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Exploiting the RNA interference (RNAi) gene mechanism to silence essential genes in
pest insects, leading to toxic effects, has surfaced as a promising new control strategy in
the past decade. While the first commercial RNAi-based products are currently coming
to market, the application against a wide range of insect species is still hindered by
a number of challenges. In this review, we discuss the current status of these RNAi-
based products and the different delivery strategies by which insects can be targeted
by the RNAi-triggering double-stranded RNA (dsRNA) molecules. Furthermore, this
review also addresses a number of physiological and cellular barriers, which can lead to
decreased RNAi efficacy in insects. Finally, novel non-transgenic delivery technologies,
such as polymer or liposomic nanoparticles, peptide-based delivery vehicles and viral-
like particles, are also discussed, as these could overcome these barriers and lead to
effective RNAi-based pest control.

Keywords: RNA interference, RNAi, pest management, insect pests, dsRNA, host-induced gene silencing (HIGS),
spray-induced gene silencing (SIGS), virus-induced gene silencing (VIGS)

INTRODUCTION

Insects are our most serious competitors for food and fiber and are vectors of some of our
most serious diseases. Chemical pesticides are routinely used to protect crops and to reduce
the spread of insect-borne diseases. Due to their frequent use, there are increasing incidences
of insecticide resistance to many of the most commonly used insecticides (Sparks and Nauen,
2015). In addition, there is increasing public concern over the risk that many of these chemicals
pose to the environment and to human and livestock health (Damalas and Eleftherohorinos,
2011; Nicolopoulou-Stamati et al., 2016). Together, these issues provide compelling reasons to
find safer, more pest-specific alternatives to control pest insects. One technology that offers the
promise of a reduced risk approach to insect pest control is RNA interference (RNAi). RNAi is a
sequence-specific method of suppressing a targeted gene’s expression, and because each species is
defined by the uniqueness of its genes’ sequences, RNAi can potentially be designed in a species-
specific manner. By targeting genes essential for pest insect’s growth, development, or reproduction,
RNAi could be used selectively to kill pest insects without adversely affecting non-target species
(Whyard et al., 2009).

RNAi is a naturally occurring cellular defense system mediated by double-stranded RNA
(dsRNA). In most eukaryotes, long dsRNA found within a cell is seen as either a source of
viral infection or as evidence of transposon activity, both of which the cell will seek to suppress
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(Obbard et al., 2008). The first component of the RNAi machinery
to respond to the dsRNA is the RNase III endonuclease Dicer-
2 (Dcr-2), which cleaves the dsRNA into short (typically 19-21
nt long) interfering RNAs (siRNAs). Dicer-2, with the help of
dsRNA-binding proteins such as R2D2, facilitates the transfer
of the siRNA to the RNA−induced silencing complex (RISC).
Within RISC, the siRNA is unwound, and one strand, the
passenger strand, is eliminated. Using the retained guide strand,
the activated RISC complex scans cellular mRNAs, and an
Argonaute protein (Ago2) within RISC cleaves transcripts with
complementarity to the siRNA, thus silencing gene expression
(Okamura et al., 2004).

Due largely to this sequence specificity, growing numbers of
research groups and biotechnology industries are exploring the
efficacy of using dsRNA as a new source of environmentally
friendly, potentially species-specific insecticides. Some insects,
particularly of the order Coleoptera (beetles), have proven highly
susceptible to dsRNA (Baum and Roberts, 2014), such that only
small quantities of ingested dsRNA can induce RNAi, causing
both transcript knockdown, and where essential genes were
targeted, insect mortality. A particularly intriguing aspect of
RNAi is that in these highly susceptible insects, the dsRNA
is not only capable of entering gut cells, but can spread to
other tissues to induce systemic RNAi (Joga et al., 2016). The
systemic nature of RNAi is particularly useful in the development
of a broader range of potential insecticidal dsRNAs that can
target essential genes in many other tissues of the pest insects
(Huvenne and Smagghe, 2010).

