes in subsurface
parameters, notably groundwater quantity and quality, are numer-
ous and range markedly in observation scale and ‘‘directness’’ of
observation. The most direct, but also smallest-scale observations
are obtained from head measurements in piezometers and water
quality measurements of water samples obtained in wells. Envi-
ronmental tracers and age dating provide invaluable means to con-
strain processes, in particular on relatively long timescales
(>50 year). While in situ measurements arguably provide the most
accurate, reliable and a very valuable means to detect change, the
small observation scale brings about issues of representativeness
for large spatial domains. Most investigations are specific to the
site or region of study, because regional stakeholders want infor-
mation, and it is most feasible to assess well-defined physiograph-
ical systems. Moreover, observation networks do not exist across
large parts of the globe and installing and maintaining measure-
ment systems is expensive and labor intensive. To bring to light
temporal trends at regional to global scale and to study their rela-
tionship to change in regional to global climate and human activi-
ties, studies of extensive data sets (monitoring networks) of such
‘‘point-data’’ are required. Hydroclimatically similar regions can
be explored using a global database of historical climate data. Sim-
ilarity between historical climates in different regions is a neces-
sary starting point but may not be sufficient to constitute
analogous climate change scenarios.

Most hydrogeophysical methods have the advantage that they
allow detection of change over larger volumes of the subsurface,
but at the expense of detail, notably regarding water chemistry.
Remote sensing allows detection of systematic change in the re-
cent past and future on truly large scales, but has limited ability
to ‘‘see’’ groundwater. The major benefit of remote sensing tech-
nologies is their ability to access spatial information in remote
areas where in situ monitoring is sparse or non-existent. Further-
more, conjunctive use of well data, hydrogeophysics and remote
sensing is essential.

4.1. Age dating and chemical proxies

Tracer methods are standard tools of hydrologists to obtain con-
straints on the age of groundwater and on processes and condi-
tions water samples experienced during recharge and upon
transit in the groundwater system (Plummer, 1993; Clark and Fritz,
1997; Cook and Herczeg, 2000; Hinsby et al., 2001; Loosli et al.,
2001; Kooi, 2008a). In the following, key methods are summarised,
and their potential for detecting temporal change in groundwater
systems is discussed, focusing on relatively short time scales (less
than 100 years).

4.1.1. Age dating
Age dating refers to methods that aim to constrain the timing of

recharge, often via the time since recharge. Evidently, these meth-
ods are extremely valuable to address changes in groundwater sys-
tems. Groundwater ages can be obtained using

� radioactive isotopes with well-known, stable source concentra-
tions (e.g., 14C),
� radioactive isotopes with variable source concentration and a

daughter isotope that can be fairly uniquely linked to the
mother species (e.g., 3H/3He), or
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� conservative chemical species which exhibit negligible decay
and which have a well-known, systematically changing source
concentration (e.g., 85Kr, CFC’s, SF6).

These ‘‘direct methods’’ of age dating (Fig. 5), in principle, allow
construction of a continuous record of water age with distance
along a flow path, thereby potentially revealing temporal changes
in recharge. Such changes have primarily – or perhaps solely –
been documented for the relatively distant past (>2000 year BP)
from inferred gaps in the 14C age record. In northern latitudes,
the lack of recharge is mostly attributed to glacial or permafrost
conditions during the Late Glacial Maximum (Edmunds, 2001),
while similar gaps encountered in Africa have been linked to Late
Pleistocene and Holocene periods of prolonged drought (Beyerle
et al., 2003; Guendouz et al., 2003). Similar uses of 3H/3He, 85Kr,
CFC’s, SF6 to infer relatively subtle changes in recharge for the last
five decades are appealing, but also non-trivial as this requires de-
tailed knowledge of the two- or even three-dimensional nature of
local groundwater flow systems and mixing processes. Accuracy of
age-dating methods covering time scales of 100–500 years is low,
such that temporal changes in this age-range still are hard to
resolve.

Several ‘‘indirect’’ age-dating methods provide additional useful
constraints on groundwater age. These methods generally deter-
mine whether the water sample is recharged before or after a
known event. Only when water is sampled which corresponds to
the event marker can an absolute age be assigned to the water.
The nuclear bomb test peaks in 3H, 14C and 36Cl are key examples.
Presence of 3H, nitrate and pesticides in groundwater has been
used extensively to distinguish relatively old from ‘‘modern water’’
which carries an anthropogenic signature. These indirect methods
are most useful to study spatial variability in groundwater flow
systems.

4.1.2. Chemical proxies
Several chemical proxies are used to trace changes in ground-

water flow and, notably, changes in recharge conditions associated
with climate change and surface environmental change in general.
Key proxies are the stable isotopes of water (Clark and Fritz, 1997)
and noble gases dissolved in groundwater (Stute and Schlosser,
1993; Porcelli et al., 2002). Also, chloride content of groundwater
and, in particular in vertical SWC profiles collected in thick vadose
zones in desert areas, have been exploited to infer changes in re-
charge conditions (e.g. Edmunds and Tyler, 2002).

Stable isotopes of H and O in the water molecule are sensitive to
evaporation and condensation processes occurring in the hydro-
logical cycle (Clark and Fritz, 1997). The isotopic composition of
groundwater formed by local infiltration and recharge is intimately
coupled to the composition of precipitation. When precipitated

water partly evaporates before being recharged, this can often be
recognised in the isotopic signature of groundwater samples
through a deviation from the (local) meteoric water line. Temporal
changes in recharge conditions can, therefore, also be potentially
gleaned from isotope studies of groundwater. Temporal trends in
meteoric conditions may also cause spatial variations of isotopic
signatures along groundwater flow paths through changes in the
input signal of precipitation (e.g., Allen, 2004). Over long time
scales (thousands of years), studies have inferred changes in atmo-
spheric circulation patterns and the vapor source area (often sea/
ocean) of precipitation intensity and amount, and changes in air
temperature (Kreuzer et al., 2009). Within shorter time scales,
the latter changes may be inferred more directly from the fairly
extensive network of meteorological stations for which isotopes
are measured in precipitation and other more direct methods to
monitor weather and climate variables. Furthermore, studies of re-
gional/global change in recharge conditions via comparison of
groundwater and precipitation isotopic signatures should provide
valuable information for changes of groundwater resources.

