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ABSTRACT

Agricultural activities notably alter weather and climate including near-surface heat content. However, past
research primarily focused on dry bulb temperature without considering the role of water vapor (dew point
temperature) on surface air heat content. When using dry bulb temperature trends to assess these changes, for
example, not including concurrent trends in absolute humidity can lead to errors in the actual rate of warming or
cooling. Here we examined minimum and maximum surface moist enthalpy, which can be expressed as
“equivalent temperature.” Using hourly climate data in the Central Great Plains (Nebraska and Kansas) from
1990 to 2014, the averages and trends of minimum and maximum equivalent temperature (Tg_min; Tk max) Were
analyzed to investigate the potential impacts of irrigation. During the growing season, Tg max averages were
significantly higher in irrigated cropland sites compared to grassland sites. This can be explained by increased
transpiration linked to irrigation. In addition, Tg_max exhibits a decreasing trend in most sites over the growing
season. However, the difference of the trends under irrigated croplands and grasslands is not statistically sig-
nificant. A longer time series and additional surface energy flux experiments are still needed to better understand
the relationships among temperature, energy, and land cover.

1. Introduction

It is well known that land cover plays an important role in land-
atmosphere interactions and eventually impacts weather and climate
(Pielke, 2001; Adegoke et al., 2007; Fan et al., 2015a, b; Xu et al., 2015;
Ellenburg et al., 2016). Various observational data-based studies
document the notable influence of land cover, including agriculture, on
the partitioning of surface energy fluxes and moisture (Adegoke et al.,
2007; Betts et al., 2007; LeMone et al., 2007). Modeling studies have
also quantified the impacts of land cover (including agriculture) and
soil moisture on land surface-atmospheric interactions (Mahmood and
Hubbard, 2002; Adegoke et al., 2003; Mahmood et al., 2004, 2011;
Notaro et al., 2011; Frye and Mote, 2010; Leeper et al., 2011; Boisier
et al., 2012; Suarez et al., 2014).

Hence, if land use and land cover (LULCC) are changed, existing
land-atmosphere interactions are also modified and subsequently alter
weather and climate (Pielke et al., 2011; 2016; Mahmood et al., 2010,
2014). It is then expected that LULCC driven by irrigation would also
impact weather and climate. Some of these impacts are reported in
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Boucher et al. (2004), Gordon et al. (2005), Douglas et al. (2006, 2009),
Sen Roy et al. (2007, 2011), Sacks et al. (2009), Puma and Cook (2010),
Mahmood et al. (2008, 2013), Wei et al. (2013), Alter et al. (2015),
Harding et al. (2015), and Yang et al. (2017). Application of irrigation
for food production changes vegetation cover (e g., irrigated corn, in-
stead of short grass), soil moisture content (low to high), and a variety
of other biophysical properties (e.g., albedo, surface length, leaf area
index) of the land surface. They eventually modify energy partitioning,
physical evaporation, transpiration, and near-surface atmospheric
moisture content, among others. Irrigation typically also leads to low-
ering of dry bulb temperatures due to greater latent energy flux.
However, using the dry bulb temperature alone does not capture the
total heat content of the air since that temperature measure only ac-
counts for dry heat content (Pielke, 2003; Pielke et al., 2004; Peterson
et al., 2011) and yet the dry bulb temperature is used to describe trends
in how vegetation affects climate (e.g., Zeng et al., 2017). To address
this issue, equivalent temperature (Tg) corresponding to moist enthalpy
was recommended (Davey et al., 2006; Fall et al., 2010). Tg includes
both dry and moist heat content and thus provides a more complete
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measure of changes in the near-surface energy budget.

Recent studies focusing on the United States investigated changes in
Tg from 1982 to 1997 (Davey et al., 2006) and 1960-2010 (Schoof
et al., 2014) based on observed climate data. Changes in T were also
investigated based on reanalysis data (Fall et al., 2010). For the first
time, mesoscale variations of Tr have been investigated by using Ken-
tucky Mesonet data (Younger et al., 2018). Some of these studies con-
cluded that enhanced ET influences Tg. For example, Fall et al. (2010)
noted that in areas of higher evapotranspiration (ET) there is larger Tg.
In addition, they also showed trend differences between mean tem-
perature and Tg, which has implications in the evaluation of climate
warming. Davey et al. (2006) found that Ty exhibited a relatively
warmer trend than temperatures in the eastern United States from 1982
to 1997, and attributed the difference to higher vegetation transpira-
tion. However, their trend and attribution analyses were not focused on
irrigation impacts on Tg. In addition, these studies focused primarily on
mean equivalent temperature (Davey et al., 2006; Fall et al., 2010).
Daily extremes of minimum and maximum equivalent temperatures are
equally important but were not addressed by in their papers. The latter
two measures could be even more important because they represent
two specific time periods of a day and capture the range of values
during each 24-h period. Although Schoof et al. (2014) discussed
maximum and minimum equivalent temperature in their research, all
seven stations they used are located at airports or non-rural settings and
hence, the role of irrigated agriculture could not be identified [vs. 22
rural stations (8 irrigated, 14 grassland) used in the current study].
Moreover, data homogeneity, particularly related to observation fre-
quency, instrumentation, and station moves are notable in the data set
used by Schoof et al. (2014) compared to the stations and data set used
in the present research.

