12-27-2016

Can Sub-Saharan Africa Feed Itself?

Martin K. van Ittersum
*Wageningen Agricultural University, *martin.vanittersum@wur.nl

Lenny G. J. van Bussel
Wageningen Agricultural University

Joost Wolf
Wageningen Agricultural University

Patricio Grassini
University of Nebraska-Lincoln, pgrassini2@unl.edu

Justin van Wart
University of Nebraska at Lincoln, justin.vanwart@huskers.unl.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/agronomyfacpub

Part of the [African Studies Commons](http://digitalcommons.unl.edu/agronomyfacpub), [Agricultural Science Commons](http://digitalcommons.unl.edu/agronomyfacpub), [Agriculture Commons](http://digitalcommons.unl.edu/agronomyfacpub), [Agronomy and Crop Sciences Commons](http://digitalcommons.unl.edu/agronomyfacpub), [Botany Commons](http://digitalcommons.unl.edu/agronomyfacpub), [Horticulture Commons](http://digitalcommons.unl.edu/agronomyfacpub), [Other Plant Sciences Commons](http://digitalcommons.unl.edu/agronomyfacpub), and the [Plant Biology Commons](http://digitalcommons.unl.edu/agronomyfacpub)

van Ittersum, Martin K.; van Bussel, Lenny G. J.; Wolf, Joost; Grassini, Patricio; van Wart, Justin; Gulpart, Nicolas; Claessens, Lieven; de Groot, Hugo; Wiebe, Keith; Mason-D’Croz, Daniel; Yang, Haishun; Boogard, Hendrik; van Oort, Pepijn A. J.; van Loon, Marloes P.; Saito, Kazuki; Adimo, Ochieng; Adjei-Nsiah, Samuel; Agali, Alhassane; Bala, Abdullahi; Chikowo, Regis; Kaizzi, Kayuki; Kouressy, Mamoutou; Makoi, Joachim H. J. R.; Ouattara, Korodjouma; Tesfaye, Kindie; and Cassman, Kenneth G., “Can Sub-Saharan Africa Feed Itself?” (2016). *Agronomy & Horticulture -- Faculty Publications*. 995.
http://digitalcommons.unl.edu/agronomyfacpub/995

This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Can sub-Saharan Africa feed itself?

1Plant Production Systems Group, Wageningen University, 6700 AK Wageningen, The Netherlands; 2Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68538-0195; 3International Crops Research Institute for the Semi-Arid Tropics, 00623 Nairobi, Kenya; 4Wageningen Environmental Research, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands; 5Environment and Production Technology Division, International Food Policy Research Institute, Washington, DC 20006-1002; 6Africa Rice Center, Sustainable Productivity Enhancement Program, 01 BP 2031, Cotonou, Benin; 7Centre for Crop Systems Analysis, Wageningen University, 6700 AK Wageningen, The Netherlands; 8Jomo Kenyatta University of Agriculture and Technology, 00200 Nairobi, Kenya; 9International Institute of Tropical Agriculture, Tamale, Ghana; 10AGRHYMET Regional Centre, BP 11011 Niamey, Niger; 11Department of Soil Science, Federal University of Technology Minna, P.M.B 65 Gidan-Kwano, Niger State, Nigeria; 12Crop Science Department, University of Zimbabwe, MP167 Mount Pleasant, Harare, Zimbabwe; 13National Agricultural Research Laboratories, Kampala Nabweru 7065, Uganda; 14Institut d’Économie Rurale, BP 258 Bamako, Mali; 15National Irrigation Commission, Ministry of Water and Irrigation, 14473 Dar es Salaam, The United Republic of Tanzania; 16Institut de l’Environnement et de Recherches Agricoles, 04 BP: 8645 Ouagadougou 04, Ouagadougou, Burkina Faso; and 17International Maize and Wheat Improvement Centre, Addis Ababa, Ethiopia

Edited by Robert John Scholes, University of the Witwatersrand, Wits, South Africa, and approved November 3, 2016 (received for review June 28, 2016)

