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significant changes were found in the levels of IAA-Asp 
in the SC35 genotype with and without aphid infestation 
after 7 and 14 dpi, indicating that IAA-Asp may not be 
a key hormone in providing sorghum tolerance to SCA 
(Fig. 4b). Levels of ABA, which is required for aphid colo-
nization on host plants (Studham and MacIntosh 2012; 
Hillwig et al. 2016; Chapman et al. 2018), were signifi-
cantly higher in the aphid uninfested and aphid-infested 
susceptible SC1345 genotype after 7 days (Fig. 4c). How-
ever, there were no significant changes in the ABA levels 
in the sorghum tolerant genotype with and without SCA 
infestation after 7 and 14 days (Fig. 4c).

Next, we measured the levels of CKs with and without 
SCA infestation. The most common CK in higher plants is 
zeatin, and the active form is tZR (Großkinsky et al. 2013). 
Levels of tZR were undetectable in all three sorghum gen-
otypes that were uninfested with aphids (Fig. 5a). How-
ever, SCA feeding for 7 days induced comparable levels of 
tZR in RTx430 and SC35 plants and the levels were signif-
icantly higher in SC35 plants compared to RTx430 plants 
after 14 days of infestation (Fig. 5a). Interestingly, tZR 
levels were not detectable in SCA-fed susceptible plants 
after 7 days. We also measured cis-zeatin riboside (cZR), 
which is generally considered as non-active compared to 
tZR (Großkinsky et al. 2013). There was no significant 
difference in the levels of cZR among the three genotypes 
after 7 days of SCA infestation (Fig. 5b). However, SCA 
feeding significantly increased cZR levels in both RTx430 
and SC35 plants after 14 dpi compared to SCA-uninfested 
plants (Fig. 5b).
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Fig. 4  Levels of a indole-3-acetic acid (IAA), b IAA-Aspartic acid 
(IAA-Asp), and c abscisic acid (ABA) in RTx430, SC35 and SC1345 
plants with and without sugarcane aphid (SCA) infestation for 7 and 
14  days. (n = 3–5). FW, fresh weight. Different letters indicate sig-
nificant differences among genotypes at that particular day (P < 0.05; 
Tukey’s test). Error bars represent mean ± SE
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Fig. 5  Levels of a trans-zeatin riboside (tZR) and b cis-zeatin ribo-
side (cZR) in RTx430, SC35 and SC1345 plants with and without 
sugarcane aphid (SCA) infestation for 7 and 14 days. (n = 3–5). FW, 
fresh weight; ND, not detected. Different letters indicate significant 
differences among genotypes at that particular day (P < 0.05; Tukey’s 
test). Error bars represent mean ± SE
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Discussion

Here, we demonstrate that phytohormones play a key role 
in providing tolerance to sap-sucking aphids. While it 
is known that plant hormones contribute to antixenotic- 
and antibiotic-mediated resistance to insect pests, to our 
knowledge, this is the first study that addresses the toler-
ance mechanisms and its relationship to phytohormones in 
providing plant tolerance to aphids. Based on our results, 
we propose that the sorghum SCA-tolerant genotype 
exploits the interplay of phytohormones that facilitate 
enhanced plant growth and development.

Phytohormonal biosynthesis occur in various plant 
compartments. For example, OPDA, a precursor in JA 
pathway is synthesized in chloroplast and further trans-
ported to peroxisome for JA biosynthesis (Wasternack 
and Strnad 2018). The apparent lack of elevated levels 
of JA accumulation due to constitutive higher OPDA 
levels in SC35 genotype (Fig. 3) suggest the possibility 
of OPDA having an additional role, independent of the 
JA pathway. In fact, OPDA was shown to regulate maize 
defense mechanisms against the corn leaf aphid that is 
not dependent on the JA pathway (Varsani et al. 2019; 
Grover et al. 2020). Chloroplast is the site for photosynthe-
sis in plants. It is highly plausible that constitutive OPDA 
levels in the SC35 genotype contribute towards improved 
photosynthesis during aphid infestation relative to other 
lines tested. Indeed, we did not find any significant differ-
ences in electron transport rate, photochemical quenching 
and maximum quantum efficiency of PSII despite heavy 
SCA infestations on SC35 genotype compared to the SCA-
infested RTx430 plants (Fig. 2). In Arabidopsis, cyclo-
philin CYP20-3, which is present in the chloroplast, was 
found to be a receptor of OPDA (Kopriva 2013). CYP20-3 
acts as an interface between plant growth and defense by 
binding with serine acetyltransferase1 (SAT1), thioredox-
ins (Trxs) and 2-Cys peroxiredoxin (2-CysPrxs), which are 
important for the activation of enzymes involved in Calvin 
cycle, redox homeostasis, and downstream signaling via 
glutathione (Barbosa dos Santos and Park 2019). Thus, it 
is possible that OPDA synthesized in the chloroplast acts 
synergistically with other factors, for example CYP20-3, 
to enhance photosynthesis in the SCA-tolerant sorghum 
genotype, which is an important determinant for optimal 
plant growth and development.