Therefore, the objectives for the current study are: (1) to quantify
the minimum and maximum Ty averages and trends; and (2) to in-
vestigate the effects of irrigation on those averages and trends. The
results are based on hourly climate data from the period of 1990-2014
in the Central United States (i.e., Nebraska and Kansas) where irrigation
plays an important role in food production. The data and methods used
in this study are described in Section 2. The results are presented in
Section 3, followed by discussion in Section 4, and summary in Section
6.

2. Material and methods
2.1. Data sources

Climate datasets were obtained from the High Plains Regional
Climate Center (HPRCC, 2015). In this study, the data are from 22
stations where climate observations (temperature and relative hu-
midity) were recorded every hour (Table 1). The length of the time-
series are from 1990 through 2014. These stations are well maintained
and extensive quality checks were performed. In addition, these stations
are part of the regional Automated Weather Data Network (AWDN) and
the data quality for Nebraska and Kansas Mesonets are relatively high
compared to other in-situ observational networks.

To examine the potential impacts of irrigation on Ty and related
variables, we identified stations located in irrigated and grassland
areas. For this purpose, we made actual site visits and used gridded
satellite data-based products from the National Land Cover Database
(NLCD, 2015) which document land cover types in the United States for
the years 2001, 2006, and 2011. NLCD data products are used as a
general guidance. Subsequently, the land use types for all HPRCC cli-
mate stations with sufficiently long periods of observation were iden-
tified in the ArcGIS software for each station point. The stations without
changes in land cover through 2001 to 2011 served as an initial filter
for selecting stations. NLCD data is based on Landsat satellite data and
has a resolution of 30 m X 30 m. Subsequently, stations exposed to two
major land covers (croplands and grasslands) in Nebraska and Kansas
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Table 1
Meteorological stations used for the study.
Station State  Latitude Longitude Elevation Land use
WESTPOINT NE 41.85 -96.73 135 Grassland
GARDENCITY KS 37.98 —100.82 264 Grassland
ARTHUR NE 41.65 —101.52 334 Grassland
DICKENS NE 40.95 —100.98 293 Grassland
GORDON NE 42.73 -102.17 338 Grassland
GUDMUNDSENRSRCH  NE 42.07 —101.43 320 Grassland
HALSEY NE 41.9 —100.15 251 Grassland
HOLDREGE NE 40.33 —99.37 215 Grassland
LEXINGTON NE 40.77 —99.73 222 Grassland
ORD NE 41.62 —98.93 191 Grassland
COLBY KS 39.38 —101.07 294 Irrigated
HUTCHINSON KS 37.93 —98.03 145 Irrigated
SCANDIA KS 39.78 —-97.78 137 Irrigated
TRIBUNE KS 38.47 —-101.77 336 Irrigated
BEATRICE NE 40.3 —96.93 115 Grassland
CENTRALCITY NE 41.15 -97.97 158 Irrigated
CHAMPION NE 40.4 —101.72 314 Irrigated
ELGIN NE 41.93 —98.18 189 Irrigated
MCCOOK NE 40.23 —100.58 241 Irrigated
SIDNEY NE 41.22 —103.02 401 Grassland
CURTISUNSTA NE 40.63 —100.5 239 Grassland
NORTHPLATTE NE 41.08 —-100.77 262 Grassland
-104’ -102° -100° -98° -96° -94’
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Fig. 1. Location of stations included in the study. Maroon and green colored
circles represent irrigated and grassland sites, respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the Web
version of this article.)

were selected (Fig. 1). We did not use any particular pre-defined buffer
zone to determine a site as non-irrigated/grassland. We combined our
site visits, general exposure of a station in their respective geographic
setting, and guidance from NLCD data to determine whether a station
represents irrigated or grassland land cover. Rainfed croplands were
excluded because ET differences between grasslands and rainfed crop-
lands are relatively small and the impacts are subsequently expected to
be minor as well. In a model-based study, Mahmood and Hubbard
(2002) showed that total growing season ET from rainfed cropland was
only 2% higher than ET in the grasslands.

2.2. Calculation of Tg

At each station, hourly Tg (°C) was calculated using Eq. (1).
Te=T+ Ty (@]

where T is the hourly temperature observed (°C). T is the hourly
moisture term of Tg (°C) which is defined as Eq. (2).
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Fig. 2. Long-term average precipitation during the growing season (May-September) for each site.

G 2

where ¢, is the specific heat of air at constant pressure, a function of
temperature; L, is the latent heat of vaporization (kJ/kg), which is
calculated using Eq. (3); q is the specific humidity (kg/kg), computed
by Eq. (4).