Not all insects, however, respond equally well to ingested
dsRNA. Insects of the order Lepidoptera (moths and butterflies),
Diptera (flies and mosquitoes), and Hemiptera (aphids, hoppers,
stinkbugs), respond to dsRNA with greater variability than
that seen in beetles (Cooper et al., 2019). If RNAi is to be
developed for insecticidal applications in a broader range of
insects, it is important that we understand some of the barriers
to efficient RNAi, and consider how we might deliver dsRNA
to different insects to maximize the potential of RNAi for insect
control more fully. In this review, we will explore the potential
for dsRNA-based insecticides by considering the methods that
have been used to date to deliver dsRNA, what barriers can
limit RNAi efficiency in some insects, and how alternative
delivery methods may help overcome some of the limitations in
certain insects.

APPLICATION OF RNAI IN THE FIELD

Application of RNAi in agriculture, more specifically in pest
or pathogen control, can be achieved in different ways, namely
by host-induced gene silencing (HIGS), spray-induced gene
silencing (SIGS) or virus-induced gene silencing (VIGS).

HIGS entails the creation of transgenic crops that express the
dsRNA specific for the pest or pathogen. The first commercial
RNAi product targeting an insect pest is a transgenic corn crop,
developed by Monsanto (currently Bayer CropScience), which
expresses a hairpin dsRNA targeting the snf7 gene in the Western
corn rootworm, Diabrotica virgifera virgifera (Bolognesi et al.,

2012; Bachman et al., 2013). This new RNAi construct is also
stacked with two Bacillus thuringiensis Cry proteins (Cry3Bb1
and Cry34/35Ab), in an effort to delay the evolution of resistance
(Head et al., 2017). This product will be marketed under the
trade name of SmartStax Pro, was approved in 2017 by the
United States Environmental Protection Agency (EPA, 2017), and
is expected to be released for commercial use by the end of the
decade. SmartStax Pro is considered a milestone in the use of
RNAi technology in agriculture (Head et al., 2017).

Other genes have also demonstrated plant protection against
D. v. virgifera, including the vacuolar proton pump, V-ATPase
A (Baum et al., 2007), the septate junction proteins snakeskin
(ssj1) and mesh (ssj2) (Hu et al., 2016), Troponin I (Fishilevich
et al., 2019), SNARE binding protein Ras opposite/Sec1,
RNA polymerase II subunit RpII140, FACT complex protein
dre4/spt16 (Knorr et al., 2018), and Sec23 subunit of the coat
protein complex II (COPII) (Vélez et al., 2019). HIGS in other
insects has been explored with a high degree of variability in the
response (Yu et al., 2016; Zhang et al., 2017).

VIGS is a rather novel delivery method that is based on
viruses engineered to produce the desired dsRNA in the pest
itself (Kolliopoulou et al., 2017). For example, an insect virus
could be modified to contain an insect-specific sequence in its
genome, homologous to an insect’s essential gene. Infection and
replication of the virus would then lead to the production of
dsRNA molecules directly in the insect cells. A major advantage
of this delivery method is that a very high efficiency can be
achieved, even in otherwise recalcitrant cells. Relying on the
virus’s own infection processes, physiological and cellular barriers
for the uptake of dsRNA from the environment are thus bypassed.
Furthermore, viruses can be very host-specific, thereby providing
another layer of species-specificity to this technology. A proof-of-
concept of VIGS directed against insects was recently provided by
Taning et al. (2018), who successfully modified Flock house virus
(FHV) to express Drosophila melanogaster-specific dsRNA.

A VIGS-like technology has also been proposed using various
microbes, such as bacteria, yeast, or fungi that are engineered
to serve as vectors for gene-silencing induction through the
continuous production of si/dsRNA into the host (Whitten et al.,
2016). A review of the use of bacteria and viruses for dsRNA
delivery is provided in Joga et al. (2016) and Zotti et al. (2018).
The potential, successes and concerns on micro-organisms or
derived products as delivery methods for insect and disease
management, are discussed in more detail in a later section.

