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Abstract
The cingulo-opercular network (including the dorsal anterior cingulate and bilateral anterior insula) shows 3 distinct task-
control signals across awide variety of tasks, including trial-related signals that appear to come online at or near the end of the
trial. Previous work suggests that there are separable responses in this network for errors and ambiguity, implicating multiple
types of processing units within these regions. Using a unique paradigm, we directly show that these separable responses
withhold activity to the end of the trial, in the service of reporting performance back into the task set. Participants performed a
slow reveal task where images were presented behind a black mask which was gradually degraded, and they pressed a button
when they could recognize the object that was being revealed. A behavioral pilot was used to identify ambiguous stimuli. We
found interactive effects of accuracy and ambiguity, which suggests that these regions are computing and utilizing information,
at one time, about both types of performance indices. Importantly,we showed a relationship between cingulo-opercular activity
and behavioral performance, suggesting a role for these regions in performance reporting, per se.We discuss these results in the
context of task control.

Key words: ambiguity, error, functional networks, performance reporting, task control

Introduction
Extant work using mixed block/event-related designs, which
allow for the modeling of both sustained and transient signals
during a task, have demonstrated that a set of regions in the cin-
gulo-opercular network (including the dorsal anterior cingulate/
medial superior frontal cortex; dACC/msFC, and bilateral anterior
insula/frontal operculum; aI/fO) show 3 distinct task-control sig-
nals across a wide variety of tasks. Specifically, they show: (1) a
transient start signal at the beginning of a task block, which
may include signals related to the loading of task parameters,

(2) a sustained signal across an entire task block, presumably re-
lated to task maintenance, and (3) trial-related signals, which we
associate with performance reporting (Dosenbach et al. 2006,
2007). In particular, these latter trial-related signals have been
found in response to errors (Dosenbach et al. 2006; Neta et al.
2014; Neta et al. 2015), conflict (Carter et al. 1998; Botvinick
et al. 1999; MacLeod and MacDonald 2000; Botvinick et al. 2001),
particularly when the task requires a response relevant to that
conflict (Milham et al. 2001), ambiguity (Thompson-Schill et al.
1997; Sterzer et al. 2002; Neta et al. 2013, 2014), monitoring of
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performance outcomes (Monchi et al. 2001; Wessel et al. 2012),
cognitive set shifting (Konishi et al. 1998), and they show activity
that is modulated by reaction time (Grinband et al. 2011). The
combination of these processes suggest that these regions are in-
volved in controlling goal-directed behavior including the stable
maintenance of task set (see Dosenbach et al. 2008 for a review).

To focus only on the third type of task-control signal, another
line of research using an extended trial paradigmhas shown that
these transient signals in the cingulo-opercular network come
online at or near the end of the trial, further suggesting that
these responses serve as performance reporting signals (Ploran
et al. 2007; Ploran et al. 2011). Specifically, in a slow reveal design
where images are presented behind a black mask which was
gradually degraded, participants were required to press a button
when they could recognize the object that was being revealed.
They found that activity in the cingulo-opercular regions stayed
low until the moment of recognition, coming online only at or
near the end of the trial. This was taken as initial evidence that
these regions might be important for performance reporting,
per se. Recently,wehave gone on to demonstrate that similar cin-
gulo-opercular regions are, at one time, able to report multiple
task-control signals (errors, ambiguity, reaction time), which we
suggested may be in the service of performance feedback, or re-
porting performance back into the task set in order to improve
behavior on subsequent trials (Neta et al. 2014). Importantly,
we suggest that the cingulo-opercular regions are not necessarily
part of a closed feedback loop, but rather theyappear to report the
response outcomes (e.g., whether the response was correct or
not), for a number of potential signals at one time (errors, ambi-
guity, etc.). However, the experimental design in this work did
not allow us to model the stages of processing within a trial
where decisions about ambiguity are required. As such, the pri-
mary goal of the present study was to modify the slow reveal de-
sign used by Ploran et al. (2007) to include items that are
ambiguous. We predict that the regions previously identified as
showing separable trial-related reporting signals (Neta et al.
2014) withhold activity to the end of the trial. This direct analysis
of previously identified regions would bolster our argument for
their broad role in performance reporting, per se.

Finally, in our previous work, we asked participants to cat-
egorize ambiguous stimuli in several different tasks, but in
each of these tasks, it was not possible tomake an incorrect judg-
ment. For example, in earlier work, we asked participants to
make a valence judgment about ambiguously valenced emotion-
al stimuli (e.g., surprised facial expressions can be interpreted as
either positive or negative, so either rating was considered a cor-
rect response; Neta et al. 2013). Subsequently, we asked partici-
pants to make semantic abstract/concrete judgments about
ambiguous words (e.g., the word “SAFE” could be considered ab-
stract—as in the absence of danger—or concrete—as in a place to
store valuables), and also phonological rhyming judgments
about word pairs (e.g., the heteronym BASS might rhyme with
GRACE, depending on how it is pronounced; Neta et al. 2014).
Taken together, this work did not allow us to compare accuracy
and ambiguity effects within a trial because the ambiguous
items were always rated correctly, regardless of the response
made. In the present work, we used a type of perceptual ambigu-
ity, whereby visual objects were slowly revealed, and ambiguity
arises because the incomplete visual information points to
multiple competing alternatives (i.e., the items share visual attri-
buteswithmanyother objects, (e.g., toothbrush, pen, paintbrush,
rolling pin), whereas clear stimuli have a somewhat unique set of
attributes (e.g., butterfly). Indeed, ambiguity has been described
as a co-activation and/or selection among competing response

options (Thompson-Schill et al. 1997; Sterzer et al. 2002; see Grin-
band et al. 2011). However, by the end of the trial, at which point
the object is fully revealed, the ambiguity is resolved and the cor-
rect identification is made available. As such, this paradigm al-
lows us to examine effects of accuracy and ambiguity within a
trial. We predict that there will be interactive effects of accuracy
and ambiguity in the cingulo-opercular regions, particularly
coming online at or near the end of the trial, consistent with pre-
vious work that shows that these regions can, at one time, com-
pute and utilize information from both of these signals. In other
words, we predict a pattern whereby there is greater activity for
ambiguous than clear trials, more so for error than correct trials.

