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Do stronger measures of genomic connectedness enhance prediction accuracies 
across management units?1

Haipeng Yu, Matthew L. Spangler, Ronald M. Lewis, and Gota Morota2

Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583

ABSTRACT: Genetic connectedness assesses the 
extent to which estimated breeding values can 
be fairly compared across management units. 
Ranking of individuals across units based on best 
linear unbiased prediction (BLUP) is reliable when 
there is a sufficient level of connectedness due to 
a better disentangling of genetic signal from noise. 
Connectedness arises from genetic relationships 
among individuals. Although a recent study showed 
that genomic relatedness strengthens the estimates 
of connectedness across management units com-
pared with that of pedigree, the relationship between 
connectedness measures and prediction accuracies 
only has been explored to a limited extent. In this 
study, we examined whether increased measures 
of connectedness led to higher prediction accura-
cies evaluated by a cross-validation (CV) based on 

computer simulations. We applied prediction error 
variance of the difference, coefficient of determin-
ation (CD), and BLUP-type prediction models to 
data simulated under various scenarios. We found 
that a greater extent of connectedness enhanced 
accuracy of whole-genome prediction. The impact 
of genomics was more marked when large num-
bers of markers were used to infer connectedness 
and evaluate prediction accuracy. Connectedness 
across units increased with the proportion of con-
necting individuals and this increase was associated 
with improved accuracy of prediction. The use of 
genomic information resulted in increased esti-
mates of connectedness and improved prediction 
accuracies compared with those of pedigree-based 
models when there were enough markers to capture 
variation due to QTL signals.
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INTRODUCTION

Genetic connectedness quantifies the extent of 
risk associated with the comparisons of estimated 
breeding values (EBV) across management units 

(Foulley et  al., 1990). Best linear unbiased pre-
diction (BLUP) of EBV can be fairly compared 
across units in the presence of a sufficient level of 
connectedness. On the other hand, an insufficient 
level of connectedness increases the risk of uncer-
tainty in EBV comparisons when selecting indi-
viduals across units due to imperfect uncoupling 
of genetic signal from noise. A number of studies 
have shown that increasing pedigree-based con-
nectedness through exchange of common refer-
ence sires can result in more accurate comparisons 
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of genetic values of individuals from different man-
agement units (Foulley et al., 1983; Hanocq et al., 
1996; Kuehn et al., 2008). The magnitude of esti-
mates of connectedness is a function of genetic 
relatedness or relationships among individuals. 
Despite the critical importance of connectedness 
towards enabling genetic evaluations, the impact of 
genomic information on the degree of connected-
ness relative to pedigree only has been explored to 
a limited extent.

Use of genomics can affect genetic evaluations 
in 2 related but different contexts. One is related to 
determining whether EBV can be safely compared 
across management units and the other is related to 
enhancing the reliability of EBV. In the former con-
text, Yu et al. (2017) employed 3 measures of con-
nectedness to examine the extent to which genomic 
information increases the estimates of connect-
edness. They found that the use of genomic relat-
edness improved genetic connectedness measures 
across management units compared with the use of 
pedigree relationships.

However, it remains an open question as to 
whether increased connectedness observed by gen-
omic relatedness also leads to increased prediction 
accuracy of genetic values across management 
units. Although improving the quality of breeding 
value comparisons and improving the accuracy of 
genomic prediction have been discussed in different 
contexts historically, it is worth investigating how 

these 2 items are related to each other. The objec-
tives of this study were to examine how choice of 
relationship matrices and connectedness statistics 
affect the estimates of connectedness under various 
simulated scenarios and to assess the relationship 
between connectedness level and genome-enabled 
prediction accuracy. In addition, a guideline with 
respect to a sufficient level of connectedness is 
discussed.

