
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Papers in Natural Resources Natural Resources, School of

2005

Discrete State-Space Approximation of the
Continuous Kalinin-Milyukov-Nash Cascade of
Noninteger Storage Elements
Jozsef Szilagyi
University of Nebraska-Lincoln, jszilagyi1@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/natrespapers

Part of the Natural Resources and Conservation Commons, Natural Resources Management and
Policy Commons, and the Other Environmental Sciences Commons

This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Szilagyi, Jozsef, "Discrete State-Space Approximation of the Continuous Kalinin-Milyukov-Nash Cascade of Noninteger Storage
Elements" (2005). Papers in Natural Resources. 979.
https://digitalcommons.unl.edu/natrespapers/979

https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/natrespapers?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/natres?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/natrespapers?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/168?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/natrespapers/979?utm_source=digitalcommons.unl.edu%2Fnatrespapers%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages


See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/222432942

Discrete state-space approximation of the continuous Kalinin–Milyukov–

Nash cascade of noninteger storage elements

Article  in  Journal of Hydrology · August 2006

DOI: 10.1016/j.jhydrol.2005.12.015

CITATIONS

6
READS

134

1 author:

Some of the authors of this publication are also working on these related projects:

The Complementary Relationship in Land Surface Evapotranspiration View project

Joe Szilagyi

Budapest University of Technology and Economics

104 PUBLICATIONS   1,847 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Joe Szilagyi on 15 November 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/222432942_Discrete_state-space_approximation_of_the_continuous_Kalinin-Milyukov-Nash_cascade_of_noninteger_storage_elements?enrichId=rgreq-8e2ad71462e329d96ad8102f3eaeb889-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQzMjk0MjtBUzo2OTMxNTUzNDMxMTQyNTRAMTU0MjI3MjUyMDY5MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/222432942_Discrete_state-space_approximation_of_the_continuous_Kalinin-Milyukov-Nash_cascade_of_noninteger_storage_elements?enrichId=rgreq-8e2ad71462e329d96ad8102f3eaeb889-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQzMjk0MjtBUzo2OTMxNTUzNDMxMTQyNTRAMTU0MjI3MjUyMDY5MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/The-Complementary-Relationship-in-Land-Surface-Evapotranspiration?enrichId=rgreq-8e2ad71462e329d96ad8102f3eaeb889-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQzMjk0MjtBUzo2OTMxNTUzNDMxMTQyNTRAMTU0MjI3MjUyMDY5MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8e2ad71462e329d96ad8102f3eaeb889-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQzMjk0MjtBUzo2OTMxNTUzNDMxMTQyNTRAMTU0MjI3MjUyMDY5MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joe_Szilagyi?enrichId=rgreq-8e2ad71462e329d96ad8102f3eaeb889-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQzMjk0MjtBUzo2OTMxNTUzNDMxMTQyNTRAMTU0MjI3MjUyMDY5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joe_Szilagyi?enrichId=rgreq-8e2ad71462e329d96ad8102f3eaeb889-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQzMjk0MjtBUzo2OTMxNTUzNDMxMTQyNTRAMTU0MjI3MjUyMDY5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Budapest_University_of_Technology_and_Economics?enrichId=rgreq-8e2ad71462e329d96ad8102f3eaeb889-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQzMjk0MjtBUzo2OTMxNTUzNDMxMTQyNTRAMTU0MjI3MjUyMDY5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joe_Szilagyi?enrichId=rgreq-8e2ad71462e329d96ad8102f3eaeb889-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQzMjk0MjtBUzo2OTMxNTUzNDMxMTQyNTRAMTU0MjI3MjUyMDY5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joe_Szilagyi?enrichId=rgreq-8e2ad71462e329d96ad8102f3eaeb889-XXX&enrichSource=Y292ZXJQYWdlOzIyMjQzMjk0MjtBUzo2OTMxNTUzNDMxMTQyNTRAMTU0MjI3MjUyMDY5MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Discrete state-space approximation of the
continuous Kalinin–Milyukov–Nash cascade of
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Summary A generalization of the discrete linear cascade model (DLCM), which is a state-
space-formulated discretized version of the continuous Kalinin–Milyukov–Nash Cascade, is
described for noninteger number of uniform storage elements. The generalized model was
tested against numerically integrated values of the Saint-Venant equations and was found to
yield improved model accuracy in comparison with the traditional uniform cascade of integer
number of storage elements. The storage coefficient of the last reservoir can be specified inde-
pendently of that of the rest of the cascades, which makes the present model better suited for
flow routing over reaches where the target gauging station is found near sudden changes in
channel properties.
ª 2005 Elsevier B.V. All rights reserved.
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Introduction