Taken together, we suggest that the cingulo-opercular regions
are reporting response outcomes. This report is multifarious: the
regions report on a variety of performance-related signals includ-
ing but “not limited to” accuracy, ambiguity, and reaction time.
Importantly, these regions seem to report, as opposed to predict
(as in the PROmodel), response outcomes given that the onset of
the signals come online late in the trial, when the participant
makes a response. Although we focus in the present work only
on the control signals that take place on a trialwise basis, this
control system also shows a variety of types of control-related
signals (task initiation and maintenance). The trialwise signals
discussed here represent only one piece of the role of this network
in task control; one that occurs every time a trial is completed, and
they appear to report on a variety of performance-related signals
that occurred during that trial. While we focus here only on per-
formance signals related to accuracy and ambiguity/conflict, it
stands to reason that many other types of signals (e.g., reward)
might also elicit similar signals. This reporting of information re-
lated to the completed trial is useful for future updating and im-
plementing this information on subsequent trials.

One goal of the present work is to determine if these late
performance-related control signals that have been previously
shown in the context of errors (Wheeler et al. 2008) are also
found for ambiguity. In otherwords,wepredict that these regions
are not part of the decision-making process (e.g., they are not re-
solving ambiguity), but rather, they make a note of performance
upon completion of an ambiguous trial, rather than beginning to
ramp up earlier in the trial, during the competition of alternative
response options.

Materials and Methods
Stimuli

The pictures were 251 grayscale images (Rossion and Pourtois
2004) reformatted into a standard 284 × 284 pixel image with a
white background. The displayed images subtended an average
of 10.3° of the visual field and were presented against a black
background. One image was reserved for a practice trial, in
order for participants to get acquainted with the task; 10 lists of
25 pictures were selected out of the remaining 250 pictures for
task presentation.

Behavioral Pilot

In a behavioral pilot, we recruited a total of 19 participants (11 fe-
male). Each participant viewed 274 images in the slow reveal
paradigm (see Task below functional magnetic resonance im-
aging [fMRI] Experiment) in one of 2 versions (9 participants
saw version 1, 10 saw version 2). Images were presented in a ran-
dom order, and these 2 versions simply represented 2 rando-
mized pre-set orders of presentation. From these data, we
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excluded 24 images that had a very low response rate (12 or fewer
of the 19 participants made any response indicating they knew
what the image was depicting). Of the remaining 250 items, we
identified 108 ambiguous items based on accuracy, where the
average accuracy was 80% or less across participants. The re-
maining 142 items were classified as clear (unambiguous), with
an accuracy of over 80% across participants, and a response rate
of 13 ormoreparticipants. In sum, ambiguous itemswere charac-
terized as those items that aremore difficult to recognizewith in-
complete visual information, and this difficulty likely arises
because the incomplete visual information points to multiple
competing alternatives (i.e., the items share visual attributes
with many other objects, e.g., toothbrush, pen, paintbrush, roll-
ing pin), whereas clear stimuli have a somewhat unique set of at-
tributes (e.g., butterfly, see Fig. 1).

Participants

Twenty-eight healthy participants (right-handed, without
neurological disease and with normal/corrected vision, 15 fe-
male, ages 21–30 years, mean age = 25.7) volunteered. None
were aware of the purpose of the experiment, and all were com-
pensated for their participation through monetary payment.
Written informed consent was obtained from each participant
before the session. All procedures were approved by the Wash-
ington University Committee for the Protection of Human Sub-
jects. One participant was excluded because she had prior
experiencewith the stimuli. The final sample included 27 partici-
pants (14 females).

fMRI Experiment

Testing consisted of 10 runs of a perceptual recognition task
using picture stimuli, with 25 trials per run, where 10 or 11 trials

were previously identified as ambiguous (see Pilot), and 14 or 15
were clear. There were 2 versions of the experiment, and half of
the participants completed each version. Because some runs
contained 10 ambiguous images, and other runs contained 11,
in these 2 versions, we counterbalanced the order of these differ-
ent of runs, and randomized the order of the conditions and
images within each run. Before beginning the experiment, sub-
jects were given one practice trial in order to get acquainted
with the task. The task was the same as the one used in previous
work (see, Ploran et al. 2007), where, in each trial, stimulus reve-
lation occurred over 7 discrete steps, each corresponding
with acquisition of a whole-brain image (Fig. 1). The revelation
steps occurred every 2 s without within-trial jitter. Between-
trial jitter of 2, 4, or 6 s (mean intertrial interval [ITI] = 4 s) was
included in both experiments to allow event-related analysis of
individual trials.

At trial onset, pictures were covered by a black mask. The
mask partially dissolved at each successive 2-s interval (i.e., reve-
lation step) until pictures were completely revealed (Fig. 1). Parti-
cipants were instructed to press a button when they could
identify the picture with a reasonable degree of confidence
(time of recognition, TR). Participants were encouraged to re-
spond as soon as they had a relatively high level of confidence
in the identity of the object in the picture, and they were specif-
ically encouraged to respond before the itemswere fully revealed.
When stimuli were fully revealed (VoA), participants pressed the
same button again only if their earlier recognition had been cor-
rect. As in previous work, we used gradual stimulus revelation
over other unmasking procedures (e.g., mask degradation re-
mains constant but areas revealed change from step to step) be-
cause we could readily map the quantity of stimulus input onto
neural activity as a linear increase across the trial (Carlson et al.
2006). To help factor out basic lateralized motor signals in group
analyses, response hand was counterbalanced across partici-
pants (Thielscher and Pessoa 2007). Psyscope X was used for
stimulus presentation and data collection (Cohen et al. 1993)
(http://psy.ck.sissa.it).