MATERIALS AND METHODS

Data Simulation

Ten replicates of genotypes and pheno-
types were simulated using the QMSim software 
(Sargolzaei and Schenkel, 2009) with details sum-
marized in Figure  1. One single historical popu-
lation with 1,100 generations was simulated with 
the forward-in-time approach to create the initial 
linkage disequilibrium (LD) and mutation-drift 
equilibrium. The mating system was based on the 
random union of gametes sampled from sires and 
dams and the only evolutionary forces simulated 
were mutation and drift. The first 1,000 historical 
generations had a constant size of 1,000 per gen-
eration and then linearly decreased from 1,000 to 
320 in the last hundred historical generations to 
account for population bottlenecks. The numbers 
of individuals from each sex were equal across 

Figure 1. Genomic data simulation parameters. SNPs, QTLs, and h2
 represent total single nucleotide polymorphisms, quantitative trait loci, and 

trait heritability, respectively. Simulations were carried out across 2 different h2
 (0.8 and 0.2), 2 different numbers of QTLs (1,015 and 290), and 2 

different SNP densities (50,000 and 5,000).
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the historical generations except the last historical 
generation which included a random sample of 20 
males and 300 females (generation 0).

Using the 20 males and 300 females as founder 
animals, the population size was expanded by sim-
ulating 7 generations (genreations 1 to 7) with the 
total population size approximately equal to 2,210. 
Each dam had 1 or 2 progenies within each gener-
ation with the probability of 0.95 and 0.05, respec-
tively. As with the historical population, the mating 
was at random without selection and proportion 
of male progeny was 50%. The replacement rates 
of sires and dams were 0.6 and 0.2, respectively. 
Phenotypes with heritability levels of 0.2 and 0.8 
were simulated with phenotypic variance of 1.0, 
where the overall heritability was accounted for by 
the variance of QTL additive genetic effects assum-
ing no extra polygenic effect. Allelic effects of QTLs 
were sampled from a gamma distribution with a 
shape parameter of 0.4 and a corresponding scale 
parameter to ensure that the sum of QTLs vari-
ances was equal to the predefined QTL variances. 
The residual effects were randomly sampled from 
a Gaussian distribution with a mean of 0 and var-
iance equal to heritability. The overall phenotypic 
effects were the sum of QTL effects and residual 
effects.

Pedigree information was recorded in the re-
cent population from generations 0 to 7. Genotypic 
data were simulated for individuals (n = 2,210) in 
generations 1 to 7 coupled with 5,000 or 50,000 
biallelic single nucleotide polymorphisms (SNPs) 
markers evenly distributed across 29 pairs of  auto-
somes with each chromosome length of  100 cM. 
The number of  autosomes and total chromosome 

length followed those of  the bovine genome. 
Additionally, 290 or 1,015 randomly distributed 
QTLs were simulated: the former is equivalent to 10 
QTLs per chromosome and the latter corresponds 
to 35 QTLs per chromosome. Markers and QTLs 
were simulated with a starting allele frequency of 
0.5 and a recurrent mutation rate of  2.5 × 10−5 was 
used to create mutation-drift equilibrium in his-
torical generations. In generation 1,100, markers 
and QTLs with minor allele frequency greater than 
0.05 were randomly drawn from the segregating 
loci. Only SNPs but not QTLs were used to infer 
measures of  connectedness and to assess accuracy 
of  prediction.

Management Units Simulation

The management units were simulated in 2 
steps following Yu et al. (2017): 1) individuals were 
classified into clusters and 2) clusters were assigned 
to management units (Figure 2). First, 10 individ-
uals were chosen to represent medoids and then 
10 distinctive groups were formed by assigning the 
remaining individuals to the closest medoid using 
the k-medoid algorithm (Kaufman and Rousseeuw, 
1990). The size of 10 distinctive groups ranged 
from 91 to 590, varying slightly between replica-
tions. A dissimilarity matrix was created from the 
A  (numerator relationship) matrix by calculating 
the distance between highest similarity and each 
similarity coefficient such that the largest similarity 
coefficient becomes zero. Clustering based on the 
k-medoid algorithm coupled with the dissimilarity 
matrix resulted in higher relationship coefficients 
within a cluster than between clusters.

