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Knowledge of the extent and range of linkage disequilibrium (LD), defined as non-random association of alleles 
at two or more loci, in animal populations is extremely valuable in localizing genes affecting quantitative traits, 
identifying chromosomal regions under selection, studying population history, and characterizing/managing 
genetic resources and diversity. Two commonly used LD measures, r2 and D’, and their permutation based 
adjustments, were evaluated using genotypes of more than 6,000 pigs from six commercial lines (two terminal 
sire lines and four maternal lines) at ~4,500 autosomal SNPs (single nucleotide polymorphisms). The results 
indicated that permutation only partially removed the dependency of D’ on allele frequency and that r2 is a 
considerably more robust LD measure. The maximum r2 was derived as a function of allele frequency. Using the 
same genotype dataset, the extent of LD in these pig populations was estimated for all possible syntenic SNP 
pairs using r2 and the ratio of r2 over its theoretical maximum. As expected, the extent of LD highest for SNP 
pairs was found in tightest linkage and decreased as their map distance increased. The level of LD found in 
these pig populations appears to be lower than previously implied in several other studies using microsatellite 
genotype data. For all pairs of SNPs approximately 3 centiMorgan (cM) apart, the average r2 was equal to 0.1. 
Based on the average population-wise LD found in these six commercial pig lines, we recommend a spacing of 
0.1 to 1 cM for a whole genome association study in pig populations. 

Key words: LD, LD measure, pigs 

1. Introduction 
Linkage disequilibrium (LD), defined as 

non-random association of alleles at two or more loci, 
in a population can be used to exploit what has 
happened to the population (e.g., breeding history, 
selection, genetic drift, mutation e.g., [1]) and to map 
quantitative trait loci (QTL) e.g., [2]. While study on 
LD has a long history (e.g., [3, 4]), the extent and range 
of LD in animal populations has recently become a 
focus area for the following reasons: rapid increase in 
newly identified DNA markers (mainly SNPs, single 
nucleotide polymorphisms) and continuous decline in 
genotyping cost have made it more realistic to collect 
genotype data on a high density marker map of a 
whole genome; active research areas such as fine 
mapping QTL, whole genome association study, and 
whole genome selection need knowledge of the extent 
and range of LD in animal populations. 
2. Measurement of linkage disequilibrium  

The first question to be resolved regarding 
population-wise LD is how to measure it. 
Conventionally, the focus is on LD between two loci: 
while it is desirable that an LD measure can 
appropriately handle multiple allele data, biallelic 
markers (mainly SNPs) are expected to be increasingly 
predominate. Moreover, there is a rapidly increasing 
need to measure LD for multiple loci and a 
chromosomal region. It is important that the extent 

and range of LD in different populations are reported 
using one or a very small number of well accepted LD 
measures such that meaningful comparisons can be 
made across different studies. 

One of the most important properties an ideal LD 
measure needs to have is to be independent of allele 
frequencies. It is highly desirable that an LD measure 
has a clear interpretation and well defined distribution 
under independence. Furthermore, an LD measure 
should provide solutions or valuable information to 
various practical applications. For example, 
appropriate marker density requirement and 
population choices for a whole genome association 
study need knowledge of population-wise LD. An LD 
measure that can facilitate power calculations and 
mapping resolutions is clearly desirable. It might be 
true that different LD measures are needed to be 
optimal for different practical applications using LD 
information.  

One of the simplest LD measures is the difference 
between actual and expected haplotype frequency (i.e., 
the product of corresponding allele frequencies): 

jiijij qpPD −=  (1) 
where Pij is the frequency of haplotype ij (i = 

allele i at locus 1; j = allele j at locus 2); pi and qj are the 
frequencies of allele i at locus 1 and allele j at locus 2, 
respectively. It can be shown that the absolute value of 
Dij (|Dij|) is identical for all four haplotypes of any 
two biallelic loci.  
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Dij is clearly undesirable because it is highly 
dependent upon allele frequencies, and its size has no 
clear interpretations. Numerous two locus LD 
measures have been created by the efforts of making 
Dij more allele frequency independent and easier to 
interpret (for reviews see [5-7]). Of those, D’ [8] and r2 
[9] have been most commonly used in the literature 
(e.g., [5, 10, 11]]. For any two biallelic loci, D’ and r2 
are defined as  
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Both D’ and r2 range from 0 to 1 and have some 

