Expression of cytokine genes and receptors in white blood cells associated with divergent body weight gain in beef steers

Amanda K. Lindholm-Perry
USDA-ARS, amanda.lindholm@ars.usda.gov

Virginia M. Cederberg
University of Nebraska-Lincoln, virginia.artegoitia@unl.edu

Jeremy R. Miles
USDA-ARS

Andrew P. Foote
USDA-ARS, andrew.foote@ars.usda.gov

Follow this and additional works at: http://digitalcommons.unl.edu/animalscifacpub
Part of the Genetics and Genomics Commons, and the Meat Science Commons

http://digitalcommons.unl.edu/animalscifacpub/983

This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Papers and Publications in Animal Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Expression of cytokine genes and receptors in white blood cells associated with divergent body weight gain in beef steers

Amanda K. Lindholm-Perry, Virginia M. Artegoitia, Jeremy R. Miles, Andrew P. Foote

ABSTRACT

Previous work examining the transcriptome of steer tissue samples from animals with divergent gain have shown a relationship with the expression of genes with functions in immune and inflammatory pathways. The process of mounting an immune or inflammatory response is energetically expensive and variation in cytokine responses may affect cattle production traits. In addition, a previous study has identified variation in the transcript abundance of numerous genes, including the cytokine gene IL6ST, in the circulating white blood cells of pigs associated with high and low residual feed intake (RFI) lines. The aim of this study was to determine whether changes in cytokine expression in the circulating white blood cells (WBC) could also be associated with body weight gain in beef steers. Crossbred steers (n = 12) with average feed intake (10.9 kg/d), but divergent body weight gain (Low = 1.92 kg/d; High = 2.25 kg/d), were selected for the study. The genes CCR3, IL9R, NFAMPT and TNF were associated with gain (P < 0.05); and CSF1, IL2RG, IL6ST, CCL3, and TNFSF13B displayed a trend towards association with gain (P < 0.1). The expression of cytokine genes in circulating WBCs may be useful indicators of production traits in cattle.

Keywords: Cattle feed efficiency leukocytes qRT-PCR

Article Info

Department of Animal Science, University of Nebraska, Lincoln, NE 68583-0908, USA

USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA

Amanda K. Lindholm-Perry, Virginia M. Artegoitia, Jeremy R. Miles, Andrew P. Foote

Abbreviations: ADG, average daily gain; BAFF, B cell activation factor; cDNA, complementary deoxyribonucleic acid; CCL3, C-C motif chemokine ligand 3; CCR3, C-C motif chemokine receptor 3; CSF1, colony stimulating factor 1; DMI, dry matter intake; GWAS, genome-wide association study; IL9R, interleukin 9 receptor; IL2RG, interleukin 2 receptor subunit gamma; IL6ST, interleukin 6 signal transducer; NAMPT, nicotinamide phosphoribosyltransferase; PCR, polymerase chain reaction; PF4, platelet factor 4; qRT-PCR, quantitative real-time polymerase chain reaction; QTL, quantitative trait loci; RFI, residual feed intake; RNA, ribonucleic acid; TNF, tumor necrosis factor alpha; TNFSF13B, tumor necrosis factor superfamily member 13b; WBC, white blood cells

** Mention of a trade name, proprietary product, or specified equipment does not constitute a guarantee or warranty by the USDA and does not imply approval to the exclusion of other products that may be suitable.

*** The USDA is an equal opportunity provider and employer.

E-mail address: amanda.lindholm@ars.usda.gov (A.K. Lindholm-Perry).

http://dx.doi.org/10.1016/j.aggene.2017.09.005

Received 9 May 2017; Received in revised form 5 September 2017; Accepted 25 September 2017

Available online 28 September 2017

2352-2151/ Published by Elsevier Inc.

This document is a U.S. government work and is not subject to copyright in the United States.
completion of the production evaluation period, the selected steers were slaughtered by captive bolt and exsanguination. Equal numbers of animals with greater and lesser gain were harvested each day. Blood was collected at exsanguination and placed into Tempus™ Blood RNA Tubes (ThermoFisher Scientific, Waltham, MA, USA) and stored at −20 °C. White blood cell RNA was isolated with the Tempus Spin RNA Isolation Kit (ThermoFisher Scientific) according to the manufacturer’s protocol. Quality was assessed using a Bioanalyzer 2200 Tape Station (Agilent, Santa Clara, CA, USA) and samples with RNA integrity values > 8 were used for qRT-PCR. One animal with higher gain did not meet this criteria and was not processed further for gene expression (Low gain group, n = 6; High gain group, n = 5). A Bovine Inflammatory Cytokine and Receptor PCR Array (Catalog #PABT-011Z; Qiagen, Germantown, MD, USA) was used to assay for the expression of 84 genes. Complementary DNA was prepared from 500 ng of total RNA using the RT2 First Strand Kit (Qiagen). The cDNA was diluted with water and added to the RT2 SYBR Green Mastermix for a final reaction volume of 25 μL. Thermal cycling parameters on a CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) were: 95 °C for 10 min followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. Data were entered into the QIAGEN RT2 profiler data analysis software (http://pcrdatanalysis.sabiosciences.com/prc/arrayanalysis.php).