Figure 2. Management unit (MU) simulation scenarios. (A) Scenario 1 (least connected design). Individuals within clusters 1 to 5 were assigned 
to MU1 and clusters 6 to 10 were assigned to MU2. (B) Scenarios 2 to 6 (partially connected to connected). The degree of connectedness was grad-
ually increased by exchanging 10% (Scenario 2), 20% (Scenario 3), 30% (Scenario 4), 40% (Scenario 5), and 50% (Scenario 6) of randomly sampled 
individuals between MU1 and MU2. Scenario 6 corresponds to the connected design.
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Two management units were simulated with 
individuals within clusters assigned to a manage-
ment unit in 6 ways. In Scenario 1, a least connected 
design was simulated by assigning individuals within 
clusters 1 to 5 into management unit 1 (MU1) and 
clusters 6 to 10 into management unit 2 (MU2). 
In Scenarios 2 to 6, the degree of genetic link was 
gradually increased by exchanging 10%, 20%, 30%, 
40%, and 50% of randomly sampled individuals be-
tween MU1 and MU2.

Prediction Error Variance

Prediction error variance (PEV) can be derived 
from a linear mixed model,

	 y Xb Zg= ,+ + εε

where y, b, g, and εε  refer to a vector of pheno-
types, fixed effects, random additive genetic effects, 
and residuals, respectively. The incidence matrices 
X and Z connect fixed effects and random additive 
genetic effects with phenotypes. The joint distribu-
tion of random effects is as follows:
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2 is the 
residual variance, and K represents a relationship 
matrix, which will be defined in a later section. 
Following the mixed model equation of Henderson 
(1984),
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where λ is a ratio of variance components which 
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. BLUP of g is given by

	 ĝ Z MZ K Z My= ( ) ,1 1′ + ′− −λ

where M I X X X X= ( )− −′ ′  is the absorption ma-
trix for fixed effects. Then, the PEV of g is given by 
(Henderson, 1984)

	 PEV( ) = ( )g Var g gˆ −

	 = ( | )Var g ĝ

	 = ( )1 1 2′ + − −Z MZ K λ σε

	 = ,22 2C σε

where C22 denotes the lower right quadrant of the 
inverse of coefficient matrix in equation 1.

Genetic Connectedness

Two statistics applied in Yu et al. (2017) were 
used to measure connectedness in this study. The 
first one is the prediction error variance of the dif-
ferences (PEVD) of EBV between individuals from 
different management units (Kennedy and Trus, 
1993). A pair-wise comparison between ith and jth 
individuals is given by the variance of ˆ ˆ ,g gi j−

PEVD PEV PEV PEC( ) = [ ( ) ( ) 2 ( , )]ˆ ˆ ˆ ˆ ˆ ˆg g g g g gi j i j i j− + −
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where ii and jj  refer to the diagonal elements of the 
C22 matrix corresponding to ith and jth individu-
als, respectively, and ij denotes the off-diagonal ele-
ments of C22 matrix. The summary connectedness 
of PEVD across all pairs of comparisons in a con-
trast notation is defined as follows (Laloë, 1993):

	 PEVD( ) = ,22 2x x C x′ σε

where the sum of elements in a contrast vector x 
is zero. For instance, a pair-wise comparison be-
tween ′i th and ′j th management units with ni′ and 
nj′ individuals, the contrast vector x will be set as 
1/ ni′ , − ′1/ nj , and 0 corresponding to individual 
belonging to ′i th, ′j th, and remaining units. The 
boundary of PEVD is not restricted, with a lower 
value indicating stronger connectedness. To express 
connectedness independent of unit of measure-
ment, PEVD was scaled by additive genetic vari-
ance (Kuehn et al., 2008; Yu et al., 2017).