Imaging Acquisition

Images were acquired on a Siemens 3 T TIM Trio scanner
(Erlanger, Germany) with a 12-channel Siemens Matrix head
coil. A T1-weighted MPRAGE structural image was obtained
(slice time echo = 3.08 ms, time repetition [TR] = 2.4 s, time to
inversion [TI] = 1000 ms, flip angle = 8°, 176 slices, 1 × 1 × 1 mm
voxels). All functional runs were acquired parallel to the anter-
ior–posterior commissure plane using a blood oxygen level-
dependent (BOLD) contrast-sensitive asymmetric spin-echo
echo-planar sequence (TE = 27 ms; volume TR = 2 s, flip angle =
90°, in-plane resolution = 4 × 4 mm). Whole-brain coverage was
obtained with 32 contiguous interleaved 4 mm axial slices.
An auto-align pulse sequence protocol provided in the Siemens
software was used to align the acquisition slices to the anterior
and posterior commissure (AC–PC) plane and centered on the
brain. A T2-weighted turbo spin-echo structural image (TE = 84 ms,
TR = 6.8 s, 32 slices with 1 × 1×4mm voxels) was also obtained in
the same anatomical plane as the BOLD images to improve align-
ment to the atlas.

Each subject was fittedwith a thermoplasticmask fastened to
the head coil using custom-made clamps to help stabilize head
position. Additionally, the first 4 frames of the BOLD time series
were skipped to assure steady-state magnetization.

Visual stimuli were generated on an Apple iMac with Psy-
Scope X and projected onto a screen positioned at the head of

Figure 1.This is a depiction of the slow reveal design,whereweshowone example

for a clear stimulus, and one for an ambiguous stimulus.
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the magnet bore using a Sharp PG-M20X digital multimedia pro-
jector via a mirror attached to the head coil. Earplugs dampened
scanner noise. Responses were made using a fiber optic button
stick connected to the computer via an interface unit (Current
Designs, Philadelphia, PA).

Analyses

Behavioral Analyses
In order to determine when in the course of the trial participants
were able to recognize each object, we calculated, for each partici-
pant, the rate of responses for each TR, and by condition. For ex-
ample, let’s assume that subject 1 correctly recognized a total of
81 ambiguous items, and that they indicated this recognition
judgment (i.e., they made their response) during TR6 on 14 of
those 81 trials. Moreover, on all 14 of those 81 trials, they also in-
dicated that their recognition judgment was correct, so theywere
able to accurately identify these ambiguous items in TR6. In this
case, this subject will have a value of 14/81 = 0.172, or 17.2% for
ambiguous correct trials in TR6.We then calculated this response
rate for each TR by condition (ambiguous correct, ambiguous
error, clear correct, clear error). This dependent variable allowed
us to take into account the number of trials on which subjects
were able to correctly (or incorrectly) recognize the ambiguous
and clear items, and to see the distribution of these responses
across the 6 TRs. Then, we ran a repeated-measures analysis of
variance (ANOVA) on accuracy (correct, error) × ambiguity (am-
biguous, clear) × TR (1–6).

Imaging Analyses.Preprocessing. Initial data processing to remove
noise and artifacts was carried out using a series of automated
steps, including (1) temporal realignment using sinc interpol-
ation of all slices to the temporal midpoint of the first slice, ac-
counting for differences in the acquisition time of each
individual slice, (2) correction for movement within and across
BOLD runs using a rigid-body rotation and translation algorithm
(Snyder 1996), and (3) whole-brain intensity normalization for
each functional run by multiplying the intensity value of all of
the voxels by a single factor to achieve a modal value of 1000
across all of the image voxels to allow comparisons across sub-
jects (Ojemann et al. 1997). Functional data were then resampled
into 2-mm isotropic voxels and transformed into stereotaxic
atlas space (Talairach and Tournoux 1988). Atlas registration in-
volved aligning each subject’s T1-weighted image to a custom
atlas-transformed (Lancaster et al. 1995) target T1-weighted tem-
plate using a series of affine transforms (Michelon et al. 2003; Fox
et al. 2005).

General linear models. Preprocessed data were analyzed at the
voxel level using a general linear model (GLM) approach (Friston
et al. 1994; Miezin et al. 2000). Details of this procedure are de-
scribed by Ollinger et al. (2001). Estimates of the time course of ef-
fects were derived from the model for each response category by
coding 14 time points as a set of gamma functions immediately
after onset of the coded event (Ollinger et al. 2001). In other
words, the shape of the BOLD response was not included in the
GLM but rather estimated from 14 time points included in the de-
signmatrix for the GLM (Miezin et al. 2000). Over each run, a trend
term accounted for linear changes in signal, and a constant term
modeled the baseline signal. Event-related effects are described
in terms of percentage signal change, defined as signal magni-
tude divided by a constant term. Again, this approach makes
no assumptions about the shape of the BOLD response but
does assume that all events included in a category (e.g., accurate

TR6) are associated with the same BOLD response (Friston et al.
1994; Worsley et al. 1995; Josephs et al. 1997; Zarahn et al.
1997a, 1997b; Miezin et al. 2000; Ollinger et al. 2001; Wheeler
et al. 2006). Thus, we could extract time-courses without placing
constraints on their shape. Image processing and analyses were
performed using in-house software written in IDL (Research Sys-
tems, Boulder, CO).

In total, we computed 2 different GLMs. For our primary goal,
we examined the time courses by TR across all trial conditions, in
order to determine if our a priori regions of interest in cingulo-
opercular regions (see Neta et al. 2014) showed activity that re-
mains low until the moment of recognition. For this analysis,
the 5 events we modeled corresponded to the TR 2–6 (excluding
the TR1 because most participants did not make any responses
during this frame). In order to include as many subjects as pos-
sible, we collapsed across the trial conditions for this analysis.
The task-related transient parameters were taken to a second
level for random-effect analysis using f tests. A significant main
effect of time (ANOVA) indicated that the hemodynamic re-
sponse was different from flat across the 7 TRs. One subject did
not make any responses in the last TR, so the final sample for
these analyses had 26 subjects (14 females).

For our second GLM, we collapsed TR into 2 bins: TR3–4, and
TR5–6, and the 8 events wemodeled were the ambiguous correct,
ambiguous error, clear correct and clear error trials for each bin
(the second button press at the VoA was not modeled in either
GLM). Importantly, at the time of the first button press, the sub-
ject does not yet know that the percept was wrong, but many
error-related signals can happen in the absence of explicit feed-
back about the error or clear awareness on the part of the subject
(Nieuwenhuis et al. 2001). As such, error-related activity can be
modeled based on the first button press. Also, because of a low
rate of response during the first 2 TRs, those trials were coded
as a condition of no interest, along with errors of omission. As
with the first GLM, the task-related transient parameters were
taken to a second level for random-effect analysis using f tests.
Two subjects did not make any errors on clear trials in at least
one of the 2 bins, so the final sample for these analyses had 25
subjects (13 females). For both GLMs, individual subject data
were transformed into the stereotactic space of Talairach and
Tournoux (1988).