desirable properties. The LD measure D’ was designed 
for loci with two or more alleles. Mainly due to its 
flexibility in handling multiple allele data, most 
studies on LD in animal populations used D’ to 
measure population-wise LD of microsatellite 
genotype data (e.g., [10-13]). The maximum of D’ has 
an easy interpretation: D’ equals 1 (referred to as 
complete LD) if and only if at least one allele at each 
locus is completely associated with an allele at the 
other locus. When a new mutation occurs in a finite 
population, D’ is equal to 1 and will remain to be 1 
until a recombinant or mutation event breaks the 
original haplotype. However, D’<1 doesn’t has a clear 
interpretation. The value of D’ in many applications is 
limited (e.g., D’ cannot be directly used to calculate 
the sample size needed to achieve specific power in an 
association study). More fundamentally, D’ has been 
shown to be inflated by small sample sizes (e.g., [5]) 
and low allele frequency (e.g., [14]). Therefore, it is 
less meaningful to compare across different marker 
pairs and studies. In an attempt to correct the effect of 
allele frequency, an adjusted D’ denoted by D’adj that 
was derived by subtracting D’H0 (D’ estimated under 
independence via permutation), was proposed by 
Delvin et al. [14]. While this permutation adjustment 
appears to be attractive and has been adopted by 
Spelman and Coppieters [15], no evaluation was 
performed on how effective this permutation in 
correcting the dependency of D’ on allele frequencies. 
Moreover, the maximum adjusted D’ is 1 - D’H0  
instead of 1.  

Another commonly used LD measure, r2, is the 
correlation of determination for alleles at two loci (r is 
the correlation coefficient for a 2 x 2 table, [9]). In the 
context of disease gene mapping, it has been shown 
that the sample size is approximately inflated by 1/ r2 
using a marker in comparison with using a 
susceptibility locus itself if the level of LD between the 

marker and the susceptibility locus is equal to r2 (e.g., 
[5]). In addition, the expectation of r2 for a random 
mating population that is in equilibrium and absence 
of selection and recurring mutations is a function of 
effective population sizes (Ne) and the recombination 
rate between two loci (θ) (E(r2) = 1/(1+4θNe)) [4]. This 
relationship has been proposed to be used for 
estimating historical effective population sizes [13, 16]. 
While r2 is still considered as allele frequency 
dependent, the bias due to allele frequency it is 
considerably smaller than that in D’ (e.g., [5]). 

For a pair of biallelic loci, r2 = 1 (known as the 
perfect LD) if and only if there exist two haplotypes 
for two biallelic loci, implying that each allele at each 
locus is completely associated with one allele at the 
other locus and allele frequency at both loci are 
identical. For a pair of markers with unequal allele 
frequencies at two loci, its maximum of r2 is less than 1 
and becomes more complicated. 

Consider two biallelic loci with minor allele 
frequency being p1 and q1 at locus 1 and 2, 
respectively. Assume p1 ≤ q1. There are two complete 
LD states as defined by D’: a) P11 = p1 in which all 
minor alleles at locus 1 form haplotypes with the 
minor allele at locus 2; and b) P12 = p1 in which all 
minor alleles at locus 1 form haplotypes with the main 
allele at locus 2. While D’ is equal to 1 in both cases of 
complete LD, the values of r2 are different and can be 
calculated as 
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in case a) and case b), respectively. Clearly, r2max 
in case a) is a global maximum given allele frequencies, 
and is referred to as the maximum of r2 in this study. 
r2max in case b) is a local maximum. With unequal 
allele frequencies at two loci, there exist at least three 
haplotypes, and r2max is <1. With equal allele 
frequency at two biallelic loci, the minimum number 
of haplotypes can be reduced to two when r2max is 
equal to 1. 