The generalized CD measures the precision 
of EBV (Laloë, 1993). Different from PEVD, 
CD penalizes connectedness measurements if  the 
genetic variability is too small across populations,
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where CDij  denotes a pair-wise comparison between 
ith and jth individuals. A summary CD of contrast 
between any management unit is defined as follows 
(Laloë et al., 1996):
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where x is the vector of contrast defined earlier. 
This statistic ranges from 0 to 1 and measures the 
accuracy of the design. A  larger value suggests a 
stronger estimate of connectedness among man-
agement units.

Relationship Matrix

Any kind of (semi)-positive definite relation-
ship matrices can be used to define K (Morota 
and Gianola, 2014). We used 3 types of K in this 
study constructed from different sources. The nu-
merator relationship matrix (K = A) measures the 
expected additive genetic relationship coefficient 
between individuals on the basis of pedigree infor-
mation. The diagonal elements are 1+ F , where F  
represents inbreeding coefficient and off-diagonal 
elements are equal to twice the kinship coefficients. 
The construction of the A matrix was based on tra-
cing all individuals extending over 8 generations 
to account for historical information and animals 
from generations 1 to 7 were used for analysis. This 
matrix expresses relationships as identical by des-
cent (IBD) as it measures the probability of alleles 
inherited from the same ancestor by tracing pedi-
gree (Wright, 1922).

In contrast, a genomic relationship matrix 
(K = G) measures the molecular similarity among 
individuals. A  typical G  matrix is obtained as a 
function of the gene content matrix (S) includ-
ing elements of 0, 1, and 2 corresponding to the 
number of reference alleles. The distribution of j
th marker follows the binomial distribution of 
s B p p pj j j j. 2 ,2 (1 ) −( ), where p j is the allele fre-
quency of jth marker. The G  matrix of VanRaden 
(2008) is obtained as follows:

	
G
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= ,

′
m
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j j

j j
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−

−
 and m is the total number of markers.

One item that needs to be addressed when the 
A and G  matrices are compared is that they are 
not on the same scale. For instance, the A matrix 
represents relationships among individuals and 
inbreeding level as deviations from the unrelated 
base population; conversely the G  matrix expresses 
those relationships relative to the allele frequencies 

in the current generation. The following K  =  G* 
matrix rescales G  to the same base population as in 
A by adjusting the inbreeding coefficient level in G  
similar to that of A,

	 G G J* = (1 ) 2 ,− +F F

where F  and J refer to the average inbreeding co-
efficient of whole population in the A matrix and 
the n × n square matrix filled with 1, respectively 
(Powell et al., 2010).

Whole-Genome Prediction Model

The relationship between connectedness and 
prediction accuracy was investigated with a stand-
ard BLUP model,

	 y g= 1 ,µ + + εε � (2)

where y, µ, g, and εε  refer to a vector of observed 
phenotypes, intercept, random additive genetic 
effects, and residuals, respectively. The model was 
treated under a Bayesian framework, where m was 
set as a flat prior, with the prior distributions for 
genetic and residual effects,
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where K is 1 of 3 (semi)-positive definite relation-
ship matrices described earlier and I refers to the 
identity matrix. The variance components σ g

2 and 
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2 represent variance of additive genetic effects and 
residual variance, respectively. The scaled inverse χ 2 
distribution was assigned to σ g

2 and σε
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the degrees of freedom (df ) equal to 5 and choos-
ing the scale parameter S by equating the mode of 
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2 refers to the 

average sum squares of the genotypes (Pérez and de 
los Campos, 2014). Here R2 was set to 0.5 according 
to Pérez and de los Campos (2014).

The prediction accuracy was evaluated by 2-fold 
CV, where the 2 management units were treated as 
the training and testing sets instead of randomly 
partitioning all individuals into 2 sets. The vari-
ance components were inferred from the data and 
the predictive ability of the model was calculated as 
the Pearson correlation between predicted genetic 
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values and true genetic values in the testing set. 
Throughout this study, the BGLR R package was 
used to fit equation 2.  A  Gibbs sampler was run 
for 10,000 iterations, where the first 2,000 samples 
were discarded as burn-in. A total of 8,000 samples 
coupled with a thinning rate of 5 were used to infer 
posterior means.