Although global food demand is expected to increase 60% by 2050 compared with 2005/2007, the rise will be much greater in sub-Saharan Africa (SSA). Indeed, SSA is the region at greatest food security risk because by 2050 its population will increase 2.5-fold and demand for cereals approximately triple, whereas current levels of cereal consumption already depend on substantial imports. At issue is whether SSA can meet this vast increase in cereal demand without greater reliance on cereal imports or major expansion of agricultural area and associated biodiversity loss and greenhouse gas emissions. Recent studies indicate that the global increase in food demand by 2050 can be met through closing the gap between current farm yield and yield potential on existing cropland. Here, however, we estimate it will not be feasible to meet future SSA cereal demand on existing production area by yield gap closure alone. Our agronomically robust yield gap analysis for 10 countries in SSA using location-specific data and a spatial upsampling approach reveals that, in addition to yield gap closure, other more complex and uncertain components of intensification are also needed, i.e., increasing cropping intensity (the number of crops grown per 12 mo on the same field) and sustainable expansion of irrigated production area. If intensification is not successful and massive cropland land expansion is to be avoided, SSA will depend much more on imports of cereals than it does today.

P

Produce adequate food to meet global demand by 2050 is widely recognized as a major challenge (1, 2). Increased price volatility of major food crops (3, 4) and an abrupt surge in land area devoted to crop production since approximately 2002 (5) reflect the powerful forces underpinning this challenge. A number of studies argue it is possible to meet projected global food demand on existing agricultural land by narrowing gaps between actual farm yields and yield potential (3, 6–11). Yield potential assumes unconstrained crop growth and perfect management that avoids limitations from nutrient deficiencies and water stress, and reductions from weeds, pests, and diseases (12, 13). Yield potential is therefore location-specific and depends on solar radiation, temperature, and water supply during the crop growing season and can be calculated for both rainfed (water-limited yield potential) and irrigated conditions (12, 13). The difference between the yield potential and actual farm yield is called the yield gap.

Although meeting the increased global demand may be possible, a more pressing question is whether and how different regions of the world can meet their respective demands for staple food crops. More specifically, although sub-Saharan Africa’s current self-sufficiency ratio in staple cereals is just above 0.8 (Fig. 1A), it is among the (sub)continents with the lowest cereal self-sufficiency ratio while it has the greatest projected increase in population (14, 15). Self-sufficiency is defined here as the ratio between domestic production and total consumption (or demand); the latter is assumed to be equal to the domestic production plus net imports. While recognizing that food self-sufficiency is not an essential precondition for food security, self-sufficiency for low-income developing countries is of great concern because many lack adequate foreign exchange reserves to pay for food imports and infrastructure to store and distribute it efficiently. Substantial reliance on food imports is only possible if economic development is sufficient to afford them, and economic development of low-income countries to support such imports does not occur without strong agricultural development (16, 17). Apart from city states such as Singapore, there are no examples of low income countries that successfully industrialized in the second half of the 20th century while importing major shares of their food supply. Essentially, all success stories started with an economic revolution in the agricultural sector. Indeed, the African Development Bank explicitly highlights self-sufficiency in food production as a principal

Significance

The question whether sub-Saharan Africa (SSA) can be self-sufficient in cereals by 2050 is of global relevance. Currently, SSA is amongst the (sub)continents with the largest gap between cereal consumption and production, whereas its projected tripling demand between 2010 and 2050 is much greater than in other continents. We show that nearly complete closure of the gap between current farm yields and yield potential is needed to maintain the current level of cereal self-sufficiency (approximately 80%) by 2050. For all countries, such yield gap closure requires a large, abrupt acceleration in rate of yield increase. If this acceleration is not achieved, massive cropland expansion with attendant biodiversity loss and greenhouse gas emissions or vast import dependency are to be expected.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freedly available online through the PNAS open access option.

1To whom correspondence should be addressed. Email: martin.vanittersum@wur.nl.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1610359113/-/DCSupplemental.
goal of its Action Plan for an African agricultural transformation (18). Hence, a key question is whether Africa, and in particular sub-Saharan Africa (SSA), can be food self-sufficient by 2050—and whether this can be achieved on existing agricultural land through yield increase or will rely on continued crop area expansion as has occurred in the past four decades (19). Although growth in total factor productivity has become the most important source of growth in global agricultural production in the past two decades, in SSA this metric grew by less than 1% per year over that period, even while it faces the world's highest population growth rates (20). A recent global study (11), based on the use of gridded spatial analysis and coarse global datasets, suggests it will be challenging for Africa to feed itself, whereas other global and continental analyses (15, 21) project that cereal imports will increase in SSA in the coming decades.