Numerical analyses were performed to further 
evaluate local and global maximum r2. Assume that 
the minor allele frequencies (MAF) at two biallelic loci 
are independently and uniformly distributed in the 
interval of [0.05, 0.5] (a minimum of 0.05 is set to 
reflect that all SNPs with MAF <0.05 were excluded 
from our analyses). For a specific MAF at one locus, 
the expectation of local and global r2max was calculated. 
As shown in Fig. 1, the expectation of the local 
maximum r2max increased steadily from 0.03 to 0.53 as 
the MAF increased from 0.05 to 0.5. The expectation of 
the global maximum r2max first decreased from 0.53 to 
0.23 as the MAF increased from 0.05 to 0.19 and then 
increased to 0.53 as the MAF further increased to 0.5. 
These results suggest that the expectation of 
maximum r2 is much smaller than 1 under the 
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assumption of MAF being independently and 
uniformly distribution and that markers with low 
polymorphism can be valuable in some special cases 
(e.g., very dense coverage of a region) as shown by 
their high global maximum. 

Several other of Lewontin’s D based LD 
measures including a measure similar to an 
attributable risk measure (D/(q1P22) developed by 
Bengtsson and Thomson [17]) were evaluated by 
Delvin and Risch [18], and Zhao et al. [7] evaluated 
nine Lewontin’s D based LD measures (including D’ 
and r2) for their usefulness in LD mapping. Fisher’s 
exact test (FET) can also be used for detection of 
presence of LD in a population. Monte Carlo 
approximation of Fisher’s exact test was developed for 
large sample sizes in which exact calculation is 
computationally infeasible [10]. While FET is 
independent of allele frequency, it is a function of 
sample sizes, and there is no clear interpretation of 
FET. Therefore, FET is not an ideal 
LD measure. However, FET can 
help evaluating other LD measures: 
given a sample size, a closer 
correlation to the p value (or its 
log-transformation) of FET is 
considered to be desirable. Recently, 
several homozygosity based LD 
measures were developed to 
measure LD of multiple loci or a 
chromosomal region [16, 19]. 

Figure 1. Expected r2
max as a function of 

minor allele frequency (MAF) under the 
assumption of MAF at two loci are 
independently and uniformly distributed. 
Given allele frequencies at two biallelic 
loci, the global and local r2

max were 
calculated using Eqs. 5 and 6, 
respectively. 

 

3. Factors influencing population-wise linkage 
disequilibrium  
The extent and range of LD of two loci in an 

animal population is jointly affected by evolutionary 
forces (such as random drift, natural selection, 
mutation, and line origin), molecular forces such as 
historical recombination events, and the population’s 
breeding history such as historical effective 
population sizes, intensity and direction of artificial 
selection, population admixture, and mating patterns.  

The effect of recombination rate on the extent of 
LD is easy to understand: alleles at neighboring loci 
tend to be inherited together and tend to be associated 
in a segregating population. In a large population 
under no selection, Dij decays at rate of 1- θ under 
random mating, where θ is the recombination fraction. 
In populations with large effective population sizes 
such as human populations, variable recombination 
rates across chromosomal regions are considered as 
one of the factors for haplotype structures existed in 
human populations (e.g., [20]].  

In a finite population, random drift affects both 
allele and haplotype frequencies, and population-wise 
LD. Clearly, effect of random drift becomes more 
dramatic in cases of smaller effective population sizes. 
As described above, LD of two loci in a population in 
equilibrium is a function of effective population size, 
(1/(1+4θNe)) [4].  