Criterion for Connectedness Measures

The challenge with discussing connectedness is 
that there is no clear standard or benchmark for true 
connectedness. Although zero connectedness may 
be an indicator of possible bias, this issue has been 
discussed since Foulley et al. (1990). In this respect, 
Kuehn et  al. (2008) proposed threshold values for 
moderate and strong levels of connectedness based 
on the relationship between prediction error cor-
relation and model-based mean squared error. In 
this study, we provide a guideline for connectedness 
measures in terms of whole-genome prediction by 
performing CV. Note that prediction accuracy may 
simply increase as PEVD continues to decrease no 
matter how individuals across management units be-
come genetically alike. On the other hand, measures 

of CD start to decrease as in Yu et al. (2017) when 
across management units include individuals that 
are too genetically similar. CD is suited for deriving 
a criterion because there is no point in enhancing 
prediction accuracy by simply reducing relatedness 
variability. Therefore, we explored the approximate 
threshold of CD that yields a reasonable prediction 
accuracy while maintaining genetic diversity in a 
population (Laloë, 1993; Laloë et al., 1996).

RESULTS

Figure 3 displays relationships between 2 man-
agement units with 5,000 markers used to compute 
3 relationship matrices (A, G , and G*) according to 
6 simulated management unit scenarios. For each 
scenario, average relationships were the highest for 
A and the smallest for G , and G* produced relation-
ships somewhere between A and G . Relationships 
increased when more individuals were exchanged 
between the 2 units. This increasing relationship 
pattern was observed regardless of relationship 
matrices used. A similar tendency was shown when 
the number of markers was equal to 50,000 (result 
not shown).

Figure 3. Average relationship coefficients across management units with 5,000 markers over 2 heritability levels and 2 different numbers of 
quantitative trait loci. S1 to S6 denotes management unit simulation scenarios 1, 2, 3, 4, 5, and 6, respectively. The magnitude of connectedness level 
steadily increased from S1 to S6. We compared pedigree-based A, genome-based G, and rescaled genome-based G* relationship kernel matrices.
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Prediction Error Variance of the Difference

The relationships between measures of connect-
edness and prediction accuracies obtained from the 
Bayesian BLUP model are shown in Figures 4 and 
5. The prediction accuracies in Figures 4 and 5 are 
identical as they are based on the same simulations. 
Figure 4 depicts connectedness measured as PEVD 
of contrast with smaller values inferring increased 
connectedness. Generally, increased connectedness 
measures and prediction accuracies were observed 
as more individuals from the same clusters were 
shared between management units, regardless of h2 
levels, type of kernel matrices, the number of QTLs, 
and marker density. Similarly, standard errors of 
estimates over 10 replicates ranged from 0.008 to 
0.068 for prediction accuracy, and from 0.001 to 
0.002 for PEVD, regardless of h2 levels, type of 
kernel matrices, the number of QTLs, and marker 
density. In Figure  4A with 290 QTLs and 5,000 
markers, the G  and G* matrices delivered similar 
or stronger connectedness measures and higher 
prediction accuracies than those of the A matrix. 
The results from G* strongly resembled those of 

G  in terms of measures of connectedness and pre-
diction accuracies. When marker density increased 
to 50,000, with the same number of QTLs, slightly 
improved prediction accuracies and increased esti-
mates of connectedness were observed (Figure 4B). 
Stronger connectedness and higher prediction ac-
curacy were shown with G  and G* than A. The 
pattern in Figure  4C with 1,015 QTLs and 5,000 
markers resembled that of Figure 4A; however, we 
observed marginally decreased genomic predic-
tion accuracies. Figure  4D with 1,015 QTLs and 
50,000 markers presented the clearest pattern: the 
G  and G* matrices consistently produced stronger 
estimates of connectedness and higher prediction 
accuracies than those of the A regardless of simula-
tion scenarios and h2 levels.