In this paper, we focus on 10 countries in SSA and use local, agronomically relevant data and a spatial upscaling protocol to estimate food production capacity with greater (compared with global and continental studies mentioned above) spatial resolution. We assess whether Burkina Faso, Ghana, Mali, Niger, Nigeria, Ethiopia, Kenya, Tanzania, Uganda, and Zambia can achieve self-sufficiency in the five main cereals (maize, millet, rice, sorghum, and wheat) by 2050, and whether this can be realized on existing cropland area or, instead, will require cropland expansion and food imports. The focus on cereals recognizes their central food security role, accounting for approximately 50% of caloric intake and total crop area in SSA (22, 23). The 10 countries jointly account for 54% of the 2010 population and 58% of the 2010 arable land area in SSA. Details of our analytical approach and sources of data are described in SI Materials and Methods. Briefly, 2050 cereal demand is estimated from projected population increase (medium fertility variant of the United Nations (UN) population projections; ref. 14), and per capita consumption as influenced by the projected income growth resulting in additional cereal demand for use as livestock feed and other purposes, using the partial equilibrium model for the agricultural sector IMPACT (15, 22). All five cereals are expressed in maize equivalents by conversion of each grain’s specific caloric content. Then we estimate cereal production capacity on existing crop land through various degrees of yield gap closure, based on recently completed yield gap analyses for the 10 countries as published in the Global Yield Gap Atlas (www.yieldgap.org; Fig. 2 and refs. 24–26). Several 2050 supply-demand scenarios are evaluated based on degree of yield gap closure and other strategic options (e.g., expanded irrigation area, increased cropping intensity, and crop area expansion). Self-sufficiency is calculated as the ratio between cereal production and cereal demand, and we evaluate self-sufficiency ratios of each country and also for quasiregional zones that include five countries each for west and east Africa. The regional analysis indicates cereal self-sufficiency potential assuming open trade within these zones.

Results and Discussion

Current Cereal Self-Sufficiency and Trends. Today (2010), the self-sufficiency ratio for the five main cereals (maize, millet, rice, sorghum, and wheat) is 0.82 for sub-Saharan Africa as a whole (Fig. 1A), which is similar to the average value (0.83; Fig. 1B) for the 10 SSA countries evaluated in detail in this paper. Population in these countries is projected to increase two- to more than fourfold between 2010 and 2050 (Table 1). Trends show that all countries except Ethiopia and Zambia (23, 27) have cereal yields growing more slowly than population and demand (Fig. S1), whereas total cropland area has increased 14% in just the past 10 years (Table 1). Much of the increase in area took place in Ethiopia and Tanzania. National statistics in these two countries (28, 29) indicate that the additional crop land came from deforestation, conversion of marginal grazing land, and recultivation, using better technologies, of crop land that had previously been abandoned.

Future Cereal Self-Sufficiency. Estimated cereal demand by 2050 for the 10 countries is 335% of that in 2010 under the medium population projections and projected per capita demand from IMPACT (Table 1). Population growth alone accounts for approximately three-quarters of this increase and is thus much more important than per capita increase in demand due to dietary changes (Table 1 and Fig. S2). Demand increases vary substantially among countries in response to demographic trends and dietary shifts.

Actual rainfed maize yields (the dominant crop in SSA) during the period 2003–2012 range from 1.2 to 2.2 t/ha (Table 1 and ref. 24), which represents only 15–27% of the water-limited yield potential (Fig. 2). Rainfed maize has the greatest yield potential and largest yield gaps, whereas millet has the smallest potential and gaps (www.yieldgap.org). There is a similar spatial pattern for all rainfed crops with largest gaps in more favorable (higher rainfall) regions of the savannahs and cooler highlands of Ethiopia and the northern Zambia plain (Fig. 2).
Yield gaps (yield potential minus actual yields, t/ha harvested area) − 0.05). − 6 15.2 1.8* < − van Ittersum et al. www.yieldgap.org in the five C and Table 1). Source: *Significant trend (based on FAOSTAT; ref. 23).

Table 1. Cereal demand increase by 2050 and recent developments in cereal production and cropland area in SSA