Each cDNA sample was used on one RT2 profiler array plate for a total of six biological replicates for the group of animals with lesser gain and five biological replicates for the group of animals with greater gain. The recommended automatic selection from housekeeping gene panel procedure in the data analysis software program was used. The gene ACTB was selected for normalization because it was the most stable standard, error of the mean.

Table 1

<table>
<thead>
<tr>
<th>Trait</th>
<th>Low ADG</th>
<th>High ADG</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMI, kg/d</td>
<td>10.8</td>
<td>11.0</td>
<td>0.15</td>
<td>0.43</td>
</tr>
<tr>
<td>ADG, kg/d</td>
<td>1.92</td>
<td>2.25</td>
<td>0.035</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Gain/Feed, kg/kg</td>
<td>0.18</td>
<td>0.21</td>
<td>0.004</td>
<td>0.0014</td>
</tr>
</tbody>
</table>

a DMI, dry matter intake; ADG, average daily gain.

b Low ADG group represented by 6 animals; high ADG group included 5 animals.

c SEM, standard error of the mean.

d Difference in production traits between the low and high gain groups were tested using a mixed model in SAS (SAS Inst. Inc., Cary, NC).

The expression of CCR3 (C-C Motif Chemokine Receptor 3), IL6R, interleukin 9 receptor (IL9R), platelet factor 4 (PF4), nicotinamide phosphoribosyltransferase (NAMPT), and tumor necrosis factor alpha (TNFα) was transcribed with lower abundance in the duodenum of animals with similar feed intakes, but greater gain.

The IL2RG gene was a cytokine receptor subunit for several interleukin receptors. A single nucleotide polymorphism near the IL2RG gene was identified in a previous GWAS study for cattle production traits (Bolormaa et al., 2014). In addition, Weber et al. (2016) showed that IL2RG was transcribed with lower abundance in the duodenum of Angus steers with low RFI. While the expression data by Weber et al. (2016) seems to contradict the data from our study, differences in cytokine gene expression between WBC and duodenum tissue may exist as local regions of inflammation in tissue may not be reflected in the WBC.

Some of these cytokine genes or their receptors have been identified in previous studies from our lab in other tissue types. The gene TNFSF13B was transcribed in higher abundance in the spleen from animals with greater gain (P = 0.05; Lindholm-Perry et al., 2016a). The NAMPT gene displayed a trend towards associated between higher expression in the rumen of animals with high gain, and low intake phenotypes (P = 0.08; Kern et al., 2016). This gene was also differentially expressed in the muscle tissue in 2 of 5 cohorts of animals with greater gain (P = 0.003 and 0.07; Lindholm-Perry, unpublished data). The IL6ST gene was identified as a candidate gene for carcass traits in a dairy cattle genome-wide association study, as it lies in close proximity to a QTL identified for carcass muscle thickness (Doran et al., 2014).

The IL6ST gene is a signal transducer that can initiate the signaling of several cytokine receptor pathways. Overexpression of IL6ST was observed in the whole blood of pigs with low RFI (Jégou et al., 2016). This would seem consistent with our data showing higher expression of IL6ST in animals with similar feed intakes, but greater gain.

The IL2RG gene is a cytokine receptor subunit for several interleukin receptors. A single nucleotide polymorphism near the IL2RG gene was identified in a previous GWAS study for cattle production traits (Bolormaa et al., 2014). In addition, Weber et al. (2016) showed that IL2RG was transcribed with lower abundance in the duodenum of Angus steers with low RFI. While the expression data by Weber et al. (2016) seems to contradict the data from our study, differences in cytokine gene expression between WBC and duodenum tissue may exist as local regions of inflammation in tissue may not be reflected in the WBC.

The expression of five additional genes were identified with trends associated with gain (P < 0.1; Table 2). These genes were colony stimulating factor 1 (CSF1), interleukin 2 receptor subunit gamma (IL2RG), interleukin 6 signal transducer (IL6ST), C-C motif chemokine ligand 3 (CCL3), and tumor necrosis factor superfamily member 13b (TNFSF13B). Of these five, only CSF1 was lower in transcript abundance in the animals with greater gain (Thermofisher Scientific) according to the manufacturer’s protocol. Quality was assessed using a Bioanalyzer 2200 Tape Station (Agilent, Santa Clara, CA, USA) and samples with RNA integrity values > 8 were used for qRT-PCR. One animal with higher gain did not meet this criteria and was not processed further for gene expression (Low gain group, n = 6; High gain group, n = 5). A Bovine Inflammatory Cytokine and Receptor PCR Array (Catalog #PABT-011Z; Qiagen, Germantown, MD, USA) was used to assay for the expression of 84 genes. Complementary DNA was prepared from 500 ng of total RNA using the RT2 First Strand Kit (Qiagen). The cDNA was diluted with water and added to the RT2 SYBR Green Mastermix for a final reaction volume of 25 μL. Thermal cycling parameters on a CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) were: 95 °C for 10 min followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. Data were entered into the QIAGEN RT2 profiler data analysis software (http://pcrdatanalysis.sabiosciences.com/prc/arrayanalysis.php).