Analysis of noble gas concentrations (Ne, Ar, Kr, and Xe) in
groundwater along a flow path (or with depth) can be used to
study changes in recharge temperature (NRT) (Stute and Schlosser,
1993; Kipfer et al., 2002). The method exploits the fact that the sol-
ubility of these gases is temperature dependent and this depen-
dence increases strongly with atomic mass and, hence, is
different for the different species. Xe has the highest sensitivity
to temperature, whereas Ne solubility only shows a very minor
temperature effect. Accuracy of the technique has been shown to
be 1 �C or better when all four gases are used. NRT records are usu-
ally interpreted to closely track changes in surface air temperature.
However, systematic differences between annual ground surface
and air temperature occur in association with vegetation and
SWC conditions, which could potentially also be responsible for
some of the changes recorded in NRT reconstructions. Recent stud-
ies have shown that noble gas contents can also be used to detect
water provenance such as recharge from lakes. High excess air
content (gas content in excess of solubility equilibrium with the
atmosphere) are interpreted to provide a proxy for large water ta-
ble fluctuations and, hence, strong variability (intermittency) of re-
charge (Ingram et al., 2007). Although noble gases have been
applied primarily in paleohydrological reconstructions of long time
scales (Kooi, 2008a), they should also provide valuable constraints
regarding changes in groundwater systems on timescales of
decades to centuries.

4.2. Hydrogeophysical techniques

Of the numerous hydrogeophysical methods available, three are
particularly relevant to the study of groundwater and the

Fig. 5. Isotopic tools potentially available for dating of groundwater that is up to 106 years old (after Loosli et al., 2001).
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consequent changes that arise from climate variability and change:
electrical/electromagnetic methods, subsurface temperature log-
ging, and land-based gravity surveying.

4.2.1. Electrical/electromagnetic methods
A wide range of electrical/electromagnetic imaging and logging

methods can be used to study groundwater systems and their re-
sponses to climate-related phenomena. This group of methods in-
cludes spontaneous/self potential (SP), electrical resistivity,
induced polarisation (IP), a range of time and frequency domain
electromagnetic methods, and ground-penetrating radar (GPR).
These techniques take advantage of differences in two important
properties of subsurface materials; electrical resistivity and dielec-
tric constant. Water has a low resistivity (or high electrical conduc-
tivity) and high dielectric constant relative to mineral grains and
air. Saline water has a high electrical conductivity relative to fresh
water. Therefore, where there are either spatial or temporal
changes in water content or water salinity, these techniques can
be applied. Their advantage over point sampling is that large areas
can be covered either in land-based surveys or airborne surveys.
Borehole logging methods can be used in a similar fashion to pro-
vide vertical profiles of these properties with depth and to con-
strain survey data.

Climate change is expected to alter groundwater recharge and
discharge, changing both their timing and magnitude. Some exam-
ples of applications targeting recharge and discharge phenomena
include time lapse resistivity imaging to monitor snowmelt infil-
tration (French and Binley, 2004), VLF (very low frequency) EM
for mapping water seepage from a lake in Egypt (Khalil et al.,
2009), and a combination of SP, temperature and electrical conduc-
tivity logging to characterise hydraulically active fractures in a car-
bonate aquifer (Suski et al., 2008). To date, however, there have
been relatively few studies applied to groundwater recharge and
discharge under variable climate conditions.

Perhaps the most common application of these methods is to
studies of saline water in aquifers (Dent, 2007). Saline water can
occur, for example, in coastal regions in association with seawater
intrusion (Koukadaki et al., 2007; Zouhri et al., 2008), in arid areas
due to salinisation from over-irrigation (Guérin et al., 2001), as a
consequence of road salt application in cold climate regions, near
contaminated sites (such as landfills), and as a result of mixing of
connate or fossil water with freshwater. Climate change is ex-
pected to result in higher sea levels, posing an even greater threat
to coastal aquifers. Thus, these hydrogeophysical methods are ide-
ally suited for monitoring changes in groundwater salinity over
large coastal areas due to the effects of sea level rise. Higher
groundwater use due to pumping will likely exacerbate coastal
salinisation problems (Cimino et al., 2008). Greater demand for
irrigation under warmer and drier conditions will also potentially
lead to increased regional scale salinisation. These techniques
may prove invaluable for detecting changes in salinity over broad
agricultural areas.

4.2.2. Subsurface temperature logging
Subsurface temperature can be used to reconstruct climate

change and land cover change, because the signal of surface tem-
perature change is preserved in subsurface environment (e.g.,
Chapman et al., 1992; González-Rouco et al., 2009; Davis et al.,
2010). Development of this method dates back to early paleocli-
matic work (Birch, 1948; Čermák, 1971). Changes in surface tem-
perature associated with changes in air temperature (Smerdon
et al., 2009) can propagate into the subsurface, and can be detected
by measuring ground temperatures either in the shallow subsur-
face or to greater depths (up to several hundred meters) (Čermák
et al., 1992; Beltrami and Mareschal, 1995). Temperature-depth
profiles collected in boreholes can reveal and be used to help

reconstruct the surface temperature changes due to climate change
and land cover change during a few to several hundred years
(Huang et al., 2000; Beltrami, 2002; Roy et al., 2002). Lewis and
Wang (1998) identified ground temperature anomalies and associ-
ated these with deforestation in Canada. Taniguchi et al. (1999)
also examined these effects in Western Australia. Analyses of tem-
perature profiles continue to be refined with regard to the hydro-
dynamics of groundwater (Kukkonen et al., 1994; Smerdon et al.,
2004; Bodri and Cermak, 2005). Although time-lapse temperature
logging may also reveal changes in groundwater flow conditions
(Taniguchi et al., 1999; Kooi, 2008a), this has not been exploited
much. The human impacts on subsurface temperatures, such as
the ‘‘heat island effect’’, can also be detected from subsurface tem-
perature (e.g., Ferguson and Woodbury, 2007; Taniguchi et al.,
2007, 2009; Kooi, 2008b; Huang et al., 2009; Yamano et al.,
2009). Effects of global warming on subsurface temperature subse-
quently affect the ecology and water quality.

4.2.3. Land-based gravity surveying
Land-based gravity measurements have been used to detect

changes in groundwater storage. Pool and Eychaner (1995) con-
ducted a temporal gravity survey to measure changes in aquifer
storage and documented water-level variations in an aquifer and
associated gravity variations. Changes in storage reflect variations
in the volume of water stored in the subsurface. Pool and Eychaner
(1995) observed that measured gravity changes of about 13 micro-
gal represented storage changes of about 0.30 m of water level.
Although this study was undertaken over a large area with station
spacing on the order of kilometers, the details of the survey dem-
onstrated that gravity meters are now sufficiently precise to mea-
sure variations in the gravitational attraction on the order of a few
tens of microgals. As such, smaller study areas have become suit-
able for use of gravimetric methods. For example, Krause et al.
(2009) used new-generation superconducting gravity meters to
collect gravimetric data in a small (approximate to 2 km2) catch-
ment. The site was also instrumented with soil moisture and
groundwater probes at various locations as well as additional pre-
cipitation gauges and a climate measurement station for monitor-
ing of climatological and hydrological parameters in high spatial
and temporal resolution. The gravimeter records contain notice-
able influence due to variations of groundwater, soil water content
and snow coverage. Gravity measurements have also been used to
detect the changes in groundwater storage in situ (gravity profil-
ing) and using the GRACE satellite data as discussed next in
Section 4.3.