Somewhat contrary to intuition, flow routing techniques,
which are based on simplifications of the Saint-Venant equa-
tions of open channel flow, are still in use worldwide in the
21st century. This happens even though personal computers
are widespread and their computational power is on par
with the supercomputers used just 20 years ago. There
are, however, several reasons why these approximate tech-
niques are still used in place of numerically integrating the
Saint-Venant equations for open channel flow problems, and

more specifically, for the purpose of operational streamflow
forecasting. Typically, these are: (a) lack of information on
the geometry of the channel and associated floodplains; (b)
lack of correct (looped) rating curves, or; (c) in extreme,
but probably not rare, cases, the lack of any discharge mea-
surements. On the other hand, most flow routing tech-
niques: (a) do not require information on the channel and
floodplain geometry; (b) require only simplified (i.e. nonlo-
oped) rating curves; (c) are linear in nature, which is fortu-
nate for the propagation of errors in the stage and
discharging values, and; (d) as long as the routing method
is linear, it can even be used without discharge (but includ-
ing stage) measurements as was demonstrated by Szilagyi
et al. (2005).
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Among the profusion of available flow routing techniques
(e.g. Camacho and Lees, 1999; Keefer and McQuivey, 1974;
Kontur, 1977; Kundzewicz and Dooge, 1985; O’Connor,
1976; Perumal, 1994; Szolgay, 1991, 2004), the discrete lin-
ear cascade model (DLCM) (Szollosi-Nagy, 1982, 1989; Szila-
gyi, 2003, 2004; Szilagyi et al., 2005) stands out for several
reasons: (a) it is equivalent to the discretized form of the
continuous, spatially discrete, kinematic wave equation
(Szollosi-Nagy, 1989); (b) it is specifically formulated to deal
with discrete data whether in a pulse- or sample-data system
framework; (c) it is discretely coincident, which means that
for identical inputs (as between the discrete and continuous
models), it gives identical outputs at discrete time incre-
ments; (d) it does not require numerical iterations (so
numerical stability is not an issue) because it is written in
a state-space form with the state- and input-transition
matrices given explicitly; (e) since it is in a state-space form,
linear filtering techniques, such as the Kalman filter (1960),
can directly be applied; and last but not the least, (f) with it,
the inverse problem of finding the input sequence to a given
output sequence (which often is needed to fill data gaps in a
streamflow series) is a simple algebraic manipulation.

DLCM has been in operational use for the Danube and its
tributaries, including 200-plus gauging stations, at the Na-
tional Hydrological Forecasting Service (NHFS) in Hungary
for almost two decades and had a central role in flood de-
fense works by providing authorities with information of
when and at what level the floods will peak. It had gone
through several revisions recently (e.g. Szilagyi, 2003,
2004) of which the present effort is the latest.

It has been long known from practice at NHFS that DLCM
performed worse for certain reaches in comparison with
modeling results obtainable when using a continuous cas-
cade of noninteger number of equal storage elements. In
this study, therefore, the objective is to bring the state-
space description into a form that can approximate the
continuous case of a fractional number of equal storage
elements. To demonstrate that the so-derived model is via-
ble, numerically integrated solutions of the Saint-Venant
equations will be used as benchmark values in testing model
simulations.