Regions of interest definition. We focused our analyses on 3 control
regions that we have shown respond to errors and ambiguity
(Neta et al. 2014). Specifically, we constructed 3 regions of interest
(ROIs) derived from our previous coordinates in dorsal anterior
cingulate/medial superior frontal cortex (dACC/msFC) (−2, 19, 49)
and bilateral aI/fO (right aI/fO: 33, 25, −1; left aI/fO: −33, 24, 1).
Functional ROI volumes were defined as 10-mm diameter
spheres at these coordinates. We submitted these ROIs to further
testing in a repeated-measures ANOVA of TR (2, 3, 4, 5, 6) × time-
course (14 frames).

We then submitted these ROIs to further testing in more fo-
cused repeated-measures ANOVAs which included independent
variables for accuracy (error, correct) and ambiguity (ambiguous,
clear), and only a subset of the time-course data. Specifically,
using a previously published examination of error-related activ-
ity as a model (Wheeler et al. 2008), we ran an accuracy (correct,
error) × ambiguity (ambiguous, clear) × time-course (3 levels of
time that included the 3 frames after the stimulus has been
fully revealed, and the ambiguity had been necessarily resolved;
timepoints 9–11).

Subsequently, we tested the effect of timing by including
epoch (pre-recognition and post-recognition). In other words,
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we ran an accuracy × ambiguity × epoch (pre, post) repeated-
measures ANOVA. For the pre-recognition epoch, we included
timepoints 4–6, just prior to recognition decisions occurring in
the last bin (TRs 5/6). Due to averaging, it also necessarily encom-
passes 2 sec of post-recognition time at frame 6. However, with
an assumed 2 to 3-sec lag in the onset of the BOLD response,
and a 4 to 6-sec lag in the time-to-peak (Miezin et al. 2000), activ-
ity in this time window should be almost exclusively related to
processing prior to recognition. For the post-recognition epoch,
we included timepoints 9–11, after the stimulus was fully
revealed.

Finally, we tested effects of region by including region as a be-
tween subjects variable in a final repeated-measures ANOVA.

Results
Behavioral

Participants Wait Longer to Respond to Ambiguous Than Clear Trials
We ran a repeated-measures ANOVA on accuracy (correct, error)
× ambiguity (ambiguous, clear) × TR (1–6) using the percentage of
trials for each condition (see Materials andMethods). We found a
significant ambiguity × TR interaction (F5,22 = 21.27, P < 0.001),
where thereweremore responses for clear than ambiguous trials
in TRs 2 (P < 0.001) and 3 (P = 0.001), but more responses for am-
biguous than clear trials in TRs 5 (P = 0.07) and 6 (P < 0.001;
Fig. 2). In other words, participants were identifying the ambigu-
ous items later in the trial (after more information was revealed)
compared with clear items, suggesting that our identification of
these items as ambiguous was accurate (seemeans and standard
errors of response distribution in Table 1).

There was also a significant accuracy × ambiguity × TR inter-
action (F5,22 = 3.34, P = 0.022), such that the above effect was sig-
nificant for correct trials in TRs 1–3 (clear > ambiguous,
P’s ≤ 0.003), and TRs 5 and 6 (ambiguous > clear, P < 0.001), and
for error trials in TR 3 (clear > ambiguous, P = 0.023) and 6
(ambiguous > clear, P < 0.001).

Imaging

Three a Priori Cingulo-opercular Regions Show Activity Stays low
Until the Moment of Recognition
In order to determinewhether or not our previously defined con-
trol regions come online at the end of the trial, likely in the ser-
vice of a performance reporting mechanism, we made 3 ROIs
using our previous coordinates in dACC/msFC (−2, 19, 49) and bi-
lateral aI/fO (right aI/fO: 33, 25, −1; left aI/fO: −33, 24, 1). We then
submitted these ROIs to further testing in a repeated-measures
ANOVA of TR (2, 3, 4, 5, 6) × timecourse (14 frames), and found a
significant main effect of TR in dACC (F4,22 = 2.92, P < 0.05), left
aI/fO (F4,22 = 2.89, P < 0.05), and right aI/fO (F4,22 = 5.44, P = 0.003).
As expected, activity in all 3 regions stays low until the moment
of recognition (Fig. 3).

Regions Show Late Effects for Accuracy and Ambiguity
To examine accuracy- and ambiguity-dependent differences in
these regions, we ran a repeated-measures ANOVA on a subset
of the time-course data, focusing on the period of time after the
stimulus has been fully revealed (i.e., after the moment of re-
cognition, when these effects are expected to come online).
We focused only on data from the last time bin (TRs 5 and 6),
which gave us the greatest number of trials and occurred just be-
fore the stimulus was revealed. There were 2 levels of accuracy
(correct, error), 2 levels of ambiguity (ambiguous, clear), and 3 le-
vels of time (timepoints 9–11 for the post-recognition epoch of
interest). We found a significant main effect of ambiguity (F1,2 =
46.68, P < 0.03), where activity was greater for ambiguous than
clear trials, and a significant main effect of accuracy (F1,2 = 53.02,
P < 0.02), where activity was greater for error than correct trials.
There was also a trend for a significant ambiguity × accuracy
interaction (F1,2 = 14.75, P = 0.06), such that there was greater ac-
tivity for ambiguous than clear trials, more so for error than cor-
rect trials (blue shaded area; Fig. 4).

To examine the effect of timing, we included epoch (time-
points 4–6 immediately prior to recognition decisions occurring

Figure 2. Behavioral data. The y-axis shows the percentage of trials from each condition. Each line represents trials onwhich the participantmade a recognition judgment

during TR 2, 3, 4, 5, or 6. There were more responses for clear than ambiguous trials in early TRs (2 and 3), but more responses for ambiguous than clear trials in later TRs

(5 and 6). In other words, participants were identifying the ambiguous items later in the trial (after more information was revealed) compared with clear items.