<table>
<thead>
<tr>
<th>Country</th>
<th>Population 2050 (million and as % of 2010 population)</th>
<th>Cereal demand 2050 as % of that in 2010</th>
<th>Cereal area as % of total current cropland</th>
<th>Actual maize yields (2003–2012) used in GYGA, harvested ha⁻¹</th>
<th>Annual maize yield increase (1991–2014), kg·ha⁻¹·yr⁻¹</th>
<th>Cropland area 2010, Mha</th>
<th>Increase in cropland area (2004–2013), Mha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkina Faso</td>
<td>43 (275)</td>
<td>304</td>
<td>74</td>
<td>1.5</td>
<td>9</td>
<td>5.8</td>
<td>1.6*</td>
</tr>
<tr>
<td>Ghana</td>
<td>50 (206)</td>
<td>372</td>
<td>34</td>
<td>1.7</td>
<td>16*</td>
<td>4.6</td>
<td>0.7*</td>
</tr>
<tr>
<td>Mali</td>
<td>45 (325)</td>
<td>365</td>
<td>60</td>
<td>1.9</td>
<td>60*</td>
<td>6.4</td>
<td>1.4*</td>
</tr>
<tr>
<td>Niger</td>
<td>72 (454)</td>
<td>508</td>
<td>70</td>
<td>0.8†</td>
<td>6</td>
<td>15.2</td>
<td>1.8*</td>
</tr>
<tr>
<td>Nigeria</td>
<td>399 (250)</td>
<td>314</td>
<td>48</td>
<td>1.6</td>
<td>31*</td>
<td>33.0</td>
<td>–1.0</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>188 (216)</td>
<td>237</td>
<td>40</td>
<td>2.2</td>
<td>86*</td>
<td>14.6</td>
<td>2.8*</td>
</tr>
<tr>
<td>Kenya</td>
<td>96 (233)</td>
<td>346</td>
<td>45</td>
<td>1.9</td>
<td>4</td>
<td>5.5</td>
<td>0.5*</td>
</tr>
<tr>
<td>Tanzania</td>
<td>137 (305)</td>
<td>381</td>
<td>44</td>
<td>1.2</td>
<td>–9</td>
<td>11.9</td>
<td>4.0*</td>
</tr>
<tr>
<td>Uganda</td>
<td>102 (300)</td>
<td>396</td>
<td>25</td>
<td>1.6</td>
<td>51*</td>
<td>6.7</td>
<td>1.0*</td>
</tr>
<tr>
<td>Zambia</td>
<td>43 (325)</td>
<td>519</td>
<td>35</td>
<td>2.3</td>
<td>55*</td>
<td>3.5</td>
<td>0.8*</td>
</tr>
<tr>
<td>Total</td>
<td>1,175 (261)</td>
<td>335</td>
<td>49</td>
<td>1.9</td>
<td>30*</td>
<td>107.0</td>
<td>13.6*</td>
</tr>
</tbody>
</table>

Medium fertility population projection in 10 sub-Saharan African countries by 2050, cereal demand 2050 versus 2010 (based on IMPACT (22) and UN medium fertility population projection (14)), cereal area as a percentage of cropland (%), actual (2003–2012) and progress (1991–2014) in maize yields (the former estimated in GYGA, the latter based on FAOSTAT; ref. 23), cropland area (2010 based on FAOSTAT; ref. 23) and trend in cropland area (2004–2013 based on FAOSTAT; ref. 23).

*Significant trend (P < 0.05).
†Maize area in Niger was too small to include in GYGA; average yield is taken from FAOSTAT.
productivity of new and existing land to be the same, which is optimistic because the best quality farm land is likely already under cultivation and recent experience of crop land expansion in Ethiopia and Tanzania shows that a substantial portion of new crop land comes from marginal land (28, 29).

Other Important Factors. Our analysis does not account for several factors that might be important for future agricultural productivity. First, the assumption of maximum attainable yields at a level of 80% of water-limited yield potential in harsh rainfed regions with large year-to-year variation in rainfall is probably too optimistic. At the same time, our calculations are too pessimistic if genetic progress in yield potentials is achieved. Historically, genetic progress in yield potential has contributed to progress in farm yields (31) although the magnitude of this contribution is sometimes difficult to measure (35). Progress in elevating yield potential of the major cereals would imply, however, that even larger yield gaps need to be overcome than the already large gaps reported herein.

Second, although we included current climate variability in our analysis, we opted not to evaluate effects of long-term climate change because of large uncertainty in the degree of climate change impacts at local scales (in particular precipitation for east SSA) and because climate change impacts by 2050 are projected to be relatively small compared with the large yield gaps in SSA (36, 37). For example, recent analyses project that climate change to 2050 is likely to have a negative effect on major cereal crops in SSA, varying between a slightly positive impact (up to 10%) in high elevation regions of east SSA to negative impact up to approximately 20% elsewhere (36, 37). Although adaptation (in particular cultivar maturity and sowing date adjustment) may partly offset negative effects, climate change is likely to result in greater temporal variability of production (36, 38). Indeed, present climate variability in SSA, aggravated by climate change, will make the challenge even greater and may be a valid reason to target national or regional self-sufficiency ratios greater than 1.