Finally, many efforts have also focused on the use of non-
transgenic, spray-based pesticidal dsRNAs (SIGS) to control
pests and pathogens. SIGS can also be used for root absorption
and trunk injections, where insects can acquire dsRNA through
sucking and chewing, a review of this delivery method is provided
in Joga et al. (2016) and Zotti et al. (2018). Given the low
persistence of dsRNA molecules in the environment, SIGS will
most likely need special formulations to increase the stability,
and if possible, also increase the RNAi efficacy in the insect.
Furthermore, the exposure of target pests through SIGS is likely
to be lower compared to transgenic plants, since plants offer
the possibility of continuous high expression of the insecticidal
dsRNA. Therefore, spray-based applications might only become
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a reality for those insects that are more sensitive to dietary uptake
of dsRNA.

In the following sections, the variation in RNAi responses
between insects will be discussed, focusing on physiological
and cellular barriers that affect RNAi efficacy. In the last
section, we will focus on formulations and delivery methods that
could improve non-transgenic spray-based RNAi approaches and
eventually perhaps lead to effective and sustainable RNAi-based
control strategies against pests and pathogens.

VARIATION IN RNAi RESPONSE
BETWEEN INSECTS

The ability of insects to acquire dsRNA through feeding (i.e.,
environmental RNAi) will determine the potential use of RNAi
technology for insect pest management. However, different insect
orders respond differently to dsRNA. From the various insects
studied to date, coleopterans are, in general, highly sensitive to
RNAi, while Hemiptera, Orthoptera, Diptera, Hymenoptera, and
Lepidoptera have different levels of variability in their responses
(Table 1). Multiple mechanisms appear to affect the efficiency
of RNAi in different insect species, including: (1) instability of
dsRNA before and after it enters the insect; (2) insufficient dsRNA
internalization; (3) deficient RNAi machinery; (4) impaired
systemic spreading; and (5) refractory gene targets. Cooper et al.
(2019) provide an extensive review of this topic. There are
not only differences in the responses across orders, but also
within species, life stages, tissues, and genes (Terenius et al.,
2011; Wynant et al., 2012; Guo et al., 2015; Pereira et al.,
2016; Singh et al., 2017; Vogel et al., 2018; Cooper et al., 2019;
Grover et al., 2019).

As noted earlier, the delivery of dsRNA for insect pest
management could be through expression in transformed plants,
microbes or delivery as a spray-based insecticidal dsRNA.
Regardless of the delivery mechanisms, the dsRNA must be
stable before it is consumed by the insect to generate an effect.
For spray-based insecticides, factors such as UV light and
microorganisms can degrade naked dsRNA in the environment.
Whereas rain can hydrate dsRNA, making it less stable (Figure 1).
In the next section, the strategies used to overcome these issues
are described. The dsRNA may not only be destabilized by
environmental factors, but its availability to feeding insects could
also be impaired by binding to environmental molecules that
interfere with cellular uptake. For example, in honey bee larvae,
RNAi efficacy was reduced as the dsRNA was bound to the main
ingredient of larval diet, royal jelly. Furthermore, when D. v.
virgifera adults were fed with an artificial diet treated with royal
jelly containing a lethal concentration ofD. v. virgifera vATPase-A
dsRNA, no mortality was observed (Vélez et al., 2016).

Once the insect has consumed the dsRNA, the dsRNA
must avoid the degradation by nucleases from salivary glands,
midgut, and hemolymph of the insect (Figure 1). Studies
with hemipterans, including the tarnished plant bug, Lygus
lineolaris, and the peach aphid, Acyrthosiphon pisum, have shown
that dsRNA is degraded by saliva (Allen and Walker, 2012;
Christiaens et al., 2014). Similarly, research performed with the