The effect of selection on LD is dependent upon 
the direction, intensity, duration, and consistency of 
selection over time. Bulmer [3] showed that selection 
reduced genetic variation in the next generation and 
produced negative gametic (linkage) disequilibrium 
among loci (linked and unlinked). When selection 
operates at a locus, the neighboring loci that are in LD 
with locus under selection will have an enhanced 
extent of LD, a hitchhiking effect. When selection 
operates on multiple loci in epistasis, LD between loci 
under epistatic selection and their tightly linked loci 
will be created and enhanced. For animal populations, 

the impact of selection on their LD is also dependent 
upon the consistency of breeding objectives over time. 

When a new mutation occurs in a finite 
population, LD is created and the degree is dependent 
on the frequency of the allele that is haplotyped with 
the new mutation. As the copies of the mutant allele 
accumulate, the LD between this locus and other loci 
depend on recombinant rate, random drift, population 
admixture, and selection. Due to generally low 
mutation rate, recurrent mutations are expected to 
have little impact on the extent and range of LD in 
animal populations. However, for some mutation hot 
spots, the LD between a hot spot and its neighboring 
loci should be generally lower than expected.  

Admixture of populations will clearly create new 
LD among loci that are in no previous LD in all 
parental populations and alter the extent of LD for loci 
that are in LD in the parental populations. The 
spurious LD between unlinked loci created by 
admixture can be rapidly dissipated in subsequent 
generations. However, it will take much longer to 
dissipate the effect of population admixture on LD of 
neighboring loci.  
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4. Usefulness of linkage disequilibrium  
The knowledge of the extent and range of LD in 

animal populations has become increasingly useful, 
mainly due to its importance in assisting fine mapping 
of quantitative trait loci and marker assisted selection 
(MAS). Regardless of designs and statistical methods 
used in QTL mapping, LD plays a fundamental role in 
QTL mapping because choice of appropriate marker 
spacing and resulting QTL mapping resolution 
depend on extent and range of LD in the population of 
choice. For QTL genome scans using crosses of 
completely inbred lines (e.g., F2 or backcross), 
presence of extensive LD requires only sparse marker 
coverage (e.g., 10 to 20 centiMorgans (cM) spacing for 
microsatellite markers). Most domestic animals are 
associated with long generation intervals, low 
reproductive rates, high unit cost, and inbreeding 
depression, and it is therefore unrealistic to create 
mapping populations that require many generations 
of inbreeding. Instead, large paternal half-sib families 
within a segregating line and crosses between two 
segregating lines have been used in many linkage 
mapping studies in animals (e.g., [21, 22]). With sparse 
marker coverage, linkage mapping using paternal 
half-sib families focuses on the sire side, because the 
paternal haplotype has extended LD; linkage mapping 
using line crosses focuses on QTL segregating 
between parental lines because extensive LD only 
exists for between line difference.  

While extensive LD facilitates QTL detection 
with sparse marker coverage, it limits resolution of 
QTL mapping. In essence, fine mapping is basically 
testing the presence of a segregating QTL in one 
chromosomal region against neighboring 
chromosomal regions and requires a large number of 
recombinant events in small chromosomal regions. It 
has been suggested, both by animal and human 
geneticists, to exploit population-wise LD (namely LD 
mapping) for fine mapping in human (e.g., [2]) and 
animal (e.g., [23]) populations. Most animal 
populations are outbred for many generations, and 
have therefore accumulated a large number of 
historical recombinant events that are valuable for fine 
mapping. With increasing availability of SNPs, the 
whole genome association studies become 
increasingly realistic and attractive. To do that, one 
needs the knowledge of extent and range of LD in 
animal populations to resolve fundamental issues 
such as marker density requirements and population 
suitability. 

When a SNP is not a causal mutation and only 
linked to QTL, the effectiveness of MAS using this 
SNP is affected by the extent of LD between this SNP 
and the causal mutation [24]. For selection to be 
effective, MAS operating on multiple QTL (mostly 
likely using a large number of markers) is critical. 
Recently, whole genomic selection has been exploited 
as an alternative for selection of animals for breeding 
(e.g., [25]). How to perform MAS and the effectiveness 
of MAS using a large number of markers (including 
whole genome selection) are affected and should be 

optimized in the extent and range of population-wise 
LD.  