State-space approximation of a uniform
noninteger n-cascade of linear storage
elements

Kalinin and Milyukov’s (1957) flow routing method assumes
that a river section, with no lateral inflow, can be concep-
tualized as a series of characteristic reaches where the out-
flow (Q) is a linear function of water stored (S) within the
reach. Kalinin and Milyukov (1958) derived that the impulse
response, h (or instantaneous unit hydrograph, IUH), a con-
tinuous function of time, t, of n such equal characteristic
reaches can be expressed as

hðtÞ ¼ k
ðktÞn�1

CðnÞ e�kt ð1Þ

where k [T�1] is the constant coefficient of the linear out-
flow–storage relationship

QðtÞ ¼ kSðtÞ ð2Þ

and C is the complete gamma function defined as

CðnÞ ¼
Z 1

0

1n�1e�1 d1 ð3Þ

where 1 is a dummy variable.
Nash (1957), independently of Kalinin and Milyukov, de-

rived Eq. (1) for n equal, serially connected linear reser-
voirs, each characterized by Eq. (2), for watershed
response to effective precipitation.

Szollosi-Nagy (1976, 1981) formulated a state-space
description of the continuous Kalinin–Milyukov–Nash
(KMN)-cascade such as

_SðtÞ ¼ FSðtÞ þ GuðtÞ ð4Þ

where the dot denotes the temporal rate of change in the
variable, u [L3 T�1] is the instantaneous inflow rate of the
first characteristic reach or storage element, S denotes
the vector of stored water volumes of the n linear storage
elements, G is the so-called input vector

G ¼ ½1; 0; . . . ; 0�0 ð5Þ

where the prime designates the transpose, and F is the n · n
state or system matrix

F ¼

�k 0

k �k
k �k

. .
. . .

.

0 k �k

2
6666664

3
7777775

ð6Þ

The output equation yields the outflow rate (Q) from the
last storage element as

QðtÞ ¼ HSðtÞ ð7Þ

where H = [0, . . . ,k] .
The solution of Eq. (4) is given by (Szollosi-Nagy, 1982)

SðtÞ ¼ Uðt; t0ÞSðt0Þ þ
Z t

t0

Uðt; sÞGuðsÞds ð8Þ

where

Uðt; t0Þ ¼ eF �ðt�t0Þ ð9Þ

is the n · n state-transition matrix

Uðt;t0Þ¼

e�kðt�t0Þ 0 � � � 0

kðt� t0Þe�kðt�t0Þ e�kðt�t0Þ � � � ..
.

..

. . .
. . .

.
0

½kðt�t0Þ�n�1
ðn�1Þ! e�kðt�t0Þ � � � kðt� t0Þe�kðt�t0Þ e�kðt�t0Þ

2
666664

3
777775

ð10Þ

Note that the IUH of Eq. (1) for an integer value of n is
recaptured as k times the last element of the first column
of U, provided t0 = 0 is chosen.

Nash suggested (Dooge, 1973) that in practical applica-
tions n should be allowed to take noninteger values in Eq.
(1). The state-space description, however, can only con-
sider an integer number of storage elements. This way, with
the state-space approach, one can only approximate the
IUH (Eq. (1)) of the general continuous noninteger n-value
case.
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The IUH of a fractional storage element, i.e. when n < 1,
is also given by Eq. (1). In the state-space formulation, a
trivial choice for a constant storage coefficient when
x = n < 1 can be

kx ¼
k

x
ð11Þ

since the mean storage time is k�1, which is expected to be
smaller for a fractional storage element than for a full one
(i.e. when n = 1). With this constant coefficient approxima-
tion a fractional storage element will behave as a full one
with a magnified k value. This observation also means, that
the uniform fractional n-cascade of Eq. (1) can be repre-
sented in the state-space approach by replacing the last
storage element in the cascade with an element whose stor-
age coefficient is kx = k[n � int(n)]�1, where int designates
the integer part of n. As a simplifying convention, the frac-
tional element must always be the last one in the cascade,
ensuring that only the last row of the system matrices is dif-
ferent from the case of a uniform cascade. Note that the or-
der of the unequal storage elements is otherwise irrelevant,
since any ordering results in the same output due to linear-
ity (Dooge and O’Kane, 2003, pp. 60).