Our earlier work (Chapman et al. 2018) demonstrated 
that JA and ABA contribute to soybean tolerance to soy-
bean aphids. The role of former hormone in sorghum 
tolerance to aphids is not supported by the observation 
that sorghum SCA-tolerant genotype had similar levels of 
JA and JA-Ile compared to SCA-susceptible and RTx430 
plants (Fig. 3b, c). ABA is reported to promote aphid 

colonization on host plants (Studham and MacIntosh 2012; 
Hillwig et al. 2016; Chapman et al. 2018). Consistent with 
previous studies, we have also observed that susceptible 
sorghum plants had higher ABA accumulation compared 
to sorghum tolerant genotype (Fig. 4c). Although ABA 
is one of the major factors that promotes aphid coloniza-
tion on host plants (Studham and MacIntosh 2012; Hill-
wig et al. 2016; Chapman et al. 2018), our observation of 
no significant changes in ABA levels before or after SCA 
infestation in SCA-tolerant sorghum genotype (Fig. 4c) 
suggests that the patterns reported here reflect the plant’s 
ability to utilize basal ABA levels to promote sorghum 
tolerance to aphids. Importantly, basal levels of ABA are 
reported to be crucial for maintaining plant growth and 
development (Yoshida et al. 2019). More recently, it was 
shown that Arabidopsis basal ABA levels may enhance 
plant biomass under non-stressed conditions by interfering 
with a “stress-escape” response (Negin et al. 2019). Taken 
together, these data would strongly support our findings 
for a tight linkage between hormonal levels and regulation 
as a key part of the plant tolerance response.

Aphid feeding on host plants is reported to activate SA-
mediated resistance pathways (Louis and Shah 2013; Züst 
and Agrawal 2016). In fact, we have observed an increase 
in SA levels in both RTx430 and SC1345 plants after SCA 
infestation (Fig. 3d). Here, despite having a significant 
increase in aphid numbers on the sorghum tolerant SC35 
genotype, there were no obvious changes in SA levels before 
or after SCA infestation. Our results support the concept 
that elevated SA levels suppress plant growth and develop-
ment (van Butselaar and Van den Ackerveken 2020), and 
not activating the SA pathway after aphid infestation may 
be a mechanism generally utilized by aphid-tolerant plants 
to circumvent the negative effects of SA on plant growth and 
development. Similarly, auxin/IAA, which is also known to 
regulate plant growth and development (Gallei et al. 2020), 
have been negatively correlated with SA based defenses 
(Wang et al. 2007; Koo et al. 2020; Tan et al. 2020). We 
also found higher basal IAA levels in 14 day SCA-unin-
fested SC35 plants and lower SA levels in SCA-infested 
SC35 plants compared to RTx430 and SC1345 plants 7 dpi 
(Figs. 3d and 4a). Similarly, SA levels were significantly 
lower in SCA-infested SC35 plants compared to RTx430 
plants 14 dpi (Fig. 3d). Additional work is needed to deter-
mine how crosstalk between IAA and SA contribute to sor-
ghum tolerance to aphids.