Table 1 Mean and standard error of response distribution by TR

TR 1 TR 2 TR 3 TR 4 TR 5 TR 6

Clear correct 1 ± 0.2 10.2 ± 1.5 29.4 ± 1.6 36.8 ± 1.5 34.0 ± 2.3 8.5 ± 1.2
Clear error 0.1 ± 0.06 1.4 ± 0.4 5.4 ± 1.0 6.8 ± 1.1 5.7 ± 0.7 0.8 ± 0.2
Ambiguous correct 0.1 ± 0.06 2.5 ± 0.4 12.2 ± 1.2 20.3 ± 1.0 27.9 ± 2.1 10.0 ± 1.4
Ambiguous error 0.2 ± 0.09 1.5 ± 0.5 6.6 ± 1.4 10.0 ± 1.4 9.5 ± 1.0 4.0 ± 0.6
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in this last bin (TRs 5/6), and timepoints 9–11 after the stimulus
was fully revealed) as a repeated factor. There was a significant
main effect of epoch (F1,2 = 36.81, P < 0.03), where activity was

greater post-recognition than pre-recognition, as expected. There
was also a significant ambiguity × epoch interaction (F1,2 = 9.23,
P < 0.02), such that ambiguous > clear trials post-recognition
(blue shaded area in Fig. 4; P < 0.03), but there was only a
trend for such an effect pre-recognition (yellow shaded area in
Fig. 4; P = 0.099). There was also a significant accuracy × epoch
interaction (F1,2 = 38.80, P < 0.03), such that error > correct activity
both pre- and post-recognition (P’s < 0.02). Finally, there was a
trend for a significant ambiguity × accuracy × epoch interaction
(F1,2 = 12.01, P < 0.08), such that there was ambiguous > clear
activity more so for error than correct trials, but this pattern
was only significant post-recognition (P’s < 0.04). Pre-recognition,
there was a trend for ambiguous > clear only for “correct” trials
(P < 0.09). This pattern of activity is strikingly similar to the activity
in regions previously defined as moment-of-recognition regions
(see Supplementary Fig. 1). For a similar analysis and figure exam-
ining TRs 3/4, see Supplementary Material and Figure 2.

To determine whether there was any difference between the
regions, we included region as a factor. There was a significant
main effect of region (F2,72 = 4.57, P < 0.02), where activity was
greater in dACC than bilateral aI/fO (P’s < 0.01), but there was no
significant difference between the insula regions (P > 0.8). Import-
antly, there were no significant interactions between region and
ambiguity or accuracy (P’s > 0.1).

Figure 3.We found that activity in the cingulo-opercular regions comes online at or near the end of the trial, suggesting a role for these regions in performance reporting.

Slices on the left represent anatomical depictions of the ROIs.

Figure 4. Cingulo-opercular regions withhold their activity until the moment of

recognition. They also show accuracy-related effects both in the pre-recognition

epoch (yellow), and post-recognition epoch (blue). There are ambiguity-related

effects post-recognition, and a trend for an effect pre-recognition. Interestingly,

there are interactive effects of ambiguity and accuracy only post-recognition,

where there is greater activity for ambiguous than clear trials, more so for error

than correct trials. Time courses are calculated based on signal averaged across

the 3 regions of interest.
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Late Effects Appear to be Related to Performance Reporting
To test whether these late effects were related to performance
reporting, per se, we compared activity in these regions to
behavioral performance. First, we ran an accuracy (correct, error)
× ambiguity (ambiguous, clear) repeated-measures ANOVA on
performance for the subsequent trial (i.e., dependent variable
was accuracy on trials following an error, an ambiguous item,
etc.). There were significant main effects of accuracy (F1,26 = 9.27,
P = 0.005) and ambiguity (F1,26 = 5.21, P = 0.03), such that perform-
ance was improved following errors and ambiguity. There was
also a trend for a significant accuracy × ambiguity interaction
(F1,26 = 3.45, P = 0.074). Post hoc tests revealed that there was a
significant difference between error and correct trials, but only
for ambiguous trials (P < 0.001; clear trials P > 0.3), and there was
a significant difference between ambiguous and clear trials,
but only for errors (P = 0.02; clear trials P > 0.9). For further ana-
lyses to test the specificity of these effects, see Supplementary
Material. This suggests that the putative reporting response dur-
ing errors and ambiguous trials may result in improved task
performance.

Next, we examined individual differences in brain activity
across these 3 regions of interest, and compared that with per-
formance. To do this, we averaged the peak response in each re-
gion (frames 8–10) for each condition (ambiguous correct, clear
correct, ambiguous error, and clear error), and then averaged
across the 3 ROIs, to come up with a value representing the
level of activity for each subject. We found that activity for clear

error trials correlated with accuracy on trials following clear er-
rors (r = 0.62, P < 0.005; Fig. 5A), such that individuals showing
the greatest activity showed the greatest performance on the sub-
sequent trial. This activity for clear errors was also correlated
with overall performance (r =−0.53, P < 0.01; Fig. 5B), such that in-
dividuals showing the greatest activity also made the least num-
ber of total errors.

There was a similar effect for ambiguity; there was a signifi-
cant correlation between activity for ambiguous correct trials
and accuracy on trials following ambiguous correct trials (r = 0.48,
P < 0.02; Fig. 5C), such that individuals showing the greatest activ-
ity showed that greatest performance on the subsequent trial.
And this effect was significant also for ambiguous error trials
(r = 0.42, P < 0.04; Fig. 5D), where individuals showing the greatest
activity for ambiguous errors showed that greatest performance
on the subsequent trial. Importantly, there were no significant
correlations between activity during clear correct trials and
performance (p’s > 0.1). To further test the specificity of these in-
dividual differences effects, we ran a few follow-up analyses (see
Supplementary Material).