4.3. Remote sensing of space-time trends

Satellite remote sensing (RS) undoubtedly represents the most
powerful method for detection and monitoring of environmental
and climate change on a truly global scale. At the same time, how-
ever, capabilities of RS to ‘‘look below the ground surface’’ and to
detect properties that directly bear on groundwater conditions
are extremely limited. Notable exceptions to this are satellite-
based observations of the gravity field which contain key informa-
tion of changes in groundwater storage. RS further provides
essential constraints on ‘‘surface components of the hydrological
cycle’’ which indirectly influence the subsurface-water balance.

Remote sensing and earth observation technologies provide an
important means of collecting groundwater-related data on a re-
gional scale and to assess the state of the resource, which in turn
allows for predictions of the possible responses of groundwater re-
sources to climate change. Satellite remote sensing has drawbacks,
but it offers the advantages of global coverage, availability of data,
metadata, error statistics, and the ability to provide meaningful
spatial averages. In cooperation with the European Space Agency
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(ESA), and other partner institutions, UNESCO-IHP launched the TI-
GER initiative, focusing on the use of satellite data for water re-
source management in Africa (European Space Agency, 2009).

Aerial thermal infrared imaging is being used increasingly for
mapping groundwater discharge zones in estuaries, rivers and
oceans. Peterson et al. (2009) used aerial thermal infrared imaging
to reveal that submarine groundwater discharge (SGD) along the
western coast of the Big Island of Hawaii is often focused as
point-source discharges that create buoyant groundwater plumes
that mix into the coastal ocean.

Several satellite and airborne remote sensing technologies can
contribute to groundwater monitoring activities. Landsat, the
Moderate-resolution Imaging Spectroradiometer (MODIS), the
Advanced Very High Resolution Radiometer (AVHRR), and certain
other instruments can resolve the location and type of vegetation,
which can be used to infer a shallow water table. Landsat imagery
can also provide geological clues where not obscured by vegeta-
tion. Altimetry measurements and Interferometric Synthetic Aper-
ture Radar (InSAR) over time can show where subsidence is
occurring, which is often an indicator of groundwater depletion.
Microwave radar and radiometry measurements can be used to
estimate snow and surface soil water, which further constrain
groundwater assessments. But perhaps the most valuable remote
sensing technology for groundwater investigations is high-preci-
sion satellite gravimetry, as enabled by the NASA/GFZ Gravity
Recovery and Climate Experiment (GRACE) – a satellite gravimetry
technology that may be used to assess groundwater storage
changes.

Since its launch in 2002, the GRACE satellites have been em-
ployed to detect tiny temporal changes in the gravity field of the
Earth (Ramillien et al., 2008). Temporal changes in measured grav-
ity are primarily caused by changes in total water (mass) storage
(TWS) in the atmosphere, ocean and at and below the surface of
the continents. GRACE is being used to generate time series of total
terrestrial water variations (Tapley et al., 2004), which can be used
to assess groundwater storage changes. Wahr et al. (2006) pre-
sented the first technique for deriving terrestrial water storage
variations from global gravity field solutions delivered by GRACE.
Rodell and Famiglietti (2002) showed in a pre-GRACE-launch study
that interannual variations and trends in the High Plains aquifer
water storage would be detectable by GRACE, pointing to new
opportunities for groundwater remote sensing. Rodell et al.
(2007) developed time series of groundwater storage variations
averaged over the Mississippi River basin and its four major sub-
basins using in situ data, and used these to verify GRACE-based
estimates in which SWC and snow water equivalent fields output
from a sophisticated land surface model were used to isolate
groundwater from the GRACE terrestrial water storage data. At
the smaller spatial scale of Illinois (145,000 km2), Swenson et al.
(2006) showed that GRACE captures the signal of changes in total
water storage very well, while Yeh et al. (2006) showed that
GRACE-based estimates of groundwater storage variations com-
pared well with borehole observations on seasonal timescales.
Swenson et al. (2008) used Oklahoma Mesonet data and local
groundwater level observations to further refine methods to
remove the SWC signal from the total water storage change signal
recorded by GRACE. Strassberg et al. (2007) followed up on the
work of Rodell and Famiglietti (2002) by presenting a post-launch
assessment of GRACE capabilities to monitor groundwater storage
variations within the High Plains aquifer. Famiglietti et al. (2011)
recently used GRACE to estimate groundwater depletion rates of
31.0 ± 2.7 mm/year in the Central Valley aquifer, USA.

Post-launch studies using GRACE data have demonstrated that
when combined with ancillary measurements of surface water
and SWC, GRACE is capable of monitoring changes in groundwater
storage with reasonable accuracy (temporal resolution 10 days to

monthly, spatial resolution 400–500 km, mass change �9 mm
water equivalent). Validation studies have found acceptable agree-
ment between GRACE-derived changes in continental water mass
storage and independent inferences from global hydrology models
and surface data. Seasonal correlations of 0.8–0.9 were found by
comparing GRACE and piezometer-network data for different parts
of the USA. GRACE-data were recently used to monitor drought im-
pacts of the Murray-Darling basin in Southeastern Australia
(Leblanc et al., 2009). Syed et al. (2008) also found agreement be-
tween the storage changes estimated by GRACE and the Global
Land Data Assimilation System (GLDAS), where GLDAS was used
to disaggregate terrestrial water storage between soil, vegetation
canopy and snow. Using combined groundwater modelling and
GRACE data, Rodell et al. (2009) recently documented a 4 cm/year
equivalent water height decline for aquifers covering much of
northwest India.