The new n* · n* [where n* = int(n + 1)] system matrix, F,
will remain unchanged in its int(n) · int(n) dimension, but
its last row/column will be changed

F ¼

�k 0

k �k
k �k

. .
. . .

.

0 k �k
x

2
6666664

3
7777775

ð12Þ

where x = n � int(n) . Determination of the new state-tran-
sition matrix, U, can be achieved, e.g., by successive con-
volution. Note that unlike in the system matrix case, each
element of the last row of U will be different. Performing
the matrix exponential in Eq. (9) for small values of n* with
the help of, e.g. the Maple software, one can deduce that
the last row will contain the IUH’s (divided by kx) of nonuni-
form cascades of decreasing (by unity) dimension, similarly
to the last row of U in Eq. (10) that contains the IUH’s (di-
vided by k) of integer uniform n-cascades. Note that
Un� ;n� ¼ e�kxt. It is sufficient to determine Un� ;1, as

Un� ;1 ¼
1

kx
hðtÞ ¼ 1

kx

Z t

0

k
ðksÞn

��2

ðn� � 2Þ! e
�kskxe

�kxðt�sÞ ds ð13Þ

which, after some algebraic manipulation, yields

Un� ;1¼
kðktÞn

��2e�kxt

ðn� �2Þ!ðkx�kÞ �
D
eðkx�kÞt

þ ½ðk�kxÞt�2�n
�
½ðn� �2ÞCðn� �2;ðk�kxÞtÞ�ðn� �2Þ!�

n oE
;

n�P 2; kx 6¼ k ð14Þ
Here, the incomplete gamma function (i.e. with two

arguments) is defined as

Cðn; xÞ ¼
Z 1

x

1n�1e�1 d1 ð15Þ

where again 1 is a dummy variable. Note that when n* = 2
and kx 5 k, one has a cascade of two unequal linear storage
elements.

With discrete data at regular Dt intervals, Eq. (8)
becomes

Sðtþ DtÞ ¼ Uðtþ Dt; tÞSðtÞ þ
Z tþDt

t

Uðtþ Dt; sÞGuðsÞds

ð16Þ

which, in the pulse-data system framework, i.e., when inflow
is assumed to be constant between subsequent discrete val-
ues (Chow et al., 1988), transforms into (Szollosi-Nagy, 1982)

Sðtþ DtÞ ¼ UðDtÞSðtÞ þ CðDtÞuðtÞ ð17Þ

where the input-transition vector, C(Dt), is defined as

CðDtÞ ¼
Z tþDt

t

Uðtþ Dt� sÞGds. ð18Þ

Each row of the input-transition vector for a uniform cas-
cade contains the complementary (i.e. to Eq. (15)) and scaled
(i.e. divided by the complete gamma function value) incom-
plete gamma function (further divided by k) with integer va-
lue of n for its first argument. Thus, its ith component, using
the Poisson distribution relationship (Abramowitz and Ste-
gun, 1972, pp. 262), can be written as (Szollosi-Nagy, 1982)

CiðDtÞ ¼
1

k
1� e�kDt

Xi�1
j¼0

ðkDtÞj

j!

" #
ð19Þ

In the discrete-time case the input-transition vector,
C(Dt), of a uniform cascade is made up of the continuous
unit-step-response functions, g(t), of cascades of increasing
order,with the t = Dt substitution (Szollosi-Nagy, 1982). Note
that for the state-transition matrix (Eqs. (10) (14)), the only
difference between its continuous- and discrete-time forms
is that in the latter case Dt replaces t, provided t0 = 0 is cho-
sen. Note also that an input-transition vector cannot be de-
fined (see Eq. (16)) unless the continuous input is pulsed or
otherwise algebraic (e.g. linear). Eqs. (10) (with the t � t0 =
Dt substitution), (17), and (19) comprise the original discrete
linear cascade model (Szollosi-Nagy, 1982) for pulsed inputs.