L, =2.5—0.0022-T ()]

_0.62198-¢,/(p — €,)
T 14 0.62198-¢./(p — €g) 4

where p is atmospheric pressure (millibars) and e, is actual vapor
pressure (millibars). Both were calculated by Egs. (5) and (6).

gM-h
= - -0.01
re exp( R )

)

where p, is the sea level standard atmospheric pressure (101325 Pa); g
is the earth-surface gravitational acceleration (9.80665 m/s%); M is the
molar mass of dry air (0.0289644 kg/mol); h is the station elevation
(m); R is the universal gas constant (8.31447 J/(mol K)); and T; is sea
level standard temperature (288.15 K).

e, = RH*ey/100 (6)

RH is hourly relative humidity observed (%) and e, is the saturation
water vapor pressure (millibars) with respect to water calculated from
Eq. (7).

17.502-T
eo = (1.0007 + 3.46 x 10‘6-p)~6.1121exp( )

24097 + T @

To explain the trends of Ty, dew point temperature (T;) was cal-
culated based on Eq. (8).

237.3
T = 1 -
= —
log(ﬁ) T
17.27 237.3+T (8)

The daily minimum and maximum Tg, Ty, and T4 for each station
(referred to as Tk mins T maxs TM.min» TM max; Td min, Td max) was calcu-
lated on an hourly basis using the above equations. Ty, and T4 are used
to show the linkage between atmospheric moisture and Tg (Brown and
DeGaetano, 2013).

To identify the impacts of irrigation on those variables, this study
concentrated on the growing season which was defined as
May-September. The average value of each variable was calculated
during the growing season and non-growing season as well as the
average variables for each month over the growing season. To de-
termine the trends over growing seasons, non-growing seasons and
individual months within a growing season, the Theil-Sen analysis

(Theil, 1950; Sen, 1968) was used. The trends obtained from this re-
gression analysis are intended to minimize the influence of potential
outliers and thus is more robust than the least-square linear regression
method.

2.3. Identifying irrigation impacts on climate

To determine the irrigation impacts on average moist enthalpy, first
the geographic influence was removed. Following an earlier study
(Mahmood et al., 2008), a regression relationship was developed for
each month of the year for changes in Tg min, Tt max; TM min> TM max
Td min» Td max in all grassland sites as a function of longitude (an ex-
ample for Tg min Was shown in Eq. (9)).

a - longitude + B 9

TE,min =

The rationale for the regression analyses is that the grassland sites
observed natural near-surface moisture content. These regression
models were applied to the irrigated sites for each month and the new
calculated variables can serve as geographic-adjusted variables for the
irrigated sites (i.e., the weather conditions if the site had grassland).
Finally, the difference between observed variables in irrigated sites and
adjusted variables (observed — adjusted) shows the impacts of irrigation
on equivalent temperatures and related variables. Only longitude was
taken into consideration in the regression model because there is a
pronounced east-to-west precipitation gradient in the study region
which largely determines vegetation gradient and amount of irrigation
water applied (Fig. 2). In addition, recent studies (Mahmood et al.,
2008, 2013) found the latitudinal gradient of temperature plays a less
important role when it comes to irrigation impacts. For irrigation, im-
pacts on trends were not adjusted following Davey et al. (2006). The
trends of irrigated and grassland sites were calculated using raw data
and we computed the difference of climate extremes (maximum and
minimum) between the two land use categories over the study region.
Statistically significant differences in these averages and trends over the
study region were assessed by a t-test setting p < 0.05 as a significant
level.

3. Results
3.1. Impacts of irrigation on mean atmospheric moisture and heat content

Fig. 3 demonstrates the difference of observed and adjusted
averages for irrigated sites over the growing season. Results indicate
that higher Tg min was observed in six of the eight irrigated sites
(Fig. 3a) and Tg max Was also larger in seven of the eight sites (Fig. 3b)
over the growing season, compared to their adjusted values with a
difference greater than 0.5°C. Similar results were found for Ty min
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Fig. 3. Impacts of irrigation on atmospheric moisture and heat content over the growing season.

(Fig. 3¢), Tm max (Fig. 3d), T4 min (Fig. 3e), and Tq max (Fig. 3f). How-
ever, over the non-growing season (Fig. 4a—f), the differences between
observed and adjusted mean values were less clear than those over the
growing season (Fig. 3). For example, only three of the eight irrigated
sites show a higher T4 min (Fig. 4e) and four of the eight show a higher
Tda max (Fig. 4f). Additionally, observed Tg min (Fig. 4a) and Ty min
(Fig. 4c) were both higher in five of the eight irrigated sites, and Tg_max
(Fig. 4b) and Ty max (Fig. 4d) were higher in six of the eight irrigated
sites over the non-growing season period, relative to their adjusted
values.

Over the study area, Tg max and Ty max under irrigated sites were
found to be higher compared with their adjusted values in a statistically
significant manner over the growing season (Table 2). The difference

between the observed and adjusted value was 2.53 °C (p-value is 0.027)
for Tg_max and 1.46 °C (p-value is 0.0435) for Ty max. For variables over
the non-growing season, no statistically significant results were found.
For each month over the growing season, observed Tg max Was sig-
nificantly higher than the adjusted averages for each month. The dif-
ference was 3.03 °C in May, 2.54 °C in June, 2.36 °C in July, 2.24°C in
August, and 2.5°C in September. For observed Tg mi, irrigated sites
were 1.46 °C warmer than their adjusted average values in June. Ob-
served Ty max and Tq max Were also higher by 1.39 °C and 0.63 °C, re-
spectively, when compared to their adjusted values.
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Table 2
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Fig. 4. The same as Fig. 2 but for the non-growing season.