In recent years, the need to better quantify potential changes in
the water cycle associated with climate change (IGOS-P5; WATCH
program6) has provided a major stimulus for improvement of tech-
niques to monitor key variables and components of the hydrological
cycle using space-based platforms. Advances and new developments
in monitoring of soil moisture (de Jeu et al., 2008; Liu et al., 2009),
precipitation, and evapotranspiration (Anderson and Kustas, 2008;
Kalma et al., 2008) provide crucial elements to help constrain
space-time trends in groundwater recharge. Future research will
undoubtedly focus on the further integration of these multi-platform
and multi-parameter observations, including GRACE data, in exten-
sive hydrological models. Recent and upcoming dedicated hydrolog-
ical missions for improved monitoring of soil moisture (2009: SMOS/
ESA; 2011: SMAP/NASA) and precipitation (2012: GPM/NASA), will
therefore, also enhance RS capabilities of groundwater resources
assessment.

GRACE has not yet been used fully by the hydrological commu-
nity, due to its low spatial resolution and lack of information on the
vertical distribution of observed water storage changes. GRACE can
measure variations in equivalent height of water over regions
about 200,000 km2 or larger, with uncertainties on the order of a
few centimeters (Wahr et al., 2006). Accuracy degrades rapidly as
the spatial resolution increases. While this is sufficient for many
large scale hydrological investigations, most water resources,
meteorological, agricultural, and natural hazards applications re-
quire higher resolution data. Furthermore, GRACE was launched
in 2002 with an expected lifetime of 9 years, while climate vari-
ability assessments require a longer, nearly continuous record. This
emphasizes the importance of developing a follow-on gravimetry
mission with advanced technology to increase spatial resolution
while decreasing uncertainty.

The monthly temporal resolution of GRACE is an issue for many
applications, but it should be sufficient for regional groundwater
assessments. To address such scale issues, Zaitchik et al. (2008)
used an advanced data assimilation approach to incorporate
GRACE data into a land surface model, and hence merge them with
other datasets and knowledge of physical processes as represented
in the model. In simulations over the Mississippi River basin, the
GRACE-assimilation groundwater storage output fit observations
better than output from the open loop, and they were of much
higher spatial and temporal resolution than GRACE alone.
Yamamoto et al. (2008) reported the larger difference, in particular
at low latitude regions, between current terrestrial water models
of global river basins and GRACE data. This technique may be the
key to maximising the value of GRACE data for groundwater
resources studies (e.g., Fukuda et al., 2009).

5 http://www.gewex.org/igosreport.htm.
6 http://www.eu-watch.org/templates/dispatcher.asp?page_id=25222705.
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5. Simulated assessments of subsurface hydrology

Mathematical groundwater models play a central role, both for
interpreting and integrating data and for generating general in-
sight to the response of groundwater systems to climate change
and other forcings on multiple spatial and temporal scales. While
observations are essential to explore and document subsurface glo-
bal change, numerical models provide key tools, not only to assist
in developing a comprehensive understanding of observed changes
(i.e., hindcasting), but also predict the future response of the sub-
surface parameters to climate change, land-use change and water
management scenarios (forecasting). Distributed groundwater
models simulate flow in the subsurface, both in saturated and
unsaturated conditions, as well as for porous and fractured media.
Specialised codes are used to simulate chemical processes, such as
solute transport and reactions, heat transport, and density-
dependent flow (e.g., for coastal regions). In addition to groundwa-
ter models, which form the basis for groundwater assessment,
other potential models include coupled land surface-atmospheric
models, biogeochemical models, surface-water hydrological mod-
els, coupled surface-water/groundwater models, and coupled land
surface and variable-saturated groundwater models (Maxwell and
Miller, 2005) to name a few.

Differences in how the physical and chemical processes are rep-
resented along with the degree of complexity in subsurface and
surface conditions control, to a major extent, the scale at which
the codes can be realistically applied, as well as the type and scale
of data required for driving or validating the models. Lumped
models use spatially distributed climate forcing data that is aggre-
gated over the entire basin, while semi-distributed models aggre-
gate data over sub-basins. Distributed models typically consider
distributed climate forcing data and spatially-varying (two- and
three-dimensions) land-surface and subsurface properties. The
advantages and disadvantages of these various approaches require
further investigation in respect of climate change impacts
modelling.

Process-based continental or global-scale hydrological models
are rare, if not absent, at present. Thus, most studies develop smal-
ler-scale models, which are better constrained by available data
and, thus, more easily calibrated. However, there remain chal-
lenges for coupling GCM predictions with hydrological models
(Xu, 1999; Scibek and Allen, 2006b; Toews and Allen, 2009b),
including issues discussed in the section Global Climate Projection.

A number of different approaches have been used to derive cli-
mate data series for hydrogeological studies. Studies range in
application from predicting changes in groundwater recharge,
evapotranspiration, runoff/streamflow, groundwater levels, and
groundwater/surface-water interactions. The complexity of ap-
proaches for obtaining the climate data series appears to have in-
creased in the past several years, ranging from the use of global
averages (Zektser and Loaiciga, 1993; Loaiciga et al., 1996) to the
use of regional ‘‘bulk’’ projections (Vaccaro, 1992; Yusoff et al.,
2002; Allen et al., 2004; Brouyere et al., 2004) to the direct
application of downscaled climate data (Scibek and Allen, 2006b;
Jyrkama and Sykes, 2007; Scibek et al., 2007; Serrat-Capdevila
et al., 2007; Toews and Allen, 2009a) to the use of regional climate
models (van Roosmalen et al., 2007, 2009; Rivard et al., 2008).
Some of the early efforts to assess potential hydrologic impacts
were reviewed by Gleick (1986). Most of these hydrologic models
used daily weather series generated stochastically, with climate
change shifts applied for future climate scenarios. Ideally, several
different GCMs (or model ensembles) and a range of downscaling
methods should be used and compared to assess uncertainty.
Many studies have considered a range of GCMs or the average
projection from several GCMs, and a few studies have considered
different downscaling methods.

Zektser and Loaiciga (1993) used a global water balance ap-
proach coupled with a projected global change in precipitation (as-
sumed 10%) to predict shifts in runoff, baseflow, and discharge of
groundwater to the oceans. Vaccaro (1992) considered two GCM
scenarios: an average of conditions for three different GCMs with
CO2 doubling, and a most severe ‘‘maximum’’ case to examine
the sensitivity of recharge under different land use cases. Also con-
sidered was the sensitivity of recharge to the variability of climate
within the historical and adjusted historical records.

Rosenberg et al. (1999) applied HUMUS, the Hydrologic Unit
Model of the US to the Missouri and Arkansas-White-Red water re-
source regions that overlie the Ogallala aquifer. They imposed
three GCMs (GISS, UKTR and BMRC) projections of future climate
change on this region and simulated the changes that may be in-
duced in water yields (runoff plus lateral flow) and groundwater
recharge. Each GCM was applied to HUMUS at three levels of global
mean temperature (GMT) to represent increasing severity of cli-
mate change (a surrogate for time). HUMUS was also run at
three levels of atmospheric CO2 concentration in order to estimate
the impacts of direct CO2 effects on photosynthesis and
evapotranspiration.