In the nonuniform cascade case, the first int(n) elements
of the input-transition vector will again be the same as in
the uniform cascade case. The last component of C(Dt)
can be obtained, as before, through successive convolution

Cn� ðDtÞ ¼
1

kx
gðDtÞ

¼ 1

kx

Z tþDt

t

1� e�ks
Xn��2
j¼0

ðksÞj

j!

" #
kxe

�kxðt�sÞ ds ð20Þ

which, after certain degree of algebraic manipulation,
becomes

Cn� ðDtÞ¼
1�e�kxDt

kx
�e�kxDt

�
Xn��2
j¼0

ðkDtÞj

ðkx�kÞj! eðkx�kÞDtþ jCðj;ðk�kxÞDtÞ� j!

½ðk�kxÞDt�j

" #( )* +

n�P 2; kx 6¼ k ð21Þ

Eqs. (14) (with the t = Dt substitution), (17), and (21)
form the state-space approximation of a uniform fractional
n-cascade written in a pulse-data system framework.

When modeling continuous physical systems using dis-
crete data, a more realistic approach to the pulse-data
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system framework is to assume that the value of the contin-
uous-input variable changes linearly between consecutive
samples. This approach is called the sample-data system
framework (Chow et al., 1988; Hantush et al., 2002). Szila-
gyi (2003, 2004) formulated the DLCM in such a framework.
The state-transition matrix is the same in both the pulse-
and sample-data system frameworks, but not, however,
the input-transition vector.

The input-transition vector separates into two vectors,
one, C1(Dt), that operates on u(t + Dt) and another,
C2(Dt), that acts on u(t). Note that for specifying a linear
change, two observations are needed. In real-time opera-
tive forecasting, the input at time t + Dt is typically the
forecasted value (whether using another gauging stage fur-
ther upstream or a rainfall-runoff model output) of the flow-
rate at the upstream location. In simulation experiments, it
means that for obtaining a modeled value at the down-
stream location, one needs to specify the concurrent value
at the upstream gauging station. Again, the first int(n) ele-
ments of either input-transition vectors remain unchanged

C1iðDtÞ ¼ CiðDtÞ �
i

kDt
Ciþ1ðDtÞ i ¼ 1; . . . ; intðnÞ ð22Þ

and

C2iðDtÞ ¼
i

kDt
Ciþ1ðDtÞ i ¼ 1; . . . ; intðnÞ ð23Þ

respectively. As before, the last component of the input-
transition vectors can be obtained through successive
convolution. After some algebraic manipulations, the
successive convolution yields the following expressions for
the last component of the input-transition vectors:

C1n� ðDtÞ ¼
e�kxDt

Dt
a� b� n� � 1

k
Cn�þ1ðDtÞ

� �
ð24Þ

and

C2n� ðDtÞ ¼ Cn� ðDtÞ � C1n� ðDtÞ ð25Þ

where

a¼ 1þ ekxDtðkxDt� 1Þ
k2x

ð26Þ

b¼
Xn��1
j¼1

kj�1ðDtÞj

ðkx � kÞðj� 1Þ! eðkx�kÞDt þ jCðj; ðk� kxÞDtÞ � j!

½ðk� kxÞDt�j

" #( )* +

ð27Þ

respectively.
Finally, in the output equation’s (Eq. (7)) H vector kx will

replace k for the nonuniform n*-cascade. Eq. (14) (with the
t = Dt substitution), as well as Eqs. (22)–(27) with the corre-
sponding u(t + Dt) and u(t) values, specifies the state-space
approximation of a uniform fractional n-cascade written
now in a sample-data system framework.