As described above, selection will enhance LD of 
neighboring loci. With consistently strong artificial 
selection practiced in many animal populations, it 
might be feasible to identify chromosome segments 
under selection using LD data in many animal 
populations by identifying regions with more 
extensive LD [26] and testing interaction between 
chromosomes on the extent of LD [10].  

As described above, population-wise LD is 
affected by random drift. The effective population size 
is generally small in most animal populations. Hayes 
et al. [16] proposed an LD measure, chromosome 
segment homozygosity, to estimate historical effective 
population size. Zhao et al. [7] used the level of LD 
expected from effective population size to evaluate 
different LD measures. 
5. Linkage disequilibrium in human and 

animal populations 
Most empirical studies aimed at investigating the 

extent and range of LD have been conducted by 
human geneticists in human populations. Instead of 
an exhaustive review, several studies are briefly 
discussed to gain general knowledge of the range and 
extent of LD in human populations. While a few 
earlier studies work with microsatellite marker 
genotype data (e.g., [27, 28]), most focus on single 
nucleotide polymorphism (SNP) genotype data, 
especially on extremely tightly linked SNPs (e.g., [29 
-31]) in European populations. A review of published 
data show that LD varies among populations and 
genome regions [5]: the extent of LD in northern 
European populations ranges from 10-30 kb to several 
hundreds of kilobases, while other studies suggest 
that the extent of LD in northern African populations 
is lower.  

There are several published studies on the level 
of LD in domestic animal populations, and most of 
them used microsatellite marker data. Farnir et al. [10] 
pioneered the investigation of population-wise LD in 
animal populations, by estimating LD between 281 
microsatellite markers in Dutch black and white cattle. 
They demonstrated that LD extended over large 
genetic distance (e.g., ~20 cM) and that the degree of 
LD continuously increases as linkage distance 
decreases from 5 to 1 cM. They further showed that 
non-syntenic markers have a probability of 
approximately 12% to be in LD at the 0.05 significance 
level. While Farnir et al. [10] reported via a simulation 
study that the effect of random drift alone can explain 
the observed LD and found no evidence of a selection 
effect on LD, Tenesa et al. [13] found some evidence of 
the effect of selection on LD by showing that LD is 
stronger in chromosome regions harboring QTL in UK 
dairy cattle. McRae et al. [12] studied LD in two sheep 
populations using microsatellite markers. While they 
found similar LD levels to those in cattle for loosely 
linked markers, their data lack tightly linked markers. 
These authors made conscious efforts to test the 
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independence of D’ on allele frequency and found that 
D’ may be skewed when rare alleles are present. 
Nsengimana et al. [11] investigated the level of LD in 
chromosomes 4 and 7 in five commercial pig 
populations. These authors were able to detect small 
size of population and chromosome effects on LD. 
However, their data only contained 15 microsatellite 
markers and lack tightly linked markers. Recently, 
Spelman and Coppieters [26] genotyped 283 cattle 
with the Affymetric GeneChip® BovineMapping 10K 
SNP kit. Order between SNPs was predicted based on 
a comparative alignment between human and bovine 
genome, and linkage distance was estimated by 
extrapolation. They used 40 inferred halpotypes for 
Jersey dams with at least 8 genotyped progeny to 
estimate all possible pairwised LD of 339 SNPs from a 
bovine chromosome. They found a much lower level 
of population-wise LD than that by Farnir et al. [10]: 
the average level of r2 for markers within 1 and 5 MB 
(megabytes) was equal to 0.1 and 0.04, respectively. 