Third, we assume no change in shares of areas of different crops within countries, either due to changes in diet or changes in cropping systems driven by profit motive. Trends of the past two decades, for example, indicate a substantial increase in maize area at the expense of sorghum and other staple food crops (23). If this trend continues, our estimates of cereal self-sufficiency would be somewhat pessimistic because maize is generally more productive than other cereal crops (31). At the same time, greater production of high value cash crops, such as cotton, cocoa, coffee, and oilseed crops may generate income for cereal imports but will also compete for land with cereals, resulting in a more pessimistic cereal self-sufficiency outlook.

Finally, apart from intensification through yield gap closure on existing farm land, cropping intensity may increase (i.e., more crop cycles per year on the same field) and the amount of irrigated crop area can increase where water resources allow it (Table S1). Based on best available data (SI Materials and Methods), we estimate the combined impact of these two factors across the three yield-growth scenarios. Results give a more optimistic outlook to achieve self-sufficiency on existing cereal production area, with potential for cereal exports under scenarios with accelerated yield growth to 80% of yield potential (Fig. S3). We emphasize, however, there are large uncertainties associated with the coarse data available for this additional analysis, and uncertainties associated with underpinning economic and environmental assumptions regarding intensifying cropping systems and irrigation expansion. Note, for instance, the large ranges in estimated potentials for increasing irrigated areas (39, 40).

Implications of This Assessment. Although recent positive trends in cereal yields in Ethiopia (18), and several other SSA countries (refs.
Materials and Methods

Investments by the public and private sectors, accompanied by irrigated area, we emphasize the importance of adequate R & D investments by the public and private sectors, accompanied by irrigated area, we emphasize the importance of adequate R & D in both public and private sectors (44–46). This investment is needed now, and even more so under future climate change (27–29).

We emphasize that our study addresses only the biophysical opportunities and limitations to increase production, whereas many socio-economic and institutional factors need to be attuned to allow for production increases. R & D investments in agriculture must be matched by supportive policies and public finance for improved transport and communication, market infrastructure, credit, insurance, and improved land entitlements (21, 45–47). Targeted measures to stabilize markets (which may imply some degree of import tariffs) for smallholder farming seem essential (3, 48). Because smallholder farming is so prominent in SSA relative to commercial scale farming, creating off-farm employment opportunities is probably equally important as targeting agricultural productivity and yield gap closure to allow for upsizing of farming (33). Finally, anticipating and avoiding negative environmental impacts of intensification will be important, and especially a period of excess use of nutrients and pesticides such as in Europe and China. Indeed, a direct transition from an agriculture that mines the soil to one based on high resource use efficiency and conservation of natural resources is necessary (49, 50), requiring anticipatory R & D focused on the dual goals of increasing yields and protecting environmental quality.

Conclusions

This study provides insight about the challenge in meeting the projected tripled cereal demand by 2050 due to expected population growth and modest changes in diets in 10 SSA countries, through scenarios of yield gap closure. Together these 10 countries represent 54% of total population and 58% of the arable land area in SSA, making it unlikely that the situation is more optimistic for the rest of the region. Results reveal that although yield gap closure on existing cropland and a large acceleration in yield growth rates are essential to achieve cereal self-sufficiency, they are most likely not sufficient. For instance, increasing maize yields from the approximately 20% of yield potential in 2010 to 50% by 2050 implies a doubling of annual yield increases compared with the past decades. Even then, cereal areas must increase by more than 80% to realize self-sufficiency in the 10 countries. Therefore, the path to self-sufficiency in SSA, in addition to yield gap closure, requires investments in existing cropping intensity and expansion of irrigated production area in regions that can support these options in a sustainable manner. Failure to achieve these intensification options will result in increasing dependence on cereal imports and vast expansion of rainfed cropland area, especially because population in SSA is projected to further increase between 2050 and 2100 by a factor 1.9 and anticipated climate change will make the situation even more challenging. In highlighting the need for intensification through accelerated yield growth, greater cropping intensity, and increased irrigated area, we emphasize the importance of adequate R & D investments by the public and private sectors, accompanied by facilitating government policies to meet this challenge and to ensure intensification without negative environmental consequences.