It can be concluded that the closer the value of n to an
integer, the better the fit becomes between the uniform,
fractional n-cascade of Eq. (1) and its approximate, state-
space formulated nonuniform, integer n*-cascade. Natu-
rally, when n is an integer the two models are discretely
coincident. Similarly, the larger the integer part of n, the
smaller the difference becomes between the two model
outputs. As a consequence, the two models are expected
to yield almost identical forecasts when n is relatively large
and/or when its value is close to an integer.

The importance of considering a fractional uniform cas-
cade (and thus its nonuniform state-space approximation)
is highlighted by the observation that in many practical
applications, using flowrate values, the value of n tends to
remain small. This is so because for a given stream reach,
represented by uniform linear storage elements, the mean
storage delay time (also called residence or travel time),
T, is nk�1. As the value of n is increased (while keeping T con-
stant), the response of the river reach becomes less and less
diffusive. The observations of natural river channels of gen-
tle slope (i.e. less than 0.01%, characteristic of the Danube
in Hungary) show a typically high degree of dispersion (i.e.
the flood waves flatten out relatively fast), therefore leading
to small optimized n values. For small values of n, however,
it makes a relatively large difference whether nmay assume
only integer values or is allowed to have noninteger values as
well during the optimization process.

Finally, specifying the system matrices for a discrete
nonuniform cascade approximating a continuous uniform
cascade of noninteger number of storage elements is neces-
sitated by the fact that the discrete linear cascade model is
not transitive, as was initially claimed by Szollosi-Nagy
(1989). Transitivity would allow for taking the discrete out-
put of a uniform (n � 1)-cascade and subsequently routing
it through an additional storage element and obtain the same
result as when performing the task in one single step, thus
obliviating the need of working out the system matrices of
the nonuniform cascade case. This, however, is not so, sim-
ply, because the discrete model makes only assumptions on
how the discretely observed input signal behaves between
subsequent samples; consequently, this assumed behavior
of the input signal is not identical with that of the original
continuous signal. This way two different signals enter the
last storage element in the above example; thus the output
must also be different between the two cases (i.e. one-step
or two-step approach). Consequently, the output of the dis-
crete nonuniform n-cascade cannot be replicated by simply
employing a discrete uniform (n � 1)-cascade first and
routing its output additionally through another storage ele-
ment (of different storage coefficient).

Model testing and conclusions

Testing of the above described flow routing model’s perfor-
mance was achieved by numerically integrating the Saint-
Venant equations of open channel flow (e.g. Henderson,
1966) for obtaining ‘‘ground-truth’’ data over a rectangular
channel of 2000 km = 2 · 106 m in length, B = 300 m in width
and a constant channel slope S0 = 0.0002. The validation was
achieved in two stages.

First, a constant Manning’s roughness parameter value
n0 = 0.035 was used for the entire length of the channel.
The upper boundary condition was prescribed by the follow-
ing equations for the water depth, h(x,t)

hðx ¼ 0; tÞ ¼ h0 þ
1� cos 2p

tm
t

� �
1� cos 2p

tm
tc

� �
� exp

2p
tm
ðtc � tÞ cot tcp

tm

� �� �
0 6 t 6 tm

hðx ¼ 0; tÞ ¼ h0 t > tm ð28Þ
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with tm = 2d = 172,800 s, tc = 0.5d = 43,200 s, and with an
initial prescribed normal depth, h0 = 5 m. The lower bound-
ary condition was defined by the Manning-equation

vðx ¼ 2� 106; tÞ ¼
ffiffiffiffiffi
S0
p

n0
R2=3 ¼

ffiffiffiffiffi
S0
p

n0

hB

Bþ 2h

� �2=3

ð29Þ

which yields a value of 1.156 m s�1 for the initial normal
velocity, v0. Here, R is the hydraulic radius.