Loaiciga et al. (2000) used historical climatic time series in peri-
ods of extreme water shortage (1947–1959), near-average re-
charge (1978–1989), and above-average recharge (1975–1990).
These historical values were scaled to 2 � CO2 conditions to create
aquifer recharge scenarios in a warmer climate. Several pumping
scenarios were combined with 2 � CO2 climate scenarios to assess
the sensitivity of water resources impacts to human-induced stres-
ses on the Edwards Balcones Fault Zone (BFZ) aquifer, Texas, USA.
The 2 � CO2 climate change scenarios were linked to surface
hydrology and used to drive aquifer dynamics with alternative
numerical simulation models calibrated to the Edwards BFZ
aquifer.

Yusoff et al. (2002) used two future scenarios from the HadCM2
model: a medium–high (MH) emissions scenario and a medium–
low (ML) emissions scenario of ‘greenhouse’ gases. Two future
periods were considered: 2020–2035 and 2050–2065. Future re-
charge to the aquifer was estimated by adjusting the historic re-
cord of monthly precipitation and potential evapotranspiration
by factors calculated from comparing control and future Had-
CM2-generated values. Impacts of climate change were evaluated
by incorporating the monthly estimated recharge inputs within a
groundwater flow model.

York et al. (2002) used a coupled land-atmosphere model
(CLASP II) to investigate decadal timescale impacts of global cli-
mate change on a watershed in Kansas, USA. Although climate
change was not explicitly considered in that study, the nesting of
a physically-based groundwater flow model into a GCM showed
promise for assessing climate change impacts on groundwater sys-
tems. Yu et al. (2006) described a new method of interactively
coupling climate and hydrologic models, based on categories of
fine-grid hydrologic cells within each climate cell. The method is
designed for interactive coupling of climate and hydrologic models
in past and future climate applications. The paper, however, is
limited to model description and validation using observed mete-
orological data standing in for the climate model.

Allen et al. (2004) applied shifts to the temperature and precip-
itation normals via a stochastic weather generator. The shifts re-
flected extreme climate conditions (i.e., wet and warm, wet and
cold, dry and warm, dry and cold) predicted by three GCMs for
the south British Columbia mountains region, Canada up to the
end of the 21st century (Taylor, 1997). The stochastic weather ser-
ies were used as input to a recharge model. Ultimately, two ex-
treme recharge conditions were used as specified flux boundary
conditions to a steady state groundwater flow model. An indepen-
dent sensitivity analysis was conducted to explore the effect of

550 T.R. Green et al. / Journal of Hydrology 405 (2011) 532–560



river stage elevation (using lower than baseflow and higher than
peak flow stage).

Brouyère et al. (2004) selected a subset of three GCMs (EC-
HAM4, HadCM2, CGCM1) and computed monthly increments of
precipitation and temperature for three future model periods for
the Geer basin in Belgium. Using these increments, ‘‘local’’ climate
change scenarios were constructed by combining the daily precip-
itation and temperature values of the baseline period with the
appropriate monthly change rates, in order to obtain realistic daily
data for the climate scenarios. In the scenarios, the quantity of rain
increased during the winter time and decreased during the sum-
mer time, compared to present climatic conditions. Climate data
series were input to an integrated hydrological model.

Scibek et al. (2007) applied the aquifer recharge estimates from
Scibek and Allen (2006b) in combination with basin-scale runoff
predicted from downscaled CGCM1 data. These results were con-
verted to river discharge along river reaches within the valley aqui-
fer. Future climate scenarios indicate a shift in river peak flow to an
earlier date in a year; the shift for the 2040–2069 climate is larger
than for the 2010–2039, although the overall hydrograph shape re-
mains the same. In that particular aquifer system, the impacts on
basin runoff that affect the timing and magnitude of the stream
hydrograph were considered to be far more important than
changes in groundwater recharge from precipitation under both
current and future climate conditions. That study serves to illus-
trate the importance of considering impacts to both surface
hydrology and groundwater conditions.

Jyrkama and Sykes (2007) used the 40 years of actual historical
weather data as a reference, several scenarios were constructed to
simulate the impact of climate change over a period of 40 years,
corresponding to the general predictions made by the IPCC
(2001) for southern Ontario, Canada. A range in absolute changes
in temperature, relative changes in precipitation and solar radia-
tion, as well as combinations of different scenarios were modeled.
Climate data series were applied to a spatially-distributed model
for groundwater recharge.

Serrat-Capdevila et al. (2007) used results from an ensemble of
17 global circulation models (GCMs) and four different IPCC cli-
mate change scenarios to assess the impacts of climate change
on water resources of a semi-arid basin in southeastern Arizona
and northern Sonora. Annual GCM precipitation data for the region
were downscaled and used to derive spatially distributed recharge
estimates in the San Pedro Basin. A three dimensional transient
groundwater/surface-water flow model was used to simulate the
hydrology of the current century, from 2000 to 2100, under differ-
ent climate scenarios and model estimates.

van Roosmalen et al. (2007) used outputs from a regional cli-
mate model for the periods 1961–1990 and 2071–2100 (scenarios
A2 and B2) to force a physically based, distributed hydrological
model to simulate changes in groundwater head, recharge, and dis-
charge in Denmark. Precipitation, temperature, and reference
evapotranspiration increased for both scenarios, resulting in a sig-
nificant increase in mean annual net precipitation, but with de-
creased values in the summer months. The magnitude of the
hydrological response to the simulated climate change was found
to be highly dependent on the geological setting of the model area.
For the same region, van Roosmalen et al. (2009) explored how
land use change and irrigation impacted groundwater recharge
and surface-water hydrology.

Mileham et al. (2008, 2009) used a soil–water balance model
to simulate surface runoff and deep drainage (groundwater re-
charge) under historical (Mileham et al., 2008) and projected cli-
mates (Mileham et al., 2009) in Uganda. Spatial interactions
between the interpolated rainfall and model parameter distribu-
tions had significant effects on the average model outcomes. Esti-
mation of projected climate with simple ‘‘delta factors’’ resulted in

underestimated recharge relative to RCM projected climate that
accounted for a change in the distribution of rainfall intensity.