Materials and Methods

We first computed current (2010) national demand (assumed equal to the 2010 consumption) and the 2010 production of the five main cereal crops (i.e., maize, millet, rice, sorghum, and wheat) to estimate 2010 self-sufficiency ratios in the 10 countries included in this study. Most of these countries have a large number of rural poor farmers living in high density rural areas, combined with large and growing market potential, making them a priority for private and public sector investments in SSA. Current total cereal demands per country were calculated as the product of current population size (Table 1; from UN projections, see faostat3.fao.org/home/E) and anticipated climate change with no change in areas for each of the cereals. If the food self-sufficiency ratio by year 2050 was calculated in addition to yield gap closure, a self-sufficiency ratio of 0.5 would be needed to reach self-sufficiency. For example, a self-sufficiency ratio of 0.5 would require the cropland area to be doubled assuming that the new land brought into crop production has the same productivity as current land (which is an optimistic assumption). Maximum land areas suitable for high-input rainfed cereal production (Table 51) were taken from a recent study (34) that concluded that the potential for profitable smallholder-based cropland expansion in many African countries is likely to be smaller than previous estimations (52, 53). We assumed the share of cereal land in total cropland will remain the same as today (Table 51) and corrected potentially available cropland for cereals accordingly (shown in Fig. 3C by dashed lines).

Note, that although the IMPACT model simulates both the crop production by year 2050 on SSF2 projection, it was used in this analysis only for the per capita demand side. IMPACT includes the livestock and feed demand and incorporates interactions between agricultural and nonagricultural sectors, but not with nonagricultural sectors. We opted to assess future supply based on different degrees of yield gap closure as derived from GYGA. Yield gap analysis, i.e., assessing the difference between yield potential and actual farm yield in a given location, is now widely used in literature to assess opportunities for sustainable intensification (6, 9, 11, 26, 30, 54, 55). The advantage of using yield gap analysis is that ultimate opportunities and limitations of technological progress are revealed, whereas in economic models, technological progress is simulated with economic feedbacks and at much lower temporal and spatial resolution. Our analysis thus provides the biophysical limits to become self-sufficient in cereals. GYGA uses a global protocol that relies on location-specific data on climate, soils, and cropping systems combined with a robust spatial framework to aggregate results to a national scale, and well-calibrated crop growth models to estimate potential yields (24–26). The database includes a unique collection of measured weather data, a recently completed map for SSA on Root Zone Plant Available Water Holding Capacity (www.isric.org/content/isris-gyga-functional-soil-information-sub-saharan-africa-zawvhc-ssa) and location-specific information on cropping systems from country agronomists. Crop models were calibrated and evaluated using the best available experiments. Simulations therefore provide estimations of yield gaps with agronomic rigor and a finer level of spatial resolution than previous studies. Cereal production in SSA is largely rainfed; hence, we use the water-limited yield potential as a benchmark for estimating yield gaps except for irrigated areas (mainly rice growing areas) where yield potential is unconstrained by water limitation (26).

Our analysis covers the 2010–2050 time period, and we note that year 2050 is often used as the target in evaluations of future food supply-demand
ACKNOWLEDGMENTS. We thank J. Chamberlin for providing potentially
529(7584):84
Field Crops Res
| 14969
| no. 52
| Field Crops Res
A Green Evolution.
December 27, 2016
Productivity Growth in Agriculture: An

26. Van Ittersum MK, et al. (2013) Yield gap analysis with local to global relevance
5. Grassini P, Eskridge KM, Cassman KG (2013) Distinguishing between yield advances
15. Evans LT, Fischer RA (1999) Yield potential: its definition, measurement, and signifi-
12. Evans LT, Fischer RA (1999) Yield potential: its definition, measurement, and signifi-
5. Grassini P, Eskridge KM, Cassman KG (2013) Distinguishing between yield advances
15. Evans LT, Fischer RA (1999) Yield potential: its definition, measurement, and signifi-
12. Evans LT, Fischer RA (1999) Yield potential: its definition, measurement, and signifi-
5. Grassini P, Eskridge KM, Cassman KG (2013) Distinguishing between yield advances
15. Evans LT, Fischer RA (1999) Yield potential: its definition, measurement, and signifi-
12. Evans LT, Fischer RA (1999) Yield potential: its definition, measurement, and signifi-
5. Grassini P, Eskridge KM, Cassman KG (2013) Distinguishing between yield advances
15. Evans LT, Fischer RA (1999) Yield potential: its definition, measurement, and signifi-
12. Evans LT, Fischer RA (1999) Yield potential: its definition, measurement, and signifi-