tobacco hornworm, Manduca sexta, and the German cockroach,
Blatella germanica, demonstrated that dsRNA degraded in the
hemolymph after 1 and 24 h, respectively (Garbutt et al., 2013).
Studies performed with the silkworm, Bombyx mori, the desert
locust, Schistocerca gregaria, and the Colorado potato beetle,
Leptinotarsa decemlineata, also demonstrated that midgut juices
degrade dsRNA (Liu et al., 2013; Spit et al., 2017). In B. mori,
dsRNA degraded within only ten minutes of exposure to midgut
nucleases (Liu et al., 2013). The efficiency of nucleases within
insect guts can vary from one species to the next. For example,
10-minute in vitro incubations of dsRNA with serial dilutions
of gut juices showed that dsRNA disappeared much faster in
S. gregaria compared to L. decemlineata. Similarly, a comparative
study between two weevil species belonging to the genus Cylas,
indicated that dsRNA degradation in the gut could be a source
of variability, even between two very closely related species
(Christiaens et al., 2016; Prentice et al., 2017). Furthermore,
a study demonstrated that L. decemlineata with knockdown
of nucleases incur less damage on potato plants expressing
dsRNA (Spit et al., 2017), similar findings were observed in the
sweetpotato weevil Cylas puncticollis (Prentice et al., 2019). These
studies suggest that combining the knockdown of nucleases and
a lethal gene can improve the use of RNAi as a strategy for plant
protection. The variability in the stability of dsRNA in different
parts of the insect body (e.g., midgut vs. hemolymph), could
also be explained by differences in physiological pH that could
affect dsRNA stability and nucleases’ enzymatic activity. ssRNA
is most stable at pH 4.0–5.0, while it is susceptible to hydrolysis
at pH > 6.0 and <2.0, and to depurination at <3.0 (Figure 1;
Cooper et al., 2019). However, no experimental evidence is
available so far to determine the effect of physiological pH on
dsRNA stability and the activity of nucleases.

After the dsRNA has overcome the initial barriers of dsRNA
degradation in the environment, external and internal, the
next barrier is the internalization of the dsRNA in the cell
(Figure 2). Two mechanisms of cellular uptake of dsRNA have
been identified in insects: Sid-like transmembrane channels,
and clathrin-dependent endocytosis (Table 1). The role of Sid-
like transmembrane channels dsRNA uptake was first described
in the nematode Caenorhabditis elegans (Winston et al., 2007;
Whangbo and Hunter, 2008). In insects, Sid-like genes have been
identified in Coleoptera, Hemiptera, and Lepidoptera, but the
role in cellular uptake has not been directly evidenced to date
(Tomoyasu et al., 2008; Xu et al., 2013; Cappelle et al., 2016;
Pinheiro et al., 2018). Whereas, clathrin-dependent endocytosis
seems to play the primary role in the uptake of dsRNA in
multiple insects (Saleh et al., 2006; Xiao et al., 2015; Cappelle
et al., 2016; Pinheiro et al., 2018). Other mechanisms involved in
dsRNA/siRNA uptake in mammals such as caveolar endocytosis
and micropinocytosis remain unexplored in insects. Vélez and
Fishilevich (2018) provide a review of the evidence that supports
the key role of endocytosis in the uptake of dsRNA and discusses
the role of other components of the cellular membrane transport
in the efficiency of RNAi.

Uptake of dsRNA is also affected by the dsRNA length
and structure, and the vehicle used to deliver the dsRNA.
For example, in D. v. virgifera, uptake of naked dsRNA is
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TABLE 1 | Mechanisms of dsRNA cellular uptake identified in different insect species.

Order Species Environmental RNAi Sid-1 Endocytosis References

Diptera Drosophila melanogaster + No Yes Saleh et al., 2006

Bactrocera dorsalis + No Yes Li X. X. et al., 2015

Coleoptera Tribolium castaneum + No Yes Tomoyasu et al., 2008; Xiao et al., 2015

Diabrotica virgifera virgifera + + Yes Yes Miyata et al., 2014; Pinheiro et al., 2018

Leptinotarsa decemlineata + + Yes Yes Cappelle et al., 2016

Lepidoptera Spodoptera frugiperda + but no endosomal release Not determined Yes Yoon et al., 2017

Bombyx mori – No Not determined Tomoyasu et al., 2008

Orthoptera Schistocerca gregaria – No Yes Wynant et al., 2014

Locusta migratoria – No Not determined Luo et al., 2012

Hymenoptera Apis mellifera + Yes Not determined Aronstein et al., 2006

Hemiptera Nilaparvata lugens – Yes Not determined Xu et al., 2013

Adapted from Cappelle et al. (2016). RNAi: ++, present and robust; +, present but not robust; –, not present.