Flow routing calculations were performed at around the
middle of the 2000 km-long channel reach, i.e., between
900 km and 1000 km. Such a choice minimizes the somewhat
artificial nature of the upper and lower boundary condi-
tions, since: (a) a real hydrograph rarely follows the exact

shape described by Eq. (28); and (b) a functional relation-
ship between depth and velocity, given by Eq. (29), is rarely
the case for nonpermanent conditions. The flowrate values
given by the Saint-Venant equations at regular dt = 2 h inter-
vals for x = 900 km served as the ‘‘observed’’ instantaneous
upstream flow values for flow routing using a sample-data
system framework.

In the first experiment, the number of linear storage ele-
ments, n, was allowed to assume only integer values. Opti-
mization of n and k was achieved by trial-and-error, which
involves systematically trying out the values of the param-
eters with predefined ranges and increment values. Once
an optimum had been achieved in a mean root-squared
sense with a given ‘‘resolution’’, a stricter range with a
smaller increment value was used repeatedly for each
parameter until the change in the mean root-squared error
became negligible. Such an approach circumvents the appli-
cation of arbitrary parameter optimization routines and can
be considered as a ‘‘brute force’’ or direct optimization.
The state-space model requires only pure algebraic manip-
ulations, which lends itself suitable for such a direct optimi-
zation approach. The optimization results are displayed in
Table 1, while the corresponding hydrographs are displayed
in Fig. 1.

In the second experiment, n was allowed to assume non-
integer values during optimization (Table 1, Fig. 1). Note
that in this case the storage coefficient value, kx, of the last
storage element must always be larger than unity due to Eq.
(11). Finally, in the third experiment, the storage coeffi-
cient of the last linear storage element was allowed to take
any value (i.e. fully nonuniform cascade case) by having
it optimized independently of n and k of the rest of the

Table 1 Optimized values of the flow routing model and
associated mean root-squared errors (MRSE) taken over the
period of 46–162 h of Figs. 1 and 2: (a) uniform integer n -
cascade, (b) uniform noninteger n-cascade approximated by
a nonuniform n*-cascade and (c) fully nonuniform (in the last
storage element) cascade

(a) (b) (c)

n0 = 0.035
kopt; ðkoptx Þ (h�1) 0.515 0.58 0.58 (0.63)
nopt 7 7.91 7.91
MRSE (m3 s�1) 3.28 2.55 2.55

n0 = 0.035x < 1000 km, n0 = 0.045x P 1000 km
kopt; ðkoptx Þ (h

�1) 0.49 0.595 0.785 (0.35)
nopt 7 8.51 9
MRSE (m3 s�1) 2.16 1.5 1.45

Figure 1 Up- (intermittent) and downstream (solid) discharge hydrographs for the flow routing channel reach (i.e.
900 km 6 x 6 1000 km), provided by the Saint-Venant equations; model results of: (a) uniform integer n-cascade, (b) uniform
noninteger n-cascade approximated by a nonuniform n*-cascade and (c) fully nonuniform cascade. n0 = 0.035. Time origin is
arbitrary.
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cascade (Table 1, Fig. 1). The idea behind it being that in
the presence of any sudden change in channel properties
(i.e. slope, roughness, etc.) near the end of a reach, the last
storage element could respond faster or slower than that of

the rest of the cascade. Note that in the discrete state-
space representation of the uniform fractional n-cascade,
the last storage element is always faster when comparing
to the rest of the cascade.

Figure 2 Normal depth, h0, over the flow routing channel reach (900 6 x 6 1000 km) when the value of n0 jumps at x = 1000 km.

Figure 3 Up- (intermittent) and downstream (solid) discharge hydrographs for the flow routing channel reach (i.e.
900 km 6 x 6 1000 km), provided by the Saint-Venant equations; model results of: (a) uniform integer n-cascade, (b) uniform
noninteger n-cascade approximated by a nonuniform n*-cascade and (c) fully nonuniform cascade. n0 = 0.035 over the reach with an
abrupt change to n0 = 0.045 at the downstream cross-section.
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Table 1 shows what is intuitively expected for a reach
without any sudden changes in channel properties: by let-
ting n assume noninteger values, simulations improve, but
there is no additional improvement by letting the last stor-

age element have a storage property independent of the
rest of the cascade. This is so because the channel is homo-
geneous in every respect (roughness parameter, channel
slope); thus the storage delay time, k�1, is expected to be

Figure 4 Discharge hydrographs at x = 1000 km, provided by the Saint-Venant equations. Solid line corresponds to the constant n0
case.