The difference of averages for variables between irrigated and grassland sites, p-value of t-test is in parentheses. The number in bold font indicates a statistically
significant (p-value < 0.05) difference.

Climate

Growing season

Non-growing season

May

June

July

August

September

TE_min
Tk_max
TM_min
T max
Td_min
Td_max

1.34(0.0504)
2.53(0.027)
0.26(0.1011)
1.46(0.0435)
—0.66(0.4843)
0.04(0.9662)

0.98(0.1513)
2.12(0.0537)
0.21(0.2079)
0.83(0.0641)
—0.65(0.35)
—0.03(0.9742)

1.34(0.0585)
3.03(0.0458)
0.5(0.2116)
1.8(0.0544)
—0.74(0.4567)
—0.05(0.9651)

1.46(0.0412)
2.54(0.0349)
0.12(0.6102)
1.45(0.0557)
—1.05(0.3539)
—0.39(0.7444)

1.31(0.054)
2.36(0.015)
0.12(0.6625)
1.39(0.0322)
0.04(0.8635)
0.63(0.0243)

1.09(0.0871)
2.24(0.0314)
0.18(0.6026)
1.21(0.0896)
—0.97(0.4592)
—0.24(0.8194)

1.52(0.056)
2.5(0.0286)
0.37(0.0526)
1.44(0.0587)
—0.57(0.6344)
0.23(0.8154)
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Fig. 5. Climatic extreme trends over the growing season. The square indicates irrigated sites and the triangle indicates grassland sites. The stations highlighted with
green circle indicate significant trends. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

3.2. Impacts of irrigation on atmospheric moisture and heat content trends

Fig. 5a—f illustrates the trends of those variables over the growing
season. For most stations, no statistically significant trend was found.
TE max> Tm max and Tq max Were found to be declined in most sites with a
rate of about — 1.0 °C decade™'. However, both increasing and de-
creasing time trends were present for Tg min and no clear spatial dis-
tribution was observed. For Ty min and Ty min, positive time trends were
often observed in Nebraska and negative trends in Kansas. However,
over the non-growing season, the majority of stations showed negative
trends for all variables (Fig. 6 a — f) except for some sites in the eastern
part of the study area where Ty min (Fig. 6¢) and Tq min (Fig. 6€)

increased. For most variables over the study region (Table 3), the trends
of irrigated sites were found to be lower than the trends of grassland
sites over the growing season, non-growing season, and in the months
of May, June, July, and August. September is the only exception where
trends of irrigated sites were higher than those under grassland sites.
However, it was also noted that the difference of trends between irri-
gated and grassland sites over the study area are not statistically sig-
nificant.

4. Discussion

Our results document the long-term averages and trends of
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Fig. 6. The same as Fig. 5 but for the non-growing season.
Table 3
The difference of trends for variables between irrigated and grassland sites, p-value of t-test is in parentheses.
Climate Growing season Non-growing season May June July August September
TE min 0.05(0.848) —0.06(0.6212) —0.25(0.4022) 0.22(0.3288) —0.39(0.2824) 0.05(0.8578) 0.43(0.1818)
Tk max —0.33(0.4602) —0.01(0.9642) —0.58(0.1239) —0.63(0.323) —1.04(0.1514) —0.06(0.9114) 0.18(0.4981)
TM_min —0.16(0.3666) —0.01(0.8998) —0.40(0.0555) —0.10(0.5912) —0.30(0.3453) 0.27(0.2106) 0.50(0.0611)
TM_max —0.48(0.2997) —0.16(0.3566) —0.68(0.0709) —0.87(0.1042) —0.84(0.1525) —0.25(0.5678) 0.09(0.7487)
Td_min —0.2(0.2077) —0.07(0.6413) —0.36(0.0703) —0.08(0.5437) —0.25(0.2918) 0.11(0.3659) 0.37(0.1515)
Td_max —0.22(0.3028) —0.15(0.3452) —0.34(0.1112) —0.36(0.1571) —0.35(0.1774) —0.11(0.5325) 0.06(0.7262)
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atmospheric moisture and heat content in the Central Great Plains
(Nebraska and Kansas) between 1990 and 2014, and the effects of ir-
rigation (Tables 1 and 2). Earlier studies reported impacts of land cover
on atmospheric heat content trends (Davey and Pielke, 2005; Davey
et al., 2006) and their averages (Mahmood et al., 2008; Younger et al.,
2018). During the growing season, it was found that most irrigated sites
exhibited higher for Tg_min and Tg max than grassland (Fig. 3), with some
exceptions in northeastern Nebraska, suggesting an influence from ir-
rigation. The differences due to irrigation reach a statistically sig-
nificant level for Tg max and Ty max for the growing season (Table 2),
however, a statistically significant difference was not found for the non-
growing season (Table 2). This confirms that irrigation influences at-
mospheric heat content. The higher Ty, for irrigated sites is one of the
major reasons for higher Tr compared to the grassland sites. Higher Ty,
under irrigated cropland can be explained by irrigation which increases
near-surface atmospheric moisture (Mahmood and Hubbard, 2002;
Adegoke et al., 2003).