CKs, another category of phytohormones, play an impor-
tant role in regulation of plant growth and stabilization of 
photosynthetic machinery during stress (Werner et al. 2001; 
Gururani et al. 2015; Prerostova et al. 2018). Furthermore, 
CKs are also known to delay leaf senescence and improve 
plant tolerance to heat stress (Xu and Huang 2009). Interest-
ingly, CKs have also been identified in several phytophagous 
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insects, including aphids (Andreas et al. 2020). Our data 
demonstrate that the SCA feeding for 7 days induced com-
parable levels of tZR in both RTx430 and SC35 plants, but 
was not detectable in the aphid susceptible SC1345 sor-
ghum plants. Furthermore, tZR accumulation was more 
pronounced in SC35 tolerant genotype compared with 
RTx430 plants after 14 days of SCA infestation (Fig. 5a). 
SCA feeding also significantly enhanced the accumulation of 
cZR, the less active form of zeatin (Großkinsky et al. 2013), 
in SC35 tolerant genotype and was comparable to RTx430 
plants after 14 dpi (Fig. 5b). One possible explanation is that 
upon aphid infestation plants activate CKs to promote plant 
growth and photosynthesis in the aphid-tolerant sorghum 
genotype. tZR is synthesized in roots and translocated to 
shoot via xylem vessels and is reported to play an important 
role in plant growth (Osugi et al. 2017). Foliar feeding by 
SCA may trigger the synthesis of tZR in roots and trans-
ported to the shoot through the vascular tissues to provide 
sorghum tolerance to aphids. In fact, we have previously 
shown that aboveground to belowground (and vice-versa) 
signaling interactions in the resistant maize genotype act 
as a critical component in modulating maize resistance to 
corn leaf aphids (Louis et al. 2015). Alternatively, CKs 
injected into the plants by aphids while feeding could alter 
source-sink mechanisms to enhance sustained feeding and 
facilitate aphid colonization on host plants. However, the 
latter hypothesis is undercut by the observation that suscep-
tible sorghum plants did not accumulate tZR in response 
to SCA infestation. It is highly plausible that aphids utilize 
ABA in susceptible plants (Studham and MacIntosh 2012; 
Hillwig et al. 2016; Chapman et al. 2018), whereas aphids 
exploit CKs in tolerant plants for their successful coloniza-
tion. Although the origin and source of CKs remains to be 
determined, the accumulation of CKs in the aphid-tolerant 
sorghum genotype is consistent with its prospective role in 
providing sorghum tolerance to aphids.

In summary, we provide evidence that the interplay of 
phytohormones contribute to plant tolerance to aphids. 
Plants utilize the interactions among diverse signaling path-
ways to facilitate improved plant growth and development. 
Our results provide important clues to how these unknown 
and underappreciated tolerance mechanisms influence the 
development of novel and durable pest management strat-
egies. Plant resistance to insects is frequently controlled 
by quantitatively inherited traits (Smith 2005; Zogli et al. 
2020). It is highly likely that plant tolerance is also governed 
by quantitative trait loci (QTL), because of its complex 
nature. This and other possible components/mechanisms of 
plant tolerance to aphids will be further dissected out in our 
future work.
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Supp. Fig. S1. Total number of sugarcane aphids recovered seven days after aphid infestation of two-week-
old sorghum RTx430, SC35, and SC1345 plants that were initially infested with 10 adult apterous aphids per 
plant. (n = 12). Negative binomial distribution was used to analyze aphid count data. Different letters indicate 
significant differences among genotypes (P < 0.05; Tukey’s test). Error bars represent mean ± SE.
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Supp. Fig. S2. Percent plant biomass loss for each sorghum NAM founder line after 14 days of sugarcane 
aphid (SCA) infestation of two-week-old sorghum plants that were initially infested with 10 adult apterous
aphids per plant. Uninfested plants of similar age were used as controls to calculate changes in plant biomass 
upon aphid infestation (n = 12). Different letters indicate significant differences among genotypes (P < 0.05; 
Tukey’s test). Error bars represent mean ± SE.
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Supp. Figure S3
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Supp. Fig. S3. (A) Loading plot of principal components 1 and 2 from the principal component analysis (PCA) 
of data collected from tolerance experiment on sorghum NAM founder lines after 14 days of SCA infestation. 
The loading data depicts the unrotated loading matrix between the variables and the components. Uninfested 
plants of similar age were used to calculate changes in plant growth upon aphid infestation. (B) Loading data of 
the PCA that indicates the effects of components on different variables. 