Figure 5 Stage hydrographs at x = 1000 km, provided by the Saint-Venant equations. Solid line corresponds to the constant n0
case. Depth is relative to the initial normal depth (i.e. 500 and 579 cm, respectively). The dots are the results of the fully
nonuniform cascade simulations.
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identical for each linear storage element and proportionally
smaller for the last fractional element.

In the second stage of the numerical experiments, the
channel had two different roughness coefficient values:
n0 = 0.035 over the first 1000 km of the channel, and n0 =
0.045 for the rest of it (Fig. 2). As Table 1 and Fig. 3 show,
model results improve again by switching from an integer n
-cascade to a fractional n-cascade. When letting the last
storage element assume an arbitrary storage coefficient
(i.e. independent of the rest of the cascade), the routed val-
ues improve, although slightly. Note that the optimized va-
lue of kx(=0.35 h�1) of the last storage element is indeed
smaller than the storage coefficient value, k(=0.785 h�1),
for the uniform part of the cascade, meaning that now the
last storage element is slower than the rest, and so having
an increased storage delay time, i.e. k�1x � 2:86 h vs. k�1 =
1.27 h.

Table 1 suggests that the model accuracy is signifi-
cantly better in the presence of a sudden change in chan-
nel properties, but this is only true for discharges. The
discharge flood hydrograph is more diffuse (i.e. flatter,
see Fig. 4) for the inhomogeneous channel case, thus
causing a seemingly increased model accuracy. This, how-
ever, is not the case for stages. With the flow velocity
slowed down where the value of the roughness parameter
increases abruptly, any change in the flowrate value be-
comes magnified (Fig. 5) in the corresponding stage
values.

To prove this, the stage values pairing with the modeled
flowrate values were estimated through the application of
the Jones formula (1916)

Q ¼ Q 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

S0ck

oh

ot

s
ð30Þ

where Q0 is the flowrate at stage h for permanent flow, and
ck is the kinematic wave celerity (a function of h). Eq. (30) is
an implicit expression for h now, when discharge is speci-
fied. From Eq. (29), employing R � h, the Q0(h) relationship
can be specified (Fig. 6), where the effective value ðn�0Þ of
n0 had to be optimized for the abruptly changing case.
The ck(h) relationship results from Eq. (29), using the
R � h approximation, and combining it with the Kleitz–Sed-
don law, which for the wetted cross-sectional area, A(h), of
a rectangular channel can be written as

ckðhÞ ¼
oQ 0

oA
¼ 1

B

oQ 0

oh
¼ 5

3

ffiffiffiffiffi
S0
p

n�0
h2=3. ð31Þ

Fig. 5 displays the so-derived stage values of flow routing
using the fully nonuniform cascades, in comparison with the
Saint-Venant equation values. The MRSE values for the con-
stant and changing n0 cases are: 0.31 cm and 0.28 cm,
respectively (almost the same), thus proving our assertion
above.

In conclusion, the following can be stated: With discrete
data, the continuous Kalinin–Milyukov–Nash cascade of
equal reservoirs of noninteger order n can be approximated
by a cascade of int(n) equal reservoirs followed by an ele-
ment having a storage coefficient of kx = k[n � int(n)]�1, in
a state-space formulation. Near sudden changes in channel
properties, the storage coefficient of the last reservoir, kx,
can be specified independently of that of the rest of the
cascade.

Figure 6 Discharge–stage relationships (i.e. loop rating curves) at x = 1000 km from the Saint-Venant equations with the
corresponding estimated permanent rating curves (intermittent lines): (a) constant n0 case and (b) changing n0 case, with
n�0 ¼ 0:04475.
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