As to trends, notable changes in near-surface Tg occurred in the
study region. The Tg max Over the growing season has been decreased
for a number of sites (Fig. 5b) because the moist heat content, i.e., Ty,
significantly influenced Tg. Similarities in the trends of Tg max and
Ty max (shown in Fig. 5d) were also apparent. The reason for the ne-
gative changes of Ty could be due to the different lengths of the time
series compared to other studies. Moreover, a change in moisture
conditions from those in T4 is believed to be due to the relationship
between specific humidity and T4 (Brown and DeGaetano, 2013). T4 max
shows similar trends to Ty max in terms of spatial distribution of the
trend for individual sites. Comparison of the trends between irrigated
and grassland sites showed that most of the trends under irrigated sites
are slightly lower than grassland sites except in September (Table 3) but
more robust test should be further conducted through a longer time
series in future studies.

5. Summary

In this study, atmospheric heat content averages and trends in
Nebraska and Kansas between 1990 and 2014 under two land covers
(irrigated and grassland sites) were investigated. The impacts of irri-
gation on local surface moist enthalpy were evident for the long-term
average values. For trends, the impact is less clear. Irrigation resulted in
higher Tg max On average, which can be partly explained by associated
increased transpiration. These results are consistent with the findings of
Pielke et al. (2004), Davey et al. (2006), Fall et al. (2010), and Younger
et al. (2018). Although statistically not significant, Tg max has a de-
creasing trend for most sites during the growing season. This is pri-
marily due to a reduction in moisture content that caused lower T4 max
and Ty max OVer time. It should be noted that the trends in most vari-
ables of irrigated sites were lower than those with grassland over the
growing season although the difference was not statistically significant.
Further, surface energy flux experiments are still needed to better un-
derstand the inter-relationship between temperature, energy, and land
cover. This study does highlight that surface air moist enthalpy must be
considered to more accurately describe the role of land surface pro-
cesses on the climate system.

6. Conflict of interest

None.
Acknowledgments

This manuscript is contribution number 16-012-J from the Kansas
State University. This work was partially supported by the Ogallala
Aquifer Program which is funded by a USDA-ARS research initiative

(USDA-ARS 58-3090-5-009), as well as the National Institute of Food
and Agriculture, under award number 2016-68007-25066. R.A. Pielke

Weather and Climate Extremes 23 (2019) 100197

Sr. and Rezaul Mahmood received support from NSF Grants AGS-
1219833 and AGS-1720417, respectively. The authors gratefully ac-
knowledge Dallas Staley's usual excellent editing.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.wace.2019.100197.

References

Adegoke, J.O., Pielke Sr., R.A., Eastman, J., Mahmood, R., Hubbard, K.G., 2003. Impacts
of irrigation on Midsummer surface fluxes and temperature under dry synoptic
conditions: a regional atmospheric model study of the U.S. High Plains. Mon.
Weather Rev. 131, 556-564.

Adegoke, J.O., Pielke Sr., R.A., Carleton, A.M., 2007. Observational and modeling studies
of the impact of agriculture-related land use change on climate in the central U.S.
Agric. For. Meteorol. 142, 203-215.

Alter, R.E., Im, E.S., Eltahir, E.A.B., 2015. Rainfall consistently enhanced around the
Gezira Scheme in East Africa due to irrigation. Nat. Geosci. https://doi.org/10.1038/
ngeo2514.

Betts, A.K., Desjardins, R.L., Worth, D., 2007. Impact of agriculture, forest and cloud
feedback on the surface energy budget in BOREAS. Agric. For. Meteorol. 142,
156-169.

Boisier, J.P., de Noblet-Ducoudré, N., Pitman, A.J., Cruz, F.T., Delire, C., van den Hurk,
B.J.J.M., van der Molen, M.K., Miiller, C., Voldoire, A., 2012. Attributing the impacts
of land-cover changes in temperate regions on surface temperature and heat fluxes to
specific causes: results from the first LUCID set of simulations. J. Geophys. Res. 117,
D12116. https://doi.org/10.1029/2011JD017106.

Boucher, O., Myhre, G., Myhre, A., 2004. Direct human influence of irrigation on at-
mospheric water vapour and climate. Clim. Dynam. 22, 597-603. https://doi.org/10.
1007/500382-004-0402-4.

Brown, P.J., DeGaetano, A.T., 2013. Trends in U.S. surface humidity, 1930 - 2010. J.
Appl. Meteorol. Climatol. 52, 147-163. https://doi.org/10.1175/JAMC-D-12-035.1.

Davey, C.A., Pielke Sr., R.A., 2005. Microclimate exposures of surface based weather
stations—implications for the assessment of long term temperature trends. Bull. Am.
Meteorol. Soc. 86, 497-504. https://doi.org/10.1175/BAMS-86-4-497.