Discussion
The present experiment uses a modified version of a slow reveal
design, which allows for the modeling of the onset of responses
within a trial, in order to separate responses that come online
early (e.g., evidence accumulation) from those that come online

Figure 5. Cingulo-opercular activity is important for performance reporting. This is based on an averaged peak response in each region (frames 8–10) for each condition

(ambiguous correct, clear correct, ambiguous error, and clear error), then averaged across the 3 ROIs, to come up with a value representing the level of activity for each

subject. (A) Activity for clear error trials correlated with accuracy on trials following clear errors (r = 0.62, P < 0.005), such that individuals showing the greatest activity

showed that greatest performance on the subsequent trial. (B) This activity for clear errors was also correlated with overall performance (r =−0.53, P < 0.01), such that

individuals showing the greatest activity also made the least number of total errors. (C) There was a similar effect for ambiguity; activity for ambiguous correct trials

was correlated with accuracy on subsequent trials (r = 0.48, P < 0.02), such that individuals showing the greatest activity showed that greatest performance on the

subsequent trial. (D) This effect was significant also for ambiguous error trials (r = 0.42, P < 0.04).
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late (e.g., moment of recognition) during an object recognition
task. Specifically, we havemodified the task by adding amanipu-
lation of stimulus ambiguity, where some items were more diffi-
cult than others to identify based on little visual information
because they share visual properties with many other objects,
see Methods and Figure 1.

The goal of this report is 2-fold: First, we replicated previous
work showing that error-related activity comes online at or
near the end of the trial (Ploran et al. 2007; Ploran et al. 2011),
and extended this to include late ambiguity-related activity in a
perceptual decision-making task. Second, we askedwhether am-
biguity and accuracy processing show interactive effects that
come online as a late performance reporting signal. Importantly,
error-related activity can come online in the absence of explicit
feedback or any awareness on the part of the subject (Nieuwen-
huis et al. 2001). So the error-related response need not wait
until the image is fully revealed at the end of the trial; it could
come online immediately after a participantmakes an erroneous
response.

Separable Error and Ambiguity Signals Related
to Performance Reporting

Wehave recently demonstrated that a set of regions in the cingu-
lo-opercular network, including the dorsal anterior cingulate ex-
tending into the medial superior frontal cortex, and the bilateral
anterior insula extending into the frontal operculum, show sep-
arable responses to errors, ambiguity, and reaction time (Neta
et al. 2014). Based on previous work (Ploran et al. 2007), we sug-
gested that these signals likely come online at or near the end
of the trial, providing further evidence that these signals might
be in the service of performance reporting to a task-control
system. Here, we have shown that, across items that are both am-
biguous and clear, and both correctly and incorrectly recognized,
the cingulo-opercular regions withhold activity to the time of de-
cision. This fitsmuchmore cleanly with a performance reporting
explanation than other components of task control (e.g., online
or adaptive monitoring). In our original conception of the 2 con-
trol networks (cingulo-opercular and fronto-parietal), we sug-
gested that a major difference was whether the control was
applied at a task level or had ongoing adaptive responsibility
(Dosenbach et al. 2006, 2007). The cingulo-opercular network,
with its sustained signals, was thought to bemore closely related
to overall task control, and the fronto-parietal in the more adap-
tive role. Further distinction can be found with regard to the sig-
nals that are found in each network: Ploran et al. (2007) reported
that the fronto-parietal regionsweremore related to evidence ac-
cumulation, where the activity in these regions comes online
early and slowly ramps up as greater information about the
stimulus is revealed. In contrast, activity in the cingulo-opercular
regions stays lowwhile evidence is accumulated and only comes
online after the decision is made (for a replication of these find-
ings in the present data, see Supplementary Fig. 1). We believe
the late responses in the cingulo-opercular network fit with a re-
porting of the events of the trial (e.g., ambiguity) and its response
outcomes because these regions are not active until after a deci-
sion is made and, only then, do they come into the picture. The
fronto-parietal regions, in contrast, seem to be active during the
problem-solving stage of the process.

Furthermore, we replicated previous work showing that this
late response in cingulo-opercular regions is greater on error
than correct trials (Wheeler et al. 2008). As an extension of
these findings, we found a similar effect for ambiguity, whereby
there was ambiguous > clear activity in these regions that comes

online only after the moment of recognition. This is consistent
with work showing that the regions in the cingulo-opercular
network (i.e., dorsal anterior cingulate/medial superior frontal
cortex, bilateral anterior insula/frontal operculum), show re-
sponses to errors (see Dosenbach et al. 2006; Neta et al. 2015)
and ambiguity (Neta et al. 2013), and, more specifically, that
they show separable responses to errors and ambiguity in the
service of task control (Neta et al. 2014). Onemight have predicted
that ambiguity would not work the same way as accuracy, that
activity might begin to ramp up in these regions earlier in the
trial, during the competition of alternative response options,
but ambiguity appears to work the same as errors. Taken to-
gether, we suggest that these cingulo-opercular regions appear
to report on ambiguity and accuracy (and perhaps a variety of
other performance-related signals such as costs and benefits)
in a similar manner, but only at a relatively specific time (after
a response has been made and the task—as far as that trial is
concerned—is complete). These multiple performance report-
ing signals are likely useful in response to situations of uncer-
tainty (ambiguity) and error, in order to improve future task
performance.

Perhaps more importantly, we found that there was an inter-
active effect of accuracy and ambiguity. In other words, therewas
an interaction such that these regions showed greater activity for
ambiguous than clear trials, and this effect was more robust on
error than correct trials. Previous work presented a model of cin-
gulo-opercular task control, modified from Dosenbach et al.
(2007), suggesting that several types of performance reporting
signals, including errors, ambiguity/conflict, and reaction time,
can be computed in the cingulo-opercular regions at once (Neta
et al. 2014). We provide further evidence here that the cingulo-
opercular system can accept or compute, and presumably utilize,
many forms of performance reporting in the service of providing
more effective top-down signals in later trials, or later epochs, or
for the performance of similar tasks in the future.

Finally, we provide evidence that these cingulo-opercular sig-
nals are important for performance reporting. Specifically, there
was a relationship between these signals and task performance.
First, we found that, following trials with greater a cingulo-oper-
cular response (error, ambiguity), task performance was im-
proved. Importantly, these effects were specific to errors and
ambiguity, as there was no significant relationship between per-
formance and activity on clear correct trials. Second, there were
individual differences relating brain activity to task performance,
such that individuals that recruit greater activity in these regions
also show better behavioral performance.