Coefficient of Determination

The change of prediction accuracies with the 
increasing proportion of linked individuals quan-
tified with CD of contrast is shown in Figure  5, 
where larger CD values suggest stronger connect-
edness. The standard errors of estimates for CD 

Figure 4. Relationship between connectedness and prediction accuracy. PEVD and PA denote prediction error variance of the differences and 
prediction accuracy, respectively. PA was defined as the correlation between phenotypes and estimated breeding values cor( , )g ĝ . Connectedness 
of pedigree-based A, genome-based G, and rescaled genome-based G* within 6 management units simulation scenarios across 2 heritabilities were 
compared with their prediction accuracies in each graph. (A) 290 QTLs and 5,000 markers. (B) 290 QTLs and 50,000 markers. (C) 1,015 QTLs and 
5,000 markers. (D) 1,015 QTLs and 50,000 markers.



4497The impact of connectedness on prediction

through 10 replicates varied from 0.004 to 0.057, 
regardless of h2 levels, type of kernel matrices, 
the number of QTLs, and marker density. In gen-
eral, the prediction accuracy improved when more 
individuals from the same clusters were assigned 
across units. Within each scenario, the estimates 
of CD increased up to Scenario 3 and decreased 
at Scenario 4 because CD penalized connectedness 
measures for reduced genetic variability. This corre-
sponded to 20% exchange rate.

In Figure 5A with 290 QTLs and 5,000 mark-
ers, similar or stronger connectedness and higher 
prediction accuracies were observed by the G  ma-
trix than those using A for all scenarios. An analo-
gous tendency was identified in Figure  5C with 
1,015 QTLs and 5,000 markers, except that mar-
ginal reduction of genomic prediction accuracies 
was observed. With 290 QTLs and an increased 
number of markers (50,000), both genomic pre-
diction accuracies and estimates of connectedness 
increased slightly (Figure  5B). Overall, G  and G* 
presented stronger estimates of connectedness 
and higher prediction accuracies than those of A. 
Clearer differences were observed when increasing 

the number of QTLs to 1,015 (Figure 5D). The G  
matrix clearly yielded higher estimates of connect-
edness and higher prediction accuracies when com-
pared with A. The performances of G* were very 
similar to those of G  in CD across all cases.

DISCUSSION

The concept of connectedness dates back to 
estimability in experimental design in the sense of 
all-or-none connectedness (Weeks and Williams, 
1964; Eccleston and Hedayat, 1974). A dataset can 
be seen as connected if  merging cells in a cross-table 
are possible such that all filled cells are connected 
(Searle, 1986). It was later extended to a random 
effect model or BLUP genetic evaluation known as 
reference sire progeny testing schemes by Foulley 
et al. (1983, 1990) and Miraei Ashtiani and James 
(1991). The central idea is when sires from 1 man-
agement unit are compared against sires in another 
unit, at least 1 sire should be tested in both units. 
Such common sires are known as link sires or ref-
erence sires. These authors investigated the efficient 
strategy of reference sire used to minimize PEVD 