The SF3A5 method (Livak and Schmittgen, 2001) was used when analyzing the 84 genes for differential expression.

The expression of five genes were associated (P < 0.05) with gain in the steers evaluated (Table 2). These genes included the C-C motif chemokine receptor 3 (CCR3), interleukin 9 receptor (IL9R), platelet factor 4 (PF4), nicotinamide phosphoribosyltransferase (NAMPT), and tumor necrosis factor alpha (TNFα). All, but IL9R, were higher in transcript abundance in the animals with greater gain. The expression of five additional genes were identified with trends associated with gain (P < 0.1; Table 2). These genes were colony stimulating factor 1 (CSF1), interleukin 2 receptor subunit gamma (IL2RG), interleukin 6 signal transducer (IL6ST), C-C motif chemokine ligand 3 (CCL3), and tumor necrosis factor superfamily member 13b (TNFSF13B). Of these five, only CSF1 was lower in transcript abundance in the animals with greater gain.

Several of these genes (TNF, TNFSF13B, IL2RG, and IL6ST) have been previously associated with feed efficiency, livestock production traits, or adiposity (Do et al., 2006; Doran et al., 2014; Jégou et al., 2016). The adipokine gene, TNFSF13B (also known as B cell activation factor or BAFF) was more highly expressed during TNF treatment and adipocyte differentiation (Do et al., 2006). Increases in expression of TNFSF13B and its receptor were also identified in the adipocytes of obese mice suggesting that TNFSF13B may be involved in the inflammatory responses to obesity (Kim et al., 2009). The TNFSF13B gene was also identified as a candidate gene for carcass traits in a dairy cattle genome-wide association study, as it lies in close proximity to a QTL identified for carcass muscle thickness (Doran et al., 2014).

The IL6ST gene is a signal transducer that can initiate the signaling of several cytokine receptor pathways. Overexpression of IL6ST was observed in the whole blood of pigs with low RFI (Jégou et al., 2016). This would seem consistent with our data showing higher expression of IL6ST in animals with similar feed intakes, but greater gain.

The IL2RG gene is a cytokine receptor subunit for several interleukin receptors. A single nucleotide polymorphism near the IL2RG gene was identified in a previous GWAS study for cattle production traits (Bolormaa et al., 2014). In addition, Weber et al. (2016) showed that IL2RG was transcribed with lower abundance in the duodenum of Angus steers with low RFI. While the expression data by Weber et al. (2016) seems to contradict the data from our study, differences in cytokine gene expression between WBC and duodenum tissue may exist as local regions of inflammation in tissue may not be reflected in the WBC.

Some of these cytokine genes or their receptors have been identified in previous studies from our lab in other tissue types. The gene TNFSF13B was transcribed in higher abundance in the spleen from animals with higher gain (P = 0.05; Lindholm-Perry et al., 2016a). The NAMPT gene displayed a trend towards associated between higher expression in the rumen of animals with high gain, and low intake phenotypes (P = 0.08; Kern et al., 2016). This gene was also differentially expressed in the muscle tissue in 2 of 5 cohorts of animals with greater gain (P = 0.003 and 0.07; Lindholm-Perry, unpublished data). The IL6ST gene was also identified as a DEG in the same study in 2 of the 5 cohorts (P = 0.01 and 0.07; Lindholm-Perry, unpublished data). These data suggest that the expression of cytokine genes in various tissues may be involved with cattle gain phenotypes.

In this study, differences in cytokine gene expression may play a role in feed efficiency in cattle. The majority of the immune/inflammatory genes evaluated were up-regulated in animals with greater gain suggesting that these pathways are being activated (Zhou et al., 2015). In a recent study, pigs with low RFI showed a more robust antibody production response to viral challenge while achieving greater average daily gain (Dunkelberger et al., 2015). There may be a relationship between the expression profiles of some cytokine genes and receptors in WBC that are beneficial to production traits like BW gain in cattle. A larger population of animals needs to be further evaluated to
validate our results; however, this preliminary study suggests the differences among cytokine genes may be indicative of an animal's growth and feed efficiency status and warrants further evaluation.

Conflict of interest

The authors have no conflict of interest.

Acknowledgements

The authors gratefully acknowledge the assistance of the cattle operations and abattoir employees at USMARC, and the assistance of Donna Griess with manuscript preparation and editing.

References