It is expected that populations of domestic 
animals have LD well above the levels in human 
populations, because of small effective population 
sizes (e.g., 100), and strong artificial selection. The 
extensive LD observed in domestic animal 
populations was somewhat of a surprise to some 
animal geneticists e.g., [10], and prompted several 
groups e.g., [10, 11] to suggest the feasibility of a 
genome-wise LD study using available microsatellite 
markers. The effect of random drift is expected to be 
strong in case of small effective population size.  
6. Evaluation of r2 and D’ using actual data 

As described above, Delvin et al. [14] attempted 
to remove the dependence of D’ on allele frequency by 
subtracting D’H0 from the observed D’, where D’H0 is 
the D’ under independence and estimated by 
permuting each allele at one locus independently of 
alleles at the other locus. Spelman and Coppieters [15] 
applied a similar permutation procedure to adjust r2 
using r2H0 under independence. In this study, we used 
a porcine genotype data set of whole genome 
distributed SNPs to evaluate the dependence of LD 
measures r2 and D’ on allele frequency and their 
adjustment via permutation. 
Data description.  

Approximately 4,500 SNPs on 18 porcine 
autosomal chromosomes were used in this study. Of 
those, approximately 4,100 autosomal SNPs were 
selected from a collection of more than 600K SNPs that 
Monsanto Choice Genetics exclusively licensed from 
Metamorphix, Inc. (MMI), based on their 
informativeness, and evenness of spacing over the 
porcine genome. Approximately 4,300 pigs from 6 
pure lines (600 to 750 per line) were genotyped at 
these SNPs. These six lines consist of two terminal sire 
lines (PT (Pietrain based) and DU (Duroc based)) and 
four maternal lines (LR1 and LR2 are Landrace based, 
and LW1 and LW2 are Large White based) (Table 1). 
An additional ~400 SNPs were genotyped using PT 
pigs. About 150 of these 400 SNPs were genotyped 

using a ~3,000 animal panel, and the other 250 SNPs 
were genotyped using a panel of ~1,400 PT pigs. 
Therefore, PT genotype data were from three projects, 
and the samples for SNPs genotyped in different 
projects were considerably small (namely the 
overlapping animals). The overall average number of 
offspring from a sire ranged from 15 to 20, and their 
dams were generally not genotyped. For evaluation 
within a line, minor allele frequency needs to be ≥0.05 
to be included in the LD evaluation. A linkage map of 
these SNPs and other markers (both microsatellite 
markers and SNPs) genotyped for other projects was 
previously constructed using part of this dataset and 
additional genotype data as described by Grapes et al. 
[32]. 

Table 1. Description of six pig lines used in this study 
Line Breed Breeding Purpose 
PT Pietrain Terminal sire line 
DU Duroc Terminal sire line 
LR1 Landrace Maternal line 
LR2 Landrace Maternal line 
LW1 Large White Maternal line 
LW2 Large White Maternal line 

Population haplotype frequency estimation.  
The first step was to identify all alleles whose 

parental origins could be inferred with certainty 
conditional on the observed genotype data. For all 
SNPs on a chromosome, the probabilities of plausible 
linkage phases of each family sire were estimated 
using progeny genotype information. Given sire 
linkage phase, one can calculate the probability of 
haplotype of maternal origin [10]. The probabilities of 
haplotypes of the maternal origin for each offspring 
were calculated as the summation of the product of 
sire phase probability and the probability of haplotype 
of maternal origin conditional on sire phase over all 
sire linkage phases. 

For estimation of population haplotype 
frequency, animals with observed genotypes at both 
SNPs under evaluation were included; both 
haplotypes of all nonfinal offspring with genotypes 
and only maternal haplotypes of final offspring were 
used. Observed r2 and D’ were estimated using 
haplotype frequency for each line and every possible 
syntenic SNP pair. 
LD measures under independence.  