Figure 5. Relationship between connectedness and prediction accuracy. CD and PA denote coefficient of determination and prediction accuracy, 
respectively. PA was defined as the correlation between phenotypes and estimated breeding values cor( , )g ĝ . Connectedness of pedigree-based A, 
genome-based G, and rescaled genome-based G* within 6 management units simulation scenarios across 2 heritabilities were compared with their 
prediction accuracies in each graph. (A) 290 QTLs and 5,000 markers. (B) 290 QTLs and 50,000 markers. (C) 1,015 QTLs and 5,000 markers. (D) 
1,015 QTLs and 50,000 markers.
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between EBV by identifying the optimal number of 
progeny. Since then connectedness based on pedi-
gree information has taken center stage in both theo-
retical development and real data applications (e.g., 
Laloë (1993), Hanocq and Boichard (1999), and 
Kuehn et al. (2008)). In addition, non-PEV-based 
genetic connectedness metrics have been developed 
(e.g., Foulley et al. (1992)). Connectedness is often 
used as an indicator of the robustness of genetic 
evaluation comparisons, where a higher level of 
connectedness suggests more reliable comparison 
of EBV across units. Past studies found that BLUP 
evaluations correctly yielded the likely ranking of 
individuals distributed across units when connect-
edness was present. Although research in pedi-
gree-based connectedness is still critical, as shown in 
Yu et al. (2017) and in the current study, availability 
of genomic information now offers an opportunity 
to revisit a number of critical questions related to 
connectedness, such as how prediction accuracy is 
influenced given the level of connectedness between 
management units.

The extent of  connectedness level boils 
down to the ability of  K  to capture relationships 
among individuals. Connectedness increases 
with stronger across unit genetic relationship 
and it decreases with stronger within unit rela-
tionship (Kennedy and Trus, 1993). Advantages 
of  genomic over pedigree relationships are as 
follows: 1)  genomic measures relatedness aris-
ing from more distant ancestors than those 
included in a pedigree and 2)  genomic captures 
the variation in realized kinship arising from the 
stochastic effects of  Mendelian sampling and 
recombination. We tested 3 types of  K  to cap-
ture the relationship among individuals in this 
study. The 2 matrices A and G  mainly differ in 
1)  the distinction between IBD and IBS and 
2)  the relationships are relative to the baseline 
population vs. current population. The G* rela-
tionship matrix helps us to put A and G  on a sim-
ilar scale. Although those factors contributed to 
the improved quality of  genetic evaluation design 
with the increased proportion of  connecting indi-
viduals as shown in Yu et al. (2017), the relation-
ship between connectedness level and CV-derived 
prediction accuracy has been yet-to-be answered. 
The present study aimed to bridge this gap by 
applying PEVD and CD of  contrasts to sim-
ulated phenotypes, pedigrees, genomics, and 
management units. Note that the magnitude of 
the differences in results may be observed when 
applied to real data compared with the simula-
tion results shown in this study.

Relationship Between Connectedness and Prediction 
Accuracy

We used contrasts of PEVD and CD to inves-
tigate the relationship between connectedness and 
prediction accuracy. We found prediction accur-
acy improved with increased capturing of connect-
edness between units. This suggests that increase 
in the accuracy of the EBV comparison is posi-
tively associated with an increase in accuracy of 
CV-based prediction. In general, genomic predic-
tion accuracy improved as more markers were used 
to infer a genomic relationship matrix and as more 
QTLs contributed to the genetic variation given 
plenty of markers. These can be attributed to the 
fact that 1) the greater the number of markers, the 
better capturing of QTL relationships among indi-
viduals (Ober et al., 2012) and 2) genomic best lin-
ear unbiased prediction (GBLUP) performs better 
when the number of QTLs is large, because of its 
infinitesimal model assumption (Daetwyler et  al., 
2010). This result may change when an alternative 
whole-genome prediction model is used instead 
of GBLUP. For instance, a BayesB type of model 
performs well when the number of QTLs is small 
(Daetwyler et  al., 2010). Measures of connected-
ness increased as more markers were used to char-
acterize connectedness. When more markers were 
used, genomic information captures more variation 
in relationships which results in increased measures 
of connectedness.

Across 6 management unit scenarios, the extent 
of connectedness measured by PEVD and predic-
tion accuracy from BLUP were higher as the propor-
tion of individuals exchanged between the 2 units 
increased. The measurement of PEVD decreases 
when the number of markers increase regardless of 
QTL numbers and h2 levels. This was not always the 
case in CD because this statistic penalizes connect-
edness estimates when the amount of genetic varia-
bility across units was small.