Rivard et al. (2008) used the Canadian Regional Climate Model
(CRCM4) to generate 30-year climate forecasts for input to a catch-
ment hydrology model (CATHY) for a small (8 km2) catchment in
Nova Scotia, Canada. The CRCM4 uses results from the Third Gen-
eration Coupled Global Climate Model (CGCM3) with a
45 � 45 km2 mesh (112 � 88 grid points). Daily atmospheric forc-
ing from CRCM4 for the 1961–1990 reference period was also used
to generate 30-year series for comparison to observed data; 30-
year periods were selected in order to obtain a statistically
significant representation of climate variations and catchment
hydrodynamic responses for past and future periods.

Toews and Allen (2009a) used three different GCMs (CGCM1
GHG+A1, CGCM3.1 A2, and HadCM3 A2) to determine the sensitiv-
ity of recharge to different climate models for the Oliver region of
the south Okanagan, British Columbia. Temperature data were
downscaled (Wilby et al., 2002); however, changes in precipitation
and solar radiation were calculated directly from the raw GCM data
as these variables could not be reliably downscaled. Climate data
were then synthetically generated using LARS-WG for input to a
recharge model. Three future time periods are considered to coin-
cide with the availability of GCM data. Estimates of recharge, run-
off and evapotranspiration were estimated. Toews and Allen
(2009a) used the results from CGCM3.1 A2 to model impacts on
groundwater levels through a groundwater flow model.

The appropriate level of model complexity for a given problem
may remain subjective, but some level of process interaction with-
in the plant–soil–groundwater–atmospheric system must be pres-
ent. Tietjen et al. (2009) made a case for at least two soil layers in a
soil-vegetation model that simulated soil–water dynamics under
different climatic conditions. Others have applied relatively com-
plex, spatially distributed subsurface models and coupled sur-
face-groundwater models (van Roosmalen et al., 2007, 2009;
Goderniaux et al., 2009).

Numerical model-based studies continue to improve, but for
the most part, the approaches are similar to the ones described
above. By analogy with climate models, hydrogeophysical models
used to predict subsurface effects of climate change must incorpo-
rate appropriate processes and their interactions in space and time.
Integration studies encompassing changes in human or socio-eco-
nomic scenarios (apart from emissions scenarios), such as land use
and water demand are generally lacking (Holman, 2006).

6. Schemes for adapting to climate change

As a definition, climate adaptation measures are developed to
cope with the consequences of a changing climate and avoid future
risks. Adaptation encompasses both national and regional strate-
gies as well as practical measures taken at all political levels and
by individuals.

In many parts of the world, groundwater is crucial to sustain-
able development through provision of low-cost, drought-reliable
and high-quality water supplies. About 70% of drinking water in
the European Union, 80% of rural water supply in sub-Saharan
Africa and 60% of agricultural irrigation in India depend on ground-
water (IAH, 2006). Many countries, therefore, have large ground-
water-dependent economies. Groundwater also sustains
ecosystems and landscapes in humid regions in supporting wet-
lands and riparian areas, and also supports unique aquatic ecosys-
tems in more arid regions and in coastal environments.
Unfortunately, the largely hidden nature of groundwater means
that development is often uncontrolled and not incorporated into
overall river basin management, resulting in over-exploitation
and contamination. Thus, even without considering climate

T.R. Green et al. / Journal of Hydrology 405 (2011) 532–560 551



change, sustainable development of groundwater is a major chal-
lenge given that groundwater is a widely distributed resource
responding at basin scale, but is affected by local users and pollut-
ers (municipalities, industrial enterprises and farmers) whose
behaviours are greatly influenced by national policies determining
land and water use. Hence, in general, governance systems, re-
source policies, innovation incentives, data collection and informa-
tion provision need to relate to a wide range of scales, with
different adaptive management approaches in rural and urban
environments (IAH, 2006).

Climate change challenges the traditional assumption that past
hydrological experience provides a good guide to future conditions
(IPCC, 2007b). In times of surface-water shortages during droughts,
a typical response is for groundwater resources to be abstracted as
an emergency supply (Table 1). Under conditions of climate
change, this response is likely to be unsustainable, especially in
those areas expected to experience an increase in drought fre-
quency and duration. Also, rising sea levels under climate change
will further threaten coastal freshwater aquifers, especially those
already experiencing salinisation due to over-exploitation. In this
paper, and to address possible future adaptive responses to climate
change, reference is made to the emerging literature on the mitiga-
tion and adaptation responses that apply to water resources in
general, together with specific consideration of groundwater.

Adaptation approaches can be preventative or reactive and ap-
ply to natural and social systems. Ensuring the sustainability of

investments in, for example, groundwater resources planning and
development, over the entire lifetime of a scheme and taking expli-
cit account of changing climate, is referred to as climate proofing
(CEC, 2007). At a minimum, and in the absence of reliable projec-
tions of future changes in hydrological variables, adaptation pro-
cesses and methods can be implemented, such as improved
water use efficiency and water demand management, offering
no-regrets options to cope with climate change.

The Dutch are investing in ‘‘climate proofing’’ (Kabat et al.,
2005) that uses hard infrastructure and softer measures, such as
insurance schemes or evacuation planning, to reduce the risks of
climate change and hydrologic variability to a quantifiable level
that is acceptable by the society or economy. The Netherlands, like
the rest of the world’s coastal delta regions, are vulnerable to cli-
mate change and sea-level rise and associated groundwater quality
(and quantity) related challenges. Rather than coping with ex-
treme-climatic events, as people from all over the world have done
over human history, ‘‘climate-proofing’’ is a proactive approach to
develop precautionary measures to address the low-probability
but high-magnitude hydroclimatologic events that are forecasted
under climate change and variability (Kabat et al., 2005). Kabat
et al. (2005) also noted that climate proofing should be driven by
opportunities for technological, institutional, and societal innova-
tions, rather than by the fear of climate-change induced threats.
The ‘‘climate proofing’’ approach could be used by water-resource
scientists, engineers, and managers to develop forward thinking,
innovative solutions and precautionary measures for a range of
probable hydroclimatic events under future climate change. The
‘‘death’’ of hydroclimatological stationarity (Milly et al., 2008) is
the impetus that will drive the innovation and suitable precaution-
ary measures to protect the sustainability of groundwater re-
sources under a new hydroclimatic conceptual regime.