FIGURE 1 | Factors affecting the stability of dsRNA in the environment and inside the insect. External factors include degradation by UV light and microorganisms
and runoff of sprayable dsRNAs by rain. Internal factors include nucleases present in salivary glands, midgut, and hemolymph. Physiological pH affects dsRNA
stability and nuclease activity; ssRNA is stable at a pH of 4.0–5.0.

limited to long dsRNA, no shorter than 60 bp (Bolognesi
et al., 2012; Li H. et al., 2015). Several chemical modifications
of dsRNA and vehicles of delivery are discussed in the next
section. Once the dsRNA enters the cell through endocytosis,
the dsRNA needs to be released from the endosome to get
in contact with the RNAi machinery (i.e., dcr-2 and RISC)
and generate knockdown of the targeted gene (Saleh et al.,
2006; Xiao et al., 2015). Endosomal release occurs after

the endosome is acidified. Research performed with the fall
armyworm, Spodoptera frugiperda, demonstrated that the lack
of endosomal release of the dsRNA leads to low sensitivity
to RNAi in Lepidoptera (Figure 2; Shukla et al., 2016; Yoon
et al., 2017). Another example of the potential limitation of
uptake in RNAi efficiency is the identification of D. v. virgifera
resistant to snf7 dsRNA. Resistance to snf7 dsRNA showed
cross-resistance to other dsRNAs, and microscopy experiments
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FIGURE 2 | Hypothetical differences in the cellular internalization, processing, and systemic spread of dsRNA in Coleoptera (Top) and Lepidoptera (Bottom). Cell
Uptake and Processing: Clathrin-dependent endocytosis is hypothesized to be the primary dsRNA uptake mechanism in insects. In Coleoptera, dsRNA is released
from the endosome and processed by the core RNAi machinery to silence mRNA. In Lepidoptera, dsRNA is not released from the endosome, avoiding dsRNA
contact with the core RNAi machinery. Systemic Spread: In Coleoptera, experimental evidence suggests that systemic spread occurs, but is not clear if it is in the
form of dsRNA or siRNA. In Lepidoptera, no current evidence exists regarding the systemic spread. Adapted from Shukla et al. (2016).

determined that resistance was linked to the uptake of dsRNA
(Khajuria et al., 2018).

After the release of the dsRNA from the endosomes, the
dsRNA is processed by the RNAi (core) machinery to generate
sequence-specific gene knockdown (Okamura et al., 2004). In
eukaryotes, three RNAi pathways have been described: (1) siRNA
consisting of an exogenous and endogenous pathway for viral
and transposon defense, respectively; (2) microRNA (miRNA)
a pathway that regulates gene expression at the transcription
level, and (3) piwi-interacting RNA (piRNA) which functions
in the epigenetic control of genomic elements (Kingsolver
et al., 2013). While the RNAi mechanism is conserved across
eukaryotes, differences in the proteins involved in the core
machinery of the three different pathways vary between clades.
Plants have four Dicer-like proteins, while insects have two, and
annelids, nematodes, mollusks, and higher animals only have
one (Mukherjee et al., 2013). Ago-like proteins are even more
diverse, with insects having four (Ago1, Ago2, Ago3, Piwi, and

Aubergine), humans have eight, and Arabidopsis thaliana plants
have ten (Hock and Meister, 2008). In insects, the different
pathways involve different proteins, including different Dicer,
Ago, and other ancillary proteins (Cooper et al., 2019). When
thinking about RNAi efficiency, it is useful to think about the
duplication of core RNAi pathway genes (Tomoyasu et al., 2008;
Guo et al., 2015). Yoon et al. (2016) demonstrated that ago1, ago2,
and aubergine were essential for RNAi in L. decemlineata cell
line. Interestingly, ago1 and aubergine are part of the miRNA and
piRNA pathways, respectively. Other components of the miRNA
pathway also seemed to play a partial role in the siRNA pathway.
The results of this study suggest that gene duplication might
explain the effectiveness of RNAi in Coleoptera. However, the
involvement of miRNA and piRNA in dsRNA-mediated RNAi
needs to be further investigated in Coleoptera and other insects
(Yoon et al., 2016).