Davey, C.A., Pielke Sr., R.A., Gallo, K.P., 2006. Differences between near-surface
equivalent temperature and temperature trends for the Eastern United States
Equivalent temperature as an alternative measure of heat content. Glob. Planet.
Chang. 54, 19-32. https://doi.org/10.1016/j.gloplacha.2005.11.002.

Douglas, E.M., Niyogi, D., Frolking, S., Yeluripati, J.B., Pielke Sr., R.A., Vérosmarty, C.J.,
Mohanty, U.C., 2006. Changes in moisture and energy fluxes due to agricultural land
use and irrigation in the Indian Monsoon Belt. Geophys. Res. Lett. 33. https://doi.
org/10.1029/2006GL026550.

Douglas, E.M., Beltfan-Przekurat, A., Niyogi, D., Pielke Sr., R.A., Vorosmarty, C.J., 2009.
The impact of agricultural intensification and irrigation on land-atmosphere inter-
actions and Indian monsoon precipitation — a mesoscale modeling perspective. Glob.
Planet. Chang. 67, 117-128.

Ellenburg, W.L., McNider, R.T., Cruise, J.F., Christy, J.R., 2016. Towards an under-
standing of the Twentieth-Century cooling trend in the southeastern United States:
biogeophysical impacts of land-use change. Earth Interact. 20, 1-31.

Fall, S., Diffenbaugh, N.S., Niyogi, D., Pielke Sr., R.A., Rochon, G., 2010. Temperature and
equivalent temperature over the United States (1979 — 2005). Int. J. Climatol. 30,
2045-2054. https://doi.org/10.1002/joc.2094.

Fan, X., Ma, Z., Yang, Q., Han, Y., Mahmood, R., Zheng, Z., 2015a. Land use/land cover
changes and regional climate over the Loess Plateau during 2001-2009 - Part I.
Observed evidences. Climatic Change 129, 427-440. https://doi.org/10.1007/
$10584-014-1069-4.

Fan, X., Ma, Z., Yang, Q., Yunhuan Han, Y., Mahmood, R., 2015b. Land use/landcover
changes and regional climate over the Loess Plateau during 2001-2009 — Part II.
Interrelationship from observations. Climatic Change 129, 441-455. https://doi.org/
10.1007/510584-014-1068-5.

Frye, J.D., Mote, T.L., 2010. Convection initiation along soil moisture boundaries in the
southern Great Plains. Mon. Weather Rev. 130, 1140-1151.

Gordon, L.J., Steffen, W., Jonsson, B.F., Folke, C., Falkenmark, M., Johannessen, A., 2005.
Human modification of global water vapor flows from the land surface. Proc. Nat.
Acad. Sci. USA 102, 7612-7617.

Harding, K.J., Twine, T.E., Lu, Y., 2015. Effects of dynamic crop growth on the simulated
precipitation response to irrigation. Earth Interact. 19, 1-31.

HPRCC, 2015. High Plains regional climate center. Available online at: http://www.
hprcc.unl.edu/.

Leeper, R., Mahmood, R., Quintanar, A.I., 2011. Influence of karst landscape on Planetary
boundary layer atmosphere: a Weather Research and Forecast (WRF) model-based
investigation. J. Hydrometeorol. 12, 1512-1529.

LeMone, M.A., Chen, F., Alfieri, J.G., Tewari, M., Geerts, B., Miao, Q., Grossman, R.L.,
Coulter, R.L., 2007. Influence of land cover and soil moisture on the horizontal dis-
tribution of sensible and latent heat fluxes in southeast Kansas during IHOP_2002 and
CASES-97. J. Hydrometeorol. 8, 68-87.

Mahmood, R., Hubbard, K.G., 2002. Anthropogenic land-use change in the North
American tall grass-short grass transition and modification of near-surface hydrologic
cycle. Clim. Res. 21, 83-90.


https://doi.org/10.1016/j.wace.2019.100197
https://doi.org/10.1016/j.wace.2019.100197
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref1
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref1
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref1
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref1
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref2
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref2
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref2
https://doi.org/10.1038/ngeo2514
https://doi.org/10.1038/ngeo2514
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref4
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref4
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref4
https://doi.org/10.1029/2011JD017106
https://doi.org/10.1007/s00382-004-0402-4
https://doi.org/10.1007/s00382-004-0402-4
https://doi.org/10.1175/JAMC-D-12-035.1
https://doi.org/10.1175/BAMS-86-4-497
https://doi.org/10.1016/j.gloplacha.2005.11.002
https://doi.org/10.1029/2006GL026550
https://doi.org/10.1029/2006GL026550
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref11
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref11
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref11
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref11
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref12
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref12
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref12
https://doi.org/10.1002/joc.2094
https://doi.org/10.1007/s10584-014-1069-4
https://doi.org/10.1007/s10584-014-1069-4
https://doi.org/10.1007/s10584-014-1068-5
https://doi.org/10.1007/s10584-014-1068-5
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref16
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref16
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref17
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref17
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref17
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref18
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref18
http://www.hprcc.unl.edu/
http://www.hprcc.unl.edu/
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref20
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref20
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref20
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref21
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref21
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref21
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref21
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref22
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref22
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref22

T. Zhang, et al.

Mahmood, R., Hubbard, K.G., Carlson, C., 2004. Modification of growing season surface
temperature records in the Northern Great Plains due to land use transformation:
verification of modeling results and implication for global climate change. Int. J.
Climatol. 24, 311-327.