The G  and G* matrices clearly outperformed 
that of A in prediction and also produced increased 
measures of connectedness (Figures  4 and 5). 
Interestingly, although the average relationship of 
individuals across management units computed 
from the G* matrix was more similar with that of 
A than G  (Figures 3), the results of connectedness 
estimates and prediction accuracies obtained from 
the G* matrix were more similar with those of G  
(Figures 4 and 5). This is most likely because of the 
similar variation in relationships across manage-
ment units captured by G  and G*, which play an 
important role in measures of connectedness and 
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prediction accuracies. The effect of scaling G  to be 
more similar to A was minimal for PEVD and CD 
as G* produced increased measure of connected-
ness compared with that of A. This is in agreement 
with Yu et al. (2017) where they found that genome-
based connectedness consistently increased esti-
mates of connectedness in most cases regardless of 
rescaling G  to the level of A.

In addition, we observed marginally decreased 
genomic prediction accuracies when the number 
of QTLs was increased while the number of SNPs 
remained constant (Figures 4A vs. 4C and 5A vs. 
5C). This is because the number of parameters we 
need to accurately predict increased and a sufficient 
number of markers is required to establish a suf-
ficient level of LD to capture QTL signals. With 
more QTL, more markers are needed for them to 
contribute to or enhance prediction accuracy. This 
observation can also be supported theoretically 
from interactive deterministic genomic prediction 
accuracy simulators (Morota, 2017).

What is the Sufficient Level of  Connectedness?

The extent to which a design is genetically 
connected or not has been the subject of  discus-
sion in the literature (e.g., Petersen (1978) and 
Fernando et al. (1983)). These authors proposed 
statistical approaches to determine the presence 
or absence of  connectedness. A  related question 
is to find a desired or sufficient level of  connected-
ness based on connectedness metrics as in Kuehn 
et  al. (2008). Here CD statistic offers an impor-
tant insight because it accounts for the reduction 
of  connectedness due to reduced genetic variabil-
ity between individuals under comparison. This 
pattern was also observed by using both pedigree 
and genome-based CD connectedness in Yu et al. 
(2017). From the perspective of  designing a breed-
ing program, increasing connectedness simply by 
making individuals genetically similar to each 
other should be avoided (Laloë, 1993). Thus, the 
use of  CD allows us to identify an upper limit of 
sufficient CD value that gives a reasonable pre-
diction accuracy while maintaining the variability 
of  relatedness. The CD began to fall around 20% 
exchange rate and the threshold CD value was in 
the range of  0.7 to 0.9 across simulation scenarios. 
When the measures of  CD exceeded this thresh-
old, prediction accuracy continued to improve in a 
mild degree or stayed the same, whereas connect-
edness estimates started to decrease. Although this 
cutoff  value slightly varies among different sce-
narios (Yu et al., 2017), the CD metric can be used 

to optimize selective genotyping and phenotyping 
along the lines of  Rincent et al. (2012) and Isidro 
et al. (2015). In contrast, when connectedness was 
determined with PEVD, prediction accuracy and 
connectedness both continued to increase when 
shifting more individuals across management 
units, thereby increasing genetic similarity. Such is 
clearly not a desired property in designing a breed-
ing program.

CONCLUSIONS

In general, connectedness measures and predic-
tion accuracies increased as more individuals from 
the same clusters were shared across management 
units. We found prediction accuracy improved with 
increased capturing of connectedness across units 
suggesting that increase in the accuracy of the EBV 
comparison is positively associated with increase in 
accuracy of CV-based prediction. This was entirely 
true for PEVD and partly so for CD. The impact of 
genomics was more marked compared with pedigree 
when a sufficient number of markers was present to 
capture QTLs. Although there is a need to establish 
increased levels of connectedness, simply increasing 
connectedness results in rapid decrease of relatedness 
variability which may not be desired in a breeding 
program. Use of CD allows us to find a connected-
ness level that gives a reasonable prediction accuracy 
while maintaining genetic diversity in a population.
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