In addition to gene duplication, the baseline mRNA
expression of core machinery genes could also explain the

Frontiers in Plant Science | www.frontiersin.org 5 April 2020 | Volume 11 | Article 451

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00451 April 21, 2020 Time: 15:5 # 6

Christiaens et al. RNAi-Based Insect Pest Control

differences in the RNAi efficiency between different insect orders.
To test this hypothesis, Davis-Vogel et al. (2018) evaluated eight
proteins from the siRNA and miRNA pathways among three
agricultural pests from three different orders: D. v. virgifera
(Coleoptera), S. frugiperda (Lepidoptera), and Nezara viridula
(Hemiptera). In this study, researchers compared transcript
levels of core machinery proteins Drosha, Dcr-1, Dcr-2, Pasha,
Loquacious, R2D2, Ago-1, and Ago2 among the three species.
Direct comparison of the proteins in the three insects revealed
that D. v. virgifera had an increase in loquacious expression, an
insect with a robust RNAi response (Davis-Vogel et al., 2018). In
a different study, low r2d2 gene expression was suggested as one
of the reasons for a B. mori ovarian cell line insensitivity to RNAi
(Swevers et al., 2011). These studies suggest that differential gene
expression of core machinery genes might influence the RNAi
response in insects, but further evidence is needed.

Maximizing the utility of RNAi in insects requires the systemic
spread of the RNAi response throughout the insect body.
A strong systemic response requires a sufficient number of
siRNAs to reach a high number of cells in the insect body.
In C. elegans, the RNA-dependent RNA Polymerase (RdRP)
generates secondary siRNAs from the primary siRNA (Sijen
et al., 2001). However, RdRP in arthropods is restricted to
the tick lineage and is not found in insects (Gordon and
Waterhouse, 2007). In insects, evidence of a systemic RNAi
response has only been indirectly determined by observing gene
knockdown in tissues distant from the place of uptake (i.e.,
hemolymph or gut) (Bolognesi et al., 2012; Ivashuta et al.,
2015; Khajuria et al., 2015; Niu et al., 2017; Li et al., 2018).
Only one study in D. v. virgifera has shown the spread of
the RNAi response using microscopy. Researchers reported the
reduction of mRNA molecules in gut and fat body, but there
was no detection of secondary siRNA production, suggesting
that the origin of siRNAs is restricted to the processing of the
initial dose of dsRNA (Li et al., 2018). Even though systemic
RNAi is observed in insects, the specific mechanisms, genes
involved in the spread of the dsRNA, and the form of the signal
(dsRNA or siRNA) are yet to be unraveled (Vélez and Fishilevich,
2018). Two mechanisms of transport of dsRNA between cells
have been suggested in the context of viral infection: (1) via
derived complementary viral DNAs (vDNA) used as template
for de novo synthesis of secondary viral siRNAs (vsRNAs)
released in exosomes (Tassetto et al., 2017); and (2) through
nanotube-like structures observed in D. melanogaster cultured
cells (Karlikow et al., 2016). Further research on systemic RNAi
will provide insights to improve RNAi use in pest management in
other insect orders.

Finally, another factor that has been described to interfere with
RNAi efficiency is the presence of viruses in the targeted insect.
Since the RNAi pathway is an antiviral defense mechanism,
viruses can influence the core machinery availability (Christiaens
and Smagghe, 2014). Furthermore, since viruses have evolved
with the RNAi defenses, some of them have developed
mechanisms to inhibit the RNAi proteins (Haasnoot et al., 2007).
For example, in Drosophila, a protein from the Flock House virus
binds to the dsRNA, which in turn cannot be diced by Dicer
and this affects binding to the RISC complex (Chao et al., 2005).