Mahmood, R., Hubbard, K.G., Leeper, R.D., Foster, S.A., 2008. Increase in near-surface
atmospheric moisture content due to land use changes: evidence from the observed
dewpoint temperature data. Mon. Weather Rev. 136, 1554-1561. https://doi.org/10.
1175/2007MWR2040.1.

Mahmood, R., Pielke Sr., R.A., Hubbard, K.G., Niyogi, D., Bonan, G., Lawrence, P., Baker,
B., McNider, R., McAlpine, C., Etter, A., Gameda, S., Qian, B., Carleton, A., Beltran-
Przekurat, A., Chase, T., Quintanar, A.IL, Adegoke, J.O., Vezhapparambu, S., Conner,
G., Asefi, S., Sertel, E., Legates, D.R., Wu, Y., Hale, R., Frauenfeld, O.N., Watts, A.,
Shepherd, M., Mitra, C., Anantharaj, V.G., Fall, S., Lund, R., Nordfelt, A., Blanken, P.,
Du, J., Chang, H.-I., Leeper, R., Nair, U.S., Dobler, S., Deo, R., Syktus, J., 2010.
Impacts of land use land cover change on climate and future research priorities. Bull.
Am. Meteorol. Soc. 91, 37-46.

Mahmood, R., Leeper, R., Quintanar, A.I, 2011. Sensitivity of planetary boundary layer
atmosphere to historical and future changes of land use/land cover, vegetation
fraction, and soil moisture in Western Kentucky, USA. Glob. Planet. Chang. 78,
36-53. https://doi.org/10.1016/j.gloplacha.2011.05.007.

Mahmood, R., Keeling, T., Foster, S.A., Hubbard, K.G., 2013. Did irrigation impact 20
century air temperature in the High Plains aquifer region? Appl. Geogr. 38, 11-21.
https://doi.org/10.1016/j.apgeog.2012.11.002.

Mahmood, R., Pielke, Sr R., Hubbard, K.G., Niyogi, D., Dirmeyer, P.A., McAlpine, C.,
Carleton, A.M., Hale, R., Gameda, S., Beltran-Przekurat, A., Baker, B., McNider, R.,
Legates, D.R., Shepherd, M., Du, J., Blanken, P.D., Frauenfeld, O.W., Nair, U.S., Fall,
S., 2014. Land cover changes and their biogeophysical effects on climate. Int. J.
Climatol. 34, 929-953. https://doi.org/10.1002/joc.3736.

NLCD, 2015. National land cover Database. Available online at: http://www.mrlc.gov/
nled01_data.php.

Notaro, M., Chen, G., Liu, Z., 2011. Vegetation feedbacks to climate in the global mon-
soon regions. J. Clim. 24, 5740-5756.

Peterson, T.C., Willett, K.M., Thorne, P.W., 2011. Observed changes in surface atmo-
spheric energy over land. Geophys. Res. Lett. 38, L16707. https://doi.org/10.1029/
2011GL048442.

Pielke Sr., R.A., 2001. Influence of the spatial distribution of vegetation and soils on the
prediction of cumulus convective rainfall. Rev. Geophys. 39, 151-177.

Pielke Sr., R.A., 2003. Heat storage within the earth system. Bull. Am. Meteorol. Soc. 84,
331-335. https://doi.org/10.1175/BAMS-84-3-331.

Pielke Sr., R.A., Davey, C., Morgan, J., 2004. Assessing “global warming” with surface
heat content. Eos 85, 210-211.

Pielke Sr., R., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Hossain, F., Goldewijk,
K.K., Nair, U., Betts, R., Fall, S., Reichstein, M., Kabat, P., de Noblet, N., 2011. Land
use/land cover changes and climate: modeling analysis and observational evidence.

Weather and Climate Extremes 23 (2019) 100197

Wiley Interdiscip. Rev. Clim. Change 2, 828-850. https://doi.org/10.1002/wcc.144.

Pielke Sr., R.A., Mahmood, R., McAlpine, C., 2016. Land's complex role in climate change.
Phys. Today 69, 40-46.

Puma, M.J., Cook, B.I., 2010. Effects of irrigation on global climate during the 20t
Century. J. Geophys. Res. 115, D16120. https://doi.org/10.1029/2010JD014122.

Sacks, W.J., Cook, B.I,, Buenning, N., Levis, S., Helkowski, J.H., 2009. Effects of global
irrigation on the near-surface climate. Clim. Dynam. 33, 159-175.

Schoof, J.T., Heern, Z.A., Therrell, M.D., Jemo, J.W.F., 2014. Assessing trends in lower
tropospheric heat content in the Central USA using equivalent temperature. Int. J.
Climatol. 35, 2828-2836.

Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat.
Assoc. 63, 1379-1389 JSTOR 2285891.

Sen Roy, S., Mahmood, R., Niyogi, D., Lei, M., Foster, S.A., Hubbard, K.G., Douglas, E.,
Pielke, Sr R., 2007. Impacts of the agricultural Green Revolution-induced land use
changes on air temperatures in India. J. Geophys. Res. 112, D21108. https://doi.org/
10.1029/2007JD008834.

Sen Roy, S., Mahmood, R., Quintanar, A.I., Gonzalez, A., 2011. Impacts of irrigation on
dry season precipitation in India. Theor. Appl. Climatol. 104, 193-207. https://doi.
org/10.1007/500704-010-0338-z.

Suarez, A., Mahmood, R., Quintanar, A.L, Beltran-Przekurat, A., Pielke Sr., R.A., 2014. A
comparison of the MM5 and the Regional Atmospheric Modeling System simulations
for land-atmosphere interactions under varying soil moisture. Tellus Dyn. Meteorol.
Oceanogr. 66, 21486. https://doi.org/10.3402/tellusa.v66.21486.

Theil, H., 1950. A rank-invariant method of linear and polynomial regression analysis. I,
1L, III. Nederl. Akad. Wetensch., Proc. 53, 386-392 521-525, 1397-1412, MR
0036489.

Wei, J., Dirmeyer, P.A., Wisser, M.G., Bosilovich, M.G., Mocko, D.M., 2013. Where does
the irrigation water go? An estimate of the contribution of irrigation to precipitation
using MERRA. J. Hydrometeorol. 14, 275-289.

Xu, Z., Mahmood, R., Yang, Z.-L., Fu, C., Su, H., 2015. Investigating diurnal and seasonal
climatic response to land use and land cover change over monsoon Asia with the
Community Earth System Model. J. Geophys. Res. 120, 1137-1152. https://doi.org/
10.1002/2014JD022479.

Yang, Z., Dominguez, F., Zeng, X., Hu, H., Gupta, H., Yang, B., 2017. Impact of irrigation
over the California Central Valley on regional climate. J. Hydrometeorol. 18,
1341-1357.

Younger, K., Mahmood, R., Goodrich, G., Pielke, R. A. Sr, Durkee, J., 2018. Mesoscale
surface equivalent temperature (Tg) for East Central USA. Theor. Appl. Climatol..
https://doi.org/10.1007/s00704-018-2468-7.

Zeng, Z., Piao, S., Li, L.Z.X., Zhou, L., Ciais, P., Wang, T., Li, Y., Lian, X., Wood, E.F.,
Friedlingstein, P., Mao, J., Estes, L.D., Myneni, R.B., Peng, S., Shi, X., Seneviratne,
S.I, Wang, Y., 2017. Climate mitigation from vegetation biophysical feedbacks
during the past three decades. Nat. Clim. Change 7, 432-436.


http://refhub.elsevier.com/S2212-0947(18)30093-8/sref24
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref24
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref24
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref24
https://doi.org/10.1175/2007MWR2040.1
https://doi.org/10.1175/2007MWR2040.1
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref26
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref26
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref26
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref26
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref26
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref26
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref26
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref26
https://doi.org/10.1016/j.gloplacha.2011.05.007
https://doi.org/10.1016/j.apgeog.2012.11.002
https://doi.org/10.1002/joc.3736
http://www.mrlc.gov/nlcd01_data.php
http://www.mrlc.gov/nlcd01_data.php
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref31
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref31
https://doi.org/10.1029/2011GL048442
https://doi.org/10.1029/2011GL048442
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref33
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref33
https://doi.org/10.1175/BAMS-84-3-331
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref35
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref35
https://doi.org/10.1002/wcc.144
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref37
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref37
https://doi.org/10.1029/2010JD014122
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref39
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref39
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref40
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref40
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref40
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref41
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref41
https://doi.org/10.1029/2007JD008834
https://doi.org/10.1029/2007JD008834
https://doi.org/10.1007/s00704-010-0338-z
https://doi.org/10.1007/s00704-010-0338-z
https://doi.org/10.3402/tellusa.v66.21486
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref45
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref45
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref45
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref46
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref46
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref46
https://doi.org/10.1002/2014JD022479
https://doi.org/10.1002/2014JD022479
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref48
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref48
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref48
https://doi.org/10.1007/s00704-018-2468-7
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref50
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref50
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref50
http://refhub.elsevier.com/S2212-0947(18)30093-8/sref50

	Irrigation impacts on minimum and maximum surface moist enthalpy in the Central Great Plains of the USA
	

	Irrigation impacts on minimum and maximum surface moist enthalpy in the Central Great Plains of the USA
	Introduction
	Material and methods
	Data sources
	Calculation of TE
	Identifying irrigation impacts on climate

	Results
	Impacts of irrigation on mean atmospheric moisture and heat content
	Impacts of irrigation on atmospheric moisture and heat content trends

	Discussion
	Summary
	Conflict of interest
	Acknowledgments
	Supplementary data
	References