Cingulo-opercular Regions in the Literature:
Conflict, Predictions, and Actions

These data not only inform the error- and ambiguity-related pro-
cesses in the cingulo-opercular network, but can also work to-
ward informing and, in some cases, contradicting extant
theories of ACC function. We focus here on ACC because these
theories are more thoroughly spelled out in the literature, and
we believe these findings spread to bilateral aI/fO, which is func-
tionally coupled with ACC across tasks and rest. Some of the
more prominent theories suggest that ACC is important for con-
flict monitoring (Botvinick et al. 2001), others suggest a role in
prediction of response outcomes (Alexander and Brown 2011),
and other suggests ACC is responsible for action monitoring
(Rushworth et al. 2004). It is important to mention here, first,
that the region under discussion extends dorsally from the
ACC to the medial superior frontal cortex. Recent work has
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demonstrated that much of the literature discussing ACC points
to a region, like ours, dorsal to cingulate cortex (Lieberman
and Eisenberger 2015). In this work, the authors showed that a
search of the literature using Neurosynth found that both search
terms “dACC” and “anterior cingulate” resulted in activation
maps that included this more dorsal region (but see commentary
onmethodological issueswith the approach; https://tinyurl.com/
nvt3vlr, as well as a response suggesting this may be partly
related to variation in cingulate anatomy; 10.6084/m9.fig-
share.2026014). To bemore specific, the originalmodel presented
by Brown and Braver (2005) focused on a similar region dorsal
to the ACC. Since then, other papers have contributed to the
ACC debate while discussing the same region that extends
dorsally to the medial superior frontal cortex (e.g., O’Reilly et al.
2013).

Having said that, we address the varied theories about ACC
function in turn here, demonstrating that our present data are,
at least in part, incompatible with the existing theories. First,
the conflict monitoring model might predict that ambiguity be-
gins low and then ramps up with additional information as mul-
tiple response candidates compete (before a response is made),
diminishing only when a single response has been chosen. This
is not consistent with the present findings, since we have
shown that activity in these regions stays low until the end
of the trial, at which point a single response has been chosen.
Indeed, an extension of the conflict monitoring model has pro-
posed that conflict occurs on correct trials when an erroneous re-
sponse is prepared but the correct responsemanages to override it
(i.e., conflict occurs prior to the response, or early in the trial; Coles
et al. 1988; Kopp et al. 1996). On error trials, in contrast, themodel
suggests that conflict occurs after the response ismade. Taken to-
gether, this model would suggest a temporal dissociation be-
tween error- and conflict-related signals in ACC, which is not
supported by the presentwork. In thisway, this report contradicts
at least one form of the conflict monitoring model.

Second, the prediction of response outcomes (PRO) model
suggests that the ACC calculates the discrepancy between predic-
tions and outcomes, where the signals are scaled by the degree to
which outcomes violate predictions. As a result, this model pro-
vides a unifying account of prediction, error, and learning effects
that have been localized to the ACC (Alexander and Brown 2011).
Some support for this theory comes from paradigms that take a
similar approach to the present work, attempting to dissociate
conflict and errors (Nee et al. 2011) and predictions and outcomes
(Jahn et al. 2014). However, we found an increased response for
errors on ambiguous as compared to clear trials. The PRO
model would predict, instead, that errors on ambiguous trials
would have less prediction error than errors on clear trials. In
these ways, we also contradict the PRO model. Further, this
model explicitly argues that activity should ramp up over time:
“cell activities representing the outcome probabilities grow larger
as the timing of the expected outcome approaches. If the ex-
pected outcome is unexpectedly delayed, “then the activity pre-
dicting the outcome will continue to increase until the outcome
actually occurs,” at which point the prediction activity will
cease.” (Brown 2011). In other words, the PRO model predicts
that activity increases starting early in the trial, and continues
to increase “until” a response is made. The present findings sug-
gest something quite different; activity does not begin to increase
until “after” a response is made. This is not consistent with the
response profile reported here, where activity stay lows until
the end of the trial.

Despite an overwhelming preoccupation with the error- and
conflict-related signals in ACC, other research has emphasized

a broad role in encoding the relationship between an action
and the reinforcement value of its outcome, regardless of when
the outcome is a positive reward or an error (Rushworth et al.
2004; Shenhav et al. 2013). In other words, the ACC does not
just encode which outcome is expected (e.g., whether an action
is expected to lead to an error), it is proposed to also be a crucial
part of a system for encoding whether or not an action is worth
performing given both the value of the expected outcome and
the cost of performing the action. Shenhav et al. (2013) specifical-
ly includes roles of both prospection (estimating value of control)
and evaluation. This suggests, as with the previous models, that
the activity in this regionmust, at least in part, come online early
(before an action is made) in an effort to determine whether an
action should be taken. As such, our data do not support this
model in its entirety. Further, because this model predicts that
this region is important for relating actions to outcomes that
are both positive (reward) and negative (error-related), this
model might predict that activity would be greater on ambiguous
than clear trials, regardless of whether the response made was
correct or an error. This is also inconsistent with the present
data, and thus we can rule out these models as well.

Relatedly, other models (Behrens et al. 2007; O’Reilly et al.
2013) demonstrated a role for the ACC in updating action values
or internal models from which future action is generated, which
is not incompatible with our findings, provided that the updating
process occurs late in the trial. However, they go on to assert that
the ACCmay be loosely related to other models suggesting a role
in exploration and foraging (Kolling et al. 2012) or learning rates
(Behrens et al. 2007), which implies a role in early stages of a
trial when new information or evidence is accumulated. This ex-
planation, then, is not compatiblewith our findings, as wewould
predict that the cingulo-opercular regions are important for re-
porting, but not online monitoring or learning preceding, out-
comes. We believe that this other work relates more to an
adaptive type of control rather than reporting outcomes, as we
propose is performed by the cingulo-opercular regions.

An alternative to thesemodelswould be that the cingulo-oper-
cular regions are attuned tomultiple types of performance signals,
including errors and ambiguity/conflict, and that these regions are
reporting on these signals at the end of the trial, in order to im-
prove future task performance. In this way, they offer something
in the way of performance reporting across many types of per-
formance signals and many types of tasks domains.