According to the IPCC (2007b), the array of potential adaptive
responses available to human societies is very large, ranging from
purely technological (e.g., deepening of existing boreholes),
through behavioral (e.g., altered groundwater use) to managerial
(e.g., altered farm irrigation practices), to policy (e.g., groundwater
abstractions licensing regulations). The IPCC (2007b) argued that
while most technologies and strategies are known and developed
in some countries (e.g., demand-management through the con-
junctive use of surface-water and groundwater resources), the
effectiveness of various options to fully reduce risks for vulnerable
water-stressed areas, particularly at higher levels of warming and
related impacts, is not yet known. Shah (2009) noted that there
is also an indirect feedback of pumping on climate change due to
energy use and associated carbon emissions (already approxi-
mately 5% of India’s total). This is one obvious example of the inter-
actions between potential groundwater-atmosphere feedbacks and
adaptation to global change that must be considered.

For water resources management, there are generally two types
of decisions to be considered: those dealing with new investments
and those dealing with the operation and maintenance of existing
systems. In order to inform these decisions, information is needed
about future water availability and demand, both of which are af-
fected by climate change at the river-basin scale (Ballentine and
Stakhiv, 1993). Table 1 summarises supply-side and demand-side
adaptation options designed to ensure supplies of water and
groundwater during average and drought conditions. As explained
by the IPCC (2008), supply-side options generally involve increases
in storage capacity or water abstraction. Demand-side adaptation
options rely on the combined actions of individuals (industry users,
farmers (especially irrigators) and individual consumers) and may
be less reliable. Indeed, some options, for example those incurring
increased pumping and treatment costs, may be inconsistent with
climate change mitigation measures because they involve high en-
ergy consumption.

Table 1
Types of adaptation options for water supply and demand (IPCC, 2008).

Supply-side Demand-side

Increase storage capacity by building
reservoirs and dams

Improve water-use efficiency by
recycling water

Desalinate seawater Reduce water demand for
irrigation by changing the
cropping calendar, crop mix,
irrigation method and area
planted

Expand rain-water storage

Remove invasive non-native vegetation
from riparian areas

Promote traditional practices for
sustainable water use

Prospect and extract groundwater Expand use of water markets to
reallocate water to highly valued
uses

Develop new wells and deepen existing
wells

Expand use of economic
incentives including metering and
pricing to encourage water
conservation

Maintain well condition and
performance

Develop aquifer storage and recovery
systems

Introduce drip-feed irrigation
technology

Develop conjunctive use of surface water
and groundwater resources

License groundwater abstractions

Develop surface water storage reservoirs
filled by wet season pumping from
surface water and groundwater

Meter and price groundwater
abstractions

Develop artificial recharge schemes
using treated wastewater discharges

Develop riverbank filtration schemes
with vertical and inclined bank-side
wells

Develop groundwater management
plans that manipulate groundwater
storage, e.g. resting coastal wells
during times of low groundwater
levels

Develop groundwater protection
strategies to avoid loss of
groundwater resources from surface
contamination

Manage soils to avoid land degradation
to maintain and enhance
groundwater recharge

Water transfer and expanded water markets to reallocate water to highly valued
uses.
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One of the major challenges facing water resources managers is
coping with climate change uncertainties in the face of real-world
decision-making, particularly where expensive investment in
infrastructure such as well-field design, construction and testing
and laying of pipelines is required (Brekke et al., 2004). As dis-
cussed by Dessai and Hulme (2007), this challenge presents a num-
ber of new questions, for example to what amount of climate
change uncertainty should we adapt? Are robust adaptation op-
tions socially, environmentally and economically acceptable and
how do climate change uncertainties compare with other uncer-
tainties such as changes in demand? The answers to these ques-
tions leading to robust adaptation decisions will require the
development of probability distributions of specified outcomes
(Wilby and Harris, 2006) and negotiation between decision-mak-
ers and stakeholders involved in the adaptation process (Dessai
and Hulme, 2007). For lower income countries, availability of re-
sources and building adaptive capacity are particularly important
in order to meet water shortages and salinisation of fresh waters
(IPCC, 2007b).

Examples of current adaptation to observed and anticipated cli-
mate change in the management of groundwater resources are
few, with groundwater typically considered as part of an inte-
grated water-supply system. Here, three examples serve to high-
light the difference in approach in technically-advanced and
developing country contexts. The ability of California’s water sup-
ply system to adapt to long-term climate and demographic
changes is examined by Tanaka et al. (2006) using a state-wide
economic-engineering optimisation model of water supply man-
agement and considering two climate warming scenarios for the
year 2100. The results suggested that California’s water supply sys-
tem appears physically capable of adapting to significant changes
in climate and population, albeit at significant cost. Such adapta-
tions would entail large changes in the operation of California’s
large groundwater storage capacity, significant transfers of water
among water users and some adoption of new technologies. In a
further study, in the Sacramento Valley, California, Purkey et al.
(2007) used four climate time series to simulate agricultural water
management with adaptation in terms of improvements in irriga-
tion efficiency and shifts in cropping patterns during dry periods
leading to lower overall water demands in the agricultural sector
with associated reductions in groundwater pumping and increases
in surface-water allocations to other water use sectors. Land-use
adaptation to projected climate change may include management
changes within land-use classes (e.g., alternative crop rotations)
or changes in land classification (e.g., converting annual cropping
systems to perennial grasslands or forests). Soil and water conser-
vation programs already encourage some of these types of land-
use changes.

A similar technological approach to that demonstrated for Cal-
ifornia is presented for the Mediterranean region of Europe. This
region is experiencing rapid social and environmental changes
with increasing water scarcity problems that will worsen with cli-
mate change. Iglesias et al. (2007) found that these pressures are
heterogeneous across the region or water use sectors and adapta-
tion strategies to cope with water scarcity include technology,
use of strategic groundwater and better management based on
preparedness rather than a crisis approach. Iglesias et al. (2007)
also advocated the importance of local management at the basin
level but with the potential benefits dependent on the appropriate
multi-institutional and multi-stakeholder coordination.

In contrast to the examples from North America and Europe, Ojo
et al. (2003) discussed the downward trends in rainfall and
groundwater levels, and increases in water deficits and drought
events affecting water resources availability in West Africa. There,
the response strategies needed to adapt to climate change empha-
size the need for water supply-demand adaptations. Moreover, the

mechanisms needed to implement adaptation measures include:
building the capacity and manpower of water institutions in the
region for hydro-climatological data collection and monitoring;
the public participation and involvement of stakeholders; and
the establishment of both national and regional co-operation.