While in honey bees, injection of GFP dsRNA and Sindbis virus
regardless of the sequence, reduced virus infection (Flenniken
and Andino, 2013). Swevers et al. (2013) provide a review of the
impact of virus infection on the RNAi machinery in insects.

METHODS OF DELIVERY AND
FORMULATIONS

Many efforts have been made to overcome these physiological
and cellular barriers in different insect species and increase
RNAi efficacy in insects for non-transgenic, SIGS. These efforts
range from chemical modifications of the dsRNA molecule to
the use of a variety of delivery vehicles and other formulations.
Recently, a study reported that the addition of EDTA as a
co-formulant could increase RNAi efficacy in the Neotropical
stinkbug Euschistus heros. First, they demonstrated in vitro
that the addition of EDTA, which is a known inhibitor of
metalloenzymes, led to increased stability of the dsRNA in
E. heros saliva. They also observed a significant increase in
RNAi-induced mortality for one of the two tested target genes
(Castellanos et al., 2019).

Chemical modifications to the dsRNA (or siRNA) could
also improve its stability in different environments. For
example, the use of siRNAs that were modified to contain two
2’−methoxyl−nucleotides on each end of the siRNAs led to
effective RNAi silencing in the diamondback moth, Plutella
xylostella (Gong et al., 2011, 2013). Literature from the vertebrate
RNAi field also suggests that chemical modifications could reduce
the potential of off-target effects when using short siRNAs
(Jackson et al., 2006). Several smaller industry players are now
investigating the potential of chemically modified dsRNA or
siRNA for pest control.

DsRNA could also be delivered by micro-organisms in
order to overcome or bypass the RNAi-barriers in insects.
For example, RNAi can be achieved by feeding insects with
dsRNA-producing E. coli (Joga et al., 2016; Vatanparast and
Kim, 2017). Feeding insects with dsRNA-producing bacteria
could lead to a more sustained release of the dsRNA in
the insect and could help avoid rapid degradation in the
digestive system. RNAi efficiency and its use for pest control
could even be increased further by using engineered symbionts
of the target pest. Whitten et al. (2016) engineered such
symbionts for two insect pests: the Western flower thrips
Frankliniella occidentalis and the kissing bug Rhodnius prolixus.
In both cases, a long-lasting RNAi silencing effect was observed,
which was a considerable improvement compared to other
feeding or injection delivery methods. Furthermore, it was
observed that the symbiont was also horizontally transmitted
through the population via feces (Whitten et al., 2016;
Whitten and Dyson, 2017).

Another way to overcome some of the barriers is by using
nanocarriers that could increase the stability of dsRNA in
the insect body or increase cellular uptake rate of dsRNA
upon ingestion. Examples of these are liposomes, polymers,
and peptides. In one of the earliest studies on the potential
of exogenous insecticidal dsRNA, Whyard et al. (2009)
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demonstrated that feeding Lipofectamine-encapsulated dsRNA
targeting essential genes could lead to an efficient gene
silencing and high mortality in the fruit fly D. melanogaster,
while naked dsRNA had no observable effect. This was
later confirmed by Taning et al. (2016) in the pest fruit
fly Drosophila suzukii, suggesting that fruit flies have an
impaired cellular uptake capacity for dsRNA. Lipofectamine
or other liposomic compounds have also proven their ability
to improve RNAi efficacy in other insects, such as the
hemipteran stinkbug E. heros (Castellanos et al., 2019), the
cockroach B. germanica (Huang et al., 2018) and the tick
Rhipicephalus haemaphysaloides (Zhang et al., 2018). Another
intriguing concept is the use of so-called bacterial minicells.
Although research on these vesicles for RNAi applications
is scarce, certain startup companies, e.g., Agrospheres, are
exploring such technology for dsRNA or siRNA delivery in
the field.