Cost and Benefit of the Current Design

Interestingly, this experimental design allowed us to generalize
previous work demonstrating that the cingulo-opercular regions
show greater activity for ambiguous than clear trials in a variety
of domains, including ambiguity of emotional valence, seman-
tics, and phonology. However, there is one limitation in this gen-
eralization: ambiguity in the present experiment is resolved once
the black mask is completely degraded and the object is fully re-
vealed to the participant. However, in previous work using emo-
tional valence (Neta et al. 2013) and semantics and phonology
(Neta et al. 2014), the ambiguity of the stimulus is derived from
adual representation. For example, unlike happy and angry facial
expressions,which are consistently associatedwith clear positiv-
ity and negativity, respectively, surprised facial expressions are
associated with both positive (e.g., a surprise birthday party)
and negative (e.g., witnessing a car accident) outcomes. As
such, when these expressions are presented in the absence
of clarifying contextual information, they are interpreted as posi-
tive by some people and as negative by others, where both
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possible responses are considered to be correct (see Kim et al.
2003; Neta et al. 2009; Neta and Whalen 2010; Neta et al. 2013).
Similarly, when asked to classify the word “SAFE” as either ab-
stract or concrete, one might think of a safe for storing valuables,
and another might think of the absence of danger. In both of
these types of ambiguity, there are multiple representations for
a single stimulus, and the ambiguity is only subjectively resolved
once a participantmakes a decision about the stimulus (i.e., there
is no “correct” answer). In other words, the ambiguity is not re-
solved through the presentation of additional information over
the course of the trial, as is the case in the present slow reveal de-
sign. In order to deal with this, we encouraged participants to re-
spond to each stimulus as early as possible, once they have a
relatively confident guess as to the identity of the object that
was being revealed. Further, if participants did not make a re-
sponse until the image is fully revealed (i.e., when the ambiguity
is resolved), then the trial is coded as an omission and removed
from subsequent analyses. Given all of this, we believe that this
extended trial design is the best current way to examine the re-
sponses to ambiguity- and accuracy-related effects over the
course of a trial, and to differentiate effects that takes place
early in the trial, as evidence is being accumulated, from those
that come online at or near the end of the trial, at the moment
of decision. Further, as is briefly mentioned in the Introduction,
this subtly different definition of ambiguity affords us the benefit
of examining the interaction effects of accuracy and ambiguity.
In other words, we previously showed that the cingulo-opercular
regions appear to monitor both accuracy and ambiguity effects
(Neta et al. 2014). But the present data take this one step further
to show that there are interactive effects of accuracy and ambigu-
ity: therewas greater activity for ambiguous than clear trials, and
this effect was more robust on error than correct trials.

Second, the error-related responses have some temporal am-
biguity in that, for TRs 5/6, there is a limited set of times that the
error can be realized. For example, assuming that error-related
activity may be, at least in part, associated in time with when
the participant becomes “aware” of the error, an erroneous deci-
sion made at TR 6 could only be realized immediately or at TR 7
(during the full reveal). Given the temporal blurring of the hemo-
dynamic response, these times are roughly equivalent, produ-
cing a reasonably systematic response regardless of when the
error-related activity truly begins. In contrast, a decision made
at TR 3 could produce error-related activity at any of TRs 4–7.
This length is well beyond the range of the hemodynamic blur-
ring, so activity occurring at different times within this window
will not neatly sum in amplitude. Hence, if the error-related ac-
tivity is more temporally ambiguous for ambiguous than clear
trials for decisions occurring at TRs 3/4 (where error-awareness
may take longer for ambiguous trials, since the participant may
need more information from the image to realize the error),
then one would expect a more broadened response profile for
ambiguous trials, which coincidentally, also reduces the peak ac-
tivity (as is shown in Supplementary Fig. 2). In other words, the
error-related activity occurs at different points in different trials
and averaging across the trials may dampen the peak response.
Future studies could probe these effects using a slightly modified
task where participants are asked to make a second response
if/when they realize they have made an error. Having said that,
this conflates error-related activity with error-awareness, which
are not always one and the same. Indeed, many error-related sig-
nals can happen in the absence of clear awareness on the part of
the subject (Nieuwenhuis et al. 2001).

Finally, it is important to mention that these findings are not
contradictory with other reports showing ACC responses to

reward (cost, benefits) and other performance-related signals. In-
deed, wewould predict that the cingulo-opercular regions would
report on a variety of such outcomes, but that they would report
on these outcomes at the end of the trial, andnot take part in run-
ning the cost and benefit analysis during the early stages of the
trial. In this way, we would predict that cingulo-opercular re-
sponses that come online during trials where cost/benefit ana-
lysis is done, the signal would be similar to that of ambiguity,
where the cingulo-opercular regions do not come online to help
resolve the ambiguity (while the participant is selecting between
competing alternatives), but rather these regions report on the
outcome of the trial after the response has been made. Given
that much, if not all, of this previous work did not use an experi-
mental design that allows for analyzing these temporal charac-
teristics, we see these effects as complementary.

Conclusions
The present work builds on previous findings using an extended
trial to examine the stages of recognition processes in situations
of ambiguity using fMRI. Other recent work has used intracranial
recordings to examine these processing stages for ambiguous as
compared with clear objects (Cho-Hisamoto et al. 2015). Here, we
have found that the same regions that appear to show multiple
types of task-control signals in the cingulo-opercular network
(seeDosenbach et al. 2006; Neta et al. 2014), withhold information
until the moment of recognition. Further, there is a relationship
between these signals and task performance, such that (1) trials
that elicit greater cingulo-opercular activity (e.g., errors) are fol-
lowed by improved behavioral performance on the subsequent
trial, and (2) individuals that show greater activity in these re-
gions also show better behavioral performance. This combin-
ation of results fits much more cleanly with a performance
reporting explanation than other components of task control
(e.g., online monitoring). We do not mean to imply here that
there is (or that there should be) a single process explanation
for the regions in the cingulo-opercular network (including the
dACC and the aI/fO), or for any other brain region (see also,
Neta et al. 2014). Instead, we suggest that these signals are im-
portant for computing and utilizing multiple types of perform-
ance reporting signals (including but “not limited to” error,
ambiguity, reaction time), in the service of improving future
task performance. Finally, these signals may include a number
of other variables not manipulated in the present work.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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