Further to the challenges presented by climate change, water
resources management has a clear association with many other
policy areas such as energy, land use and nature conservation. In
this context, groundwater is part of an emerging integrated water
resources management approach that recognises society’s views,
reshapes planning processes, co-ordinates land and water re-
sources management, recognises water quantity and quality link-
ages, manages surface-water and groundwater resources
conjunctively and protects and restores natural systems while
including a consideration of climate change. This integrated ap-
proach presents new challenges for groundwater. For example,
better understanding is needed of leakage processes associated
with carbon capture and storage if the potential degradation of
groundwater quality is to be avoided. Also, insight is needed into
the effects of large-scale plantations of commercial energy crops
on groundwater recharge quantity and quality (IPCC, 2008).

In summary, groundwater resources stored in aquifers can be
managed given reasonable scientific knowledge, adequate moni-
toring, sustained political commitment and provision of institu-
tional arrangements. Although there is no single approach to
relieving pressures on groundwater resources given the intrinsic
variability of both groundwater systems and socio-economic situ-
ations, incremental improvements in resource management and
protection can be achieved now and in the future under climate
change. Future sustainable development of groundwater will only
be possible by approaching adaptation through the effective
engagement of individuals and stakeholders at community, local
government and national policy levels.

7. Summary and future directions

The present synthesis addresses current interest, knowledge,
programs, methods and research results to date regarding global
change and subsurface water (groundwater). Interest and scientific
investigations have grown rapidly in the last decade, as evinced by
conferences, international programs and the rate of peer-reviewed
journal publications.

The hydrology of the subsurface is coupled with surface hydrol-
ogy and the atmosphere. Feedback between soil water and atmo-
spheric processes has been explored over short time periods, but
long-term (multidecadal or greater) feedback from groundwater,
including deeper saturated zones, and climate constitutes a knowl-
edge gap. Paleohydrology indicates that contemporary groundwa-
ter-climate systems are not in equilibrium, due to the long
memory of deep groundwater with long flow paths and large
storage.

Global change has implications for both water quantity and
quality. Methods of observations from various disciplines are being
applied to study patterns of past changes in groundwater chemis-
try, temperature and other hydrogeophysical properties and re-
sources over a range of spatial scales. Satellite remote sensing
offers a way of detecting trends over space and time, but over a
limited time period so far. Gravity measurements over large areas
may facilitate global water balance estimates (i.e., temporal
changes in terrestrial water), but higher spatial resolution is
needed to make such measurements more practically useful for re-
gional groundwater management.

Most numerical simulation studies to date have focused on esti-
mating impacts of projected climate change on groundwater. The
level of process detail, dimensionality and space-time resolution
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varies among models, and the effects of projected climate change
on hydrological fluxes (e.g., groundwater recharge) may vary with
different combinations of soils/aquifer materials, vegetation, and
climate zone. Spatial variability within a study region can be ad-
dressed with distributed process models, but the added complexity
limits their application at least in the short term.

Estimation of projected climate remains probably the greatest
source of uncertainty in evaluating future scenarios. Even if future
emissions of greenhouse gases were known (and the general up-
ward trend is clear), variability among GCMs (designed and run
by different scientific organisations around the world) is large.
Ensemble means are used widely, but questions remain about
GCM selection for a particular region of the Earth. Downscaling
of GCM output to a given scale of application (model input) has
been approached physically and statistically with mixed results.
This is an active area of research, including issues of statistical
non-stationarity in historically measured climate variables.

There is a ubiquitous need for improved quantification of exist-
ing hydrogeological, agroecological systems toward estimating
their responses to projected climate change. Long-term monitoring
of terrestrial systems (groundwater, surface water, vegetation and
land-use patterns) is essential for quantifying baseline properties.
Scaling fluxes of water and its constituents up and down to the
scales of interest for management and policy is an overarching
theme for projecting groundwater responses and feedbacks with
climate. Furthermore, information from one study area must be
transferred across the globe to other areas where monitoring infra-
structure and research resources are not available. Mapping of glo-
bal analogues in terms of climatic and terrestrial properties seems
to be a promising first-order approach.

Decisions are being made around the globe with very limited
information on the potential impacts of climate change. State-of-
the-science ‘‘best guesses’’ will continue to be employed and up-
dated for policy and decision making from global down to local
scales. Issues of food and energy security, environmental protec-
tion, and social welfare all interact and depend upon improved
understanding of terrestrial responses to climate change and feed-
back mechanisms.

Adaptation to global change will be needed. As the limits of
groundwater sustainability are reached through development, it
is likely that even small changes in recharge, discharge, or ground-
water storage will have economic or environmental consequences
(Mayer and Congdon, 2008). Current water-resource management
practices cannot cope with current climate variability and thus
may not be robust enough to cope with the impacts of future cli-
mate change (Bates et al., 2008).

The demand for groundwater is likely to increase in the future
because of the need to offset the substantial declines in surface-
water availability from increasing precipitation variability and re-
duced summer low flows in snow-dominated basins (Kundzewicz
et al., 2007). The current demands for surface water in many parts
of the world will not be met under plausible future climate condi-
tions, much less the demand under future population growth (Bar-
nett et al., 2008). The potential increase in rates of extraction could
exacerbate declining water tables, the loss of groundwater storage
and decreasing water quality in many already stressed aquifer sys-
tems. Alternatively, artificial recharge and managed storage and
recovery projects may become a more important component of
many local water systems to bank excess renewable-water sup-
plies and provide water for both normal years and those times
when resource shortages may develop (Woodhouse, 2007). Hanson
and Dettinger (2005) noted the importance of anthropogenic ac-
tions, especially groundwater pumping for agricultural activities,
in developed groundwater systems and the urgent need to improve
the ability of predicting human extractions and returns of water on
the basis of climatic effects.

Quantification of biological, physical and social responses to
global change is a daunting task that requires transdisciplinary sys-
tems approaches. Although the science of subsurface global change
is in its infancy, its place in the greater terrestrial system is critical.
Groundwater has been an historical buffer against climate variabil-
ity, and our dependence on groundwater resources is likely to in-
crease as water supplies are further stressed by population
increase and projected increases in climatic variability over much
of the globe. As researchers from a broad spectrum of disciplines
and geographical locations converge to address global change is-
sues, process knowledge will increase, systems will be better
understood, and estimates of projected groundwater changes and
their potential feedbacks on climate will be refined, including
quantification of uncertainty and associated risks.

Finally, we assert that disciplinary sciences will benefit from the
cross-fertilisation effect of transdisciplinary, whole-systems ap-
proaches and methodologies. Adaptation decision processes in
the face of global change should be addressed even to improve
management and decision making in an otherwise unchanging
world. That is, natural and human-induced variability under his-
torical conditions will be better quantified and managed using
new scientific advances gained under the auspices of global change
research, making such work a ‘‘win–win’’ proposition.
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