Another class of promising compounds is cationic polymers.
These polymers could be specifically synthesized to protect
dsRNA against nucleolytic degradation at various pH conditions
and could also improve cellular uptake. An early example
of this was the use of the natural polymer chitosan to
improve RNAi efficacy in mosquitoes (Zhang et al., 2010).
Since then, many other studies have proven the potential of
these carriers in other species, including Spodoptera exigua
(Christiaens et al., 2018), Ostrinia furnacalis (He et al.,
2013), S. frugiperda (Parsons et al., 2018), and Aedes aegypti
(Lopez et al., 2019). Recently, a guanylated polymer developed
at Ghent University, Belgium, was able to protect dsRNA
against nucleolytic degradation in a high alkali environment
and significantly improve RNAi efficacy in the lepidopteran
S. exigua (Christiaens et al., 2018). Additionally, the polymer
appeared to also improve cellular uptake of the dsRNA in
lepidopteran midgut cells. While the underlying mechanism
is unknown, the polymer may bypass the typical endocytic
pathways known to be involved in cellular dsRNA uptake
(Christiaens et al., 2018).

Recently, a non-toxic and biodegradable layered-double-
hydroxide nanoparticle, called BioClay, was developed at the
University of Queensland, Australia (Mitter et al., 2017). This
nanoparticle could be loaded with dsRNA and leads to a sustained
release, as the BioClay degrades. In their study, they opted for
the delivery of a plant virus targeting dsRNA and were able to
detect this dsRNA for at least 30 days after being sprayed on
the plants, which was a considerable improvement compared to
naked dsRNA. Functionally, it led to a successful antiviral effect
in the plant for at least 20 days, which suggests that the dsRNA,
either with or without the nanoparticle, is being taken up by the
plant cells (Mitter et al., 2017).

Peptide- or protein-based nanoparticles could also be used
as a delivery vehicle. Recently, cell-penetrating peptides (CPP)
were used for the first time as a carrier for dsRNA in insects.
Gillet et al. (2017) synthesized a recombinant fusion protein
containing a CPP amino acid sequence fused to a dsRNA binding
domain. Nanoparticles comprising a dsRNA-peptide complex
significantly improved RNAi efficacy in the RNAi-insensitive
cotton boll weevil Anthonomus grandis. This promising result

should encourage the development and testing of other types of
peptides or proteins for their applicability to other pest insect
control systems.

Finally, one potential delivery method that has shown promise
in vertebrate systems, but has not been explored in insects, is
viral-like particles (VLPs). VLPs can be produced in micro-
organisms and have the ability to self-assemble in vitro, allowing
the integration of the dsRNA inside the particle (Hoffmann
et al., 2016). Alternatively, the dsRNA and VLPs could also
be co-expressed in bacteria, allowing immediate use in the
field or purification of the dsRNA-containing particles. The
advantages are similar to the use of replicating engineered
viruses, in that they could allow efficient cellular uptake and
protection of the dsRNA in the extracellular environments
of the insect. Furthermore, they might also be able to offer
a certain degree of host specificity. VLPs could be a more
realistic alternative to the use of engineered viruses, since they
would not have some of the biosafety or public acceptance
concerns that are associated with the release of genetically
modified viruses.

Further inspiration for novel dsRNA delivery methods could
also be taken from the medical field, where pharmaceutical
Research and Development has been searching for ways to
overcome similar barriers in vertebrates. Of course, such
formulations could also have an impact on food/feed safety
risk assessment of these RNAi-based pest control products,
so these will have to be taken into account during the risk
assessment process.

CONCLUSION

RNAi continues to be considered a promising pest management
strategy, largely due to its potential for environmentally friendly
control. The first RNAi-based products, targeting insects that
are highly sensitive to dietary uptake of dsRNA, will soon
be commercially available. However, the application against a
wide range of insect species is still hindered by a number
of challenges. These challenges, which are largely linked to
the variable RNAi sensitivity of oral RNAi in insects, are
likely to be addressed by the use of different formulation
strategies improving dsRNA persistence and cellular uptake
in these insects. Certain proof-of-concept studies in this field
have been published already and show promise, but further
progress needs to be made before these RNAi products against
a wide range of insect species can compete with the currently
used conventional chemical pesticides. Research on the effect of
nucleases and physiological pH in dsRNA stability, mechanisms
of dsRNA uptake and systemic spread, interaction with viruses,
and potential mechanisms of resistance will aid in improving this
technology in the future.
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