For each gamete included in a population 
haplotype frequency calculation, probabilities of 
having an allele at each SNP were estimated from its 
haplotype probability. Allele probabilities at each 
locus were randomly permuted among gametes, and 
haplotype probabilities for each gamete after 
permutation were calculated as the product of 
corresponding allele probabilities and used to estimate 
LD measures under independence. For each syntenic 
SNP pair in each line, 1,000 simulated permutations 
were performed and the average r2 (r2H0) and D’(D’H0) 
under independence were estimated.  
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Adjustment for recombination rate.  
As described above, LD is expected to be a 

function of linkage distance in animal populations, at 
least for tightly linked loci. Therefore, it is important 
to adjust the effect of recombination rate on the extent 
of LD when the dependence of LD measures on allele 
frequencies is evaluated. To avoid the complexity of 
heterogeneity and dependency among LD of different 
SNP pairs from the same chromosome, the adjustment 
was performed using the averages of LD of 
neighboring groups within each line. To do that, all 
syntenic SNP pairs were divided into groups based on 
the size of linkage distance between the two SNPs. For 
this purpose, totally 85 groups including groups with 
estimated map distance equal to 0, 0.1, 0.2, 0.3, 0.4, and 
0.5 cM were formed with a minimum 860 and 
maximum 40,662 pairs in each group. For a pair of 
SNPs from group i, its residual LD was estimated as: 

iijres DLLDLD −=  (7) 
for LD measures r2 and D’, respectively, where 

LDij is the observed value of an LD measure, iDL  is 
the average LD of group i.  
Dependence of r2 and D’ on MAF.  

Averages of the residual D’ estimated using Eq. 7 
were plotted against average minor allele frequencies 
(Fig. 2). Highest average residual D’ was observed in 
case of lowest MAF (0.067), and the variation among 
different lines was large, ranging from 0.23, to 0.43. As 
MAF increased to 0.15, the average residual D’ 
decreased rapidly in all lines. As MAF continuously 
increased to 0.20, the average residual D’ decreased 
rapidly in two terminal sire lines, but more 
moderately in four maternal lines. As MAF 
continuously increased from 0.20 to 0.5, the speed of 

reduction in D’ became more moderately in all lines, 
although there were differences among lines. It should 
be noted that the number of SNP pairs with extreme 
MAF (both largest and smallest) was much smaller 
compared to the number of SNP with intermediate 
MAF, implying that the accuracy in bias estimation 
was lowest in cases of extreme MAF. The bias in PT 
line was probably inflated by including a proportion 
of SNP pairs with small sample sizes due to different 
project origins. These results suggest that D’ is highly 
dependent on allele frequency, and the bias was the 
largest in case of lower MAF. 

As shown in Fig. 3, the average residual r2 were 
consistently low (= -0.01 to 0.01) for intermediate 
average MAF (e.g., MAF = 0.10 to 0.40) in all six lines. 
When the average MAF was low (<0.10; two MAF 
groups with average equal to 0.067 and 0.089), a small 
degree of bias in average residual r2 was observed in 
four pig lines and the bias was considerably larger in 
other two lines: one maternal line (LR1) and one 
terminal sire line (PT). This unusually large bias in PT 
is probably, in part, due to the small sample size for a 
proportion of SNP pairs with small sample size due to 
different project origins. The bias in LR1 was large for 
one MAF group: the average residual r2 was equal to 
0.063 when the average MAF was equal to 0.067. One 
possibility is that this bias was in part due to a 
relatively small number of SNP pair in this MAF 
group. As MAF increased from 0.40 to 0.5, the average 
residual r2 moderately increased in all lines. The 
increase of r2 due to larger than intermediate MAF 
was a surprise, and it appears to be partially caused 
by larger maximum r2 with intermediate allele 
frequencies: the increase is at least partially corrected 
when the ratio of observed r2 over r2max as defined in 
Eq. 5 was used (data not shown).  

Figure 2. Average of observed D’ as a function of average frequency of the minor alleles at each pair of SNPs in six pig lines. 
The breed origins of all lines were described in Table 1. 
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Figure 3. Average of observed r2 as a function of average frequency of the minor alleles at each pair of SNPs in six pig lines. 
The breed origins of all lines were described in Table 1. 

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 0.1 0.2 0.3 0.4 0.5

Average MAF

O
bs

er
ve

d 
R

es
id

ua
l r

2

LW2
LW1
LR2
LR1
DU
PT

 
LD measures as a function of MAF under 
independence.  