Prin1 Prin2 Prin3 Prin4 Prin5 Prin6

Aphid count -0.8508 0.16223 0.25757 0.09762 0.36602 0.19996

Leaf biomass loss 0.80333 0.16071 0.10652 -0.54692 0.10953 0.07979

Root biomass loss 0.70601 0.59212 -0.31384 0.20261 0.10679 0.00134

Leaf count loss 0.84208 -0.31603 0.05929 0.11512 0.35949 -0.21218

Height loss 0.85781 -0.33519 -0.13295 0.14691 -0.01973 0.33491

Damage rating 0.7742 0.18669 0.54153 0.20203 -0.17795 -0.00457

a

b



Genotype
Aphid numbers

(Mean ± SE) 

RTx430 399.58 ± 25.82 cd 

Ajabsido 552.33 ± 34.5 b

Macia 249.6 ± 63.83 fg

P898012 501.08 ± 31.7 bc

SC1103 673.75 ± 46 a

SC1345 -----

SC265 217.83 ± 21.99 ef

SC283 378.11 ± 26.75 de

SC35 724.75 ± 43.68 a

SC971 409.33 ± 39.91 ef

Segaolane 255.33 ± 53.36 g

Supplementary Table S1 

Total number of sugarcane aphids recovered 14 days after aphid infestation of two-week-old sorghum plants 
that were initially infested with 10 adult apterous aphids per plant. 

Supp. Table S1
Grover et al.

Negative binomial distribution was used to analyze aphid count data. Different letters indicate significant 
difference relative to each other (P < 0.05; Tukey’s test). Values in table represent mean ± SE (n = 12). 
The susceptible SC1345 plants were dead by 14 dpi as a result of SCA feeding; consequently, no live 
aphids were found on SCA-susceptible sorghum SC1345 plants. 
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Supplementary Table S2 

Plant growth parameters of sorghum genotypes with and without sugarcane aphid infestation for 14 days. 

Two-week-old sorghum nested association mapping (NAM) founder lines were initially infested with 10 adult apterous aphids per 
plant and various plant growth parameters monitored after 14 days post infestation. Uninfested plants were used as controls. Values in 
table represent mean ± SE (n = 12). 

Genotypes 

Height (cm) Leaf count (number) Leaf biomass (mg) Root Biomass (mg) 

Uninfested Infested Uninfested Infested Uninfested Infested Uninfested Infested 

RTx430 49.81 ± 1.60 32.94 ± 2.24 5.33 ± 0.14 4.00 ± 0.21 277.58 ± 15.10 100.92 ± 7.85 70.5 ± 4.59 27.33 ± 2.27 

Ajabsido 50.53 ± 1.23 37.12 ± 1.55 6.00 ± 0.00 3.75 ± 0.18 299.08 ± 9.87 111.75 ± 12.97 75.08 ± 4.24 27.67 ± 3.32 

Macia 44.21 ± 0.45 29.4 ± 1.90 5.00 ± 0.00 1.17 ± 0.42 203.17 ± 7.74 61.11 ± 3.70 81.42 ± 6.52 15.42 ± 1.79 

P898012 57.52 ± 0.68 35.98 ± 1.60 5.75 ± 0.13 3.58 ± 0.23 326.92 ± 12.72 112.33 ± 7.48 101.08 ± 6.94 28.92 ± 3.37 

SC1103 46.75 ± 0.94 34.14 ± 1.44 6.00 ± 0.00 4.00 ± 0.21 277.17 ± 15.99 139.17 ± 9.68 102.25 ± 7.04 39.42 ± 2.04 

SC1345 53.43 ± 1.23 31.52 ± 2.18 5.00 ± 0.12 ---- 327.08 ± 31.56 56 ± 2.76 73.33 ± 7.53 12.42 ± 1.70 

SC265 39.7 ± 1.07 22.93 ± 1.33 5.00 ± 0.00 3.75 ± 0.13 124.25 ± 8.72 52.33 ± 3.61 38.42 ± 2.41 12.75 ± 1.70 

SC283 43.41 ± 0.82 28.88 ± 1.72 5.00 ± 0.00 2.42 ± 0.43 197.75 ± 7.29 60.92 ± 7.19 61.75 ± 4.48 25.08 ± 3.30 

SC35 57.75 ± 1.08 49.18 ± 1.43 5.67 ± 0.14 4.83 ± 0.11 352.67 ± 11.63 238.25 ± 10.23 107.33 ± 3.94 58.83 ± 3.20 

SC971 48.38 ± 0.96 33.45 ± 2.29 5.00 ± 0.00 1.50 ± 0.48 257.58 ± 9.68 80.92 ± 8.74 74.42 ± 4.41 15.83 ± 2.27 

Segaolane 49.61 ± 0.90 17.47 ± 0.82 4.75 ± 0.13 0.67 ± 0.36 218.75 ± 11.10 41.67 ± 4.51 62.08 ± 3.84 7.08 ± 1.43 