As shown in Fig. 4, D’ under independence (D’H0) 
was clearly dependent upon the average MAF of a 
SNP pair. As expected, D’H0 estimated via permutation 
under independence was inflated most in the case of 
lowest average MAF in which both SNPs had low 
allele frequencies (average D’H0 ranged from 0.187 to 
0.232 in 6 lines, when average MAF = 0.069). In 
comparison with results using observed genotype 
data, the dependency of D’H0 on allele frequency 
appears to be less strong. As average MAF increased, 
D’H0 decreased rapidly initially, and then at a slower 
rate. The relationship between average MAF and D’H0 
appears to be smooth within each pig line. There are 
small but probably detectable differences among 

different lines. Specifically, the level of D’H0 in PT was 
consistently high than other lines, which is probably 
due to a significant proportion of SNPs genotyped for 
different projects with a small overlapping sample 
size.  

LD measure r2H0 estimated under independence 
was consistently low (<0.002) for all SNP pairs under 
evaluation (Fig. 5). Little change in r2H0 was detected, 
as the average MAF increased from 0.067 to 0.485, 
suggesting that r2H0 is independent of allele frequency 
in absence of LD, at least with the sample sizes used in 
this study. The difference in r2H0 among different lines 
is visible in fold but small in magnitude (all r2H0 
<0.002), and one possibility is that r2H0 could be 
slightly affected by factors such as sample sizes.  

Figure 4. Average D’ under independence (D’H0) as a function of average frequency of the minor alleles at each pair of SNPs 
in six pig lines. The breed origins of all lines were described in Table 1. 
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Figure 5. Average r2 under independence (r2
H0) as a function of average frequency of the minor alleles at each pair of SNPs in 

six pig lines. The breed origins of all lines were described in Table 1. 
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Dependence of adjusted r2 and D’ on MAF.  

For each syntenic SNP pair under evaluation, the 
observed LD measure was first adjusted by LD (D’H0 
or r2H0) estimated under independence and then by its 
linkage distance using Eq. 7. These adjusted residual 
D’ and r2 were plotted against the average MAF (Figs. 
6 and 7, respectively). As shown in Fig. 6, the 
dependence between adjusted residual D’ and average 
MAF was clearly present after adjustment. However, 
in cases of low MAF (<0.20), the adjusted residual D’ 

was consistently smaller than their corresponding 
residual D’ (Figs. 2 and 6), suggesting that the 
adjustment of D’ via D’H0 partially removed the 
dependency of D’ on allele frequency. Moreover, the 
differences in bias in D’ among different lines were 
present after D’H0 adjustment. No effect of the 
adjustment of residual r2 using r2H0 was detected (Fig. 
7), which is consistent to the above results that 
showed lack of dependency of r2H0 on allele frequency 
under independence.  

Figure 6. Average D’ adjusted by recombination rate and D’H0 as a function of average frequency of the minor alleles at each 
pair of SNPs in six pig lines. The breed origins of all lines were described in Table 1. 
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Figure 7. Average r2 adjusted by recombination rate and r2
H0  as a function of average frequency of the minor alleles at each 

pair of SNPs in six pig lines. The breed origins of all lines were described in Table 1. 
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7. Whole genome population-wise linkage 

disequilibrium in pig populations  
The LD measure r2 was used to evaluate the 

extent of whole genome population-wise LD in pig 
populations. No adjustment of r2 based on allele 
frequency was performed. Extent and range of LD in 
individual lines will be reported elsewhere [33]. In Fig. 
8, LD measure r2 averaged over all six lines were 
plotted against the average linkage distance between 
the two SNPs of each pair. As expected, the most 

tightly linked SNP pairs had the highest average r2, 
and the observed average r2 was rapidly reduced 
initially as the linkage distance increased (e.g., to 3 
cM). While the extent of LD was low for a pair with 
linkage distance larger than 5 cM (r2 < 0.07), it 
continuously decreased, with gradually slower speed, 
as linkage distance increased to 150 cM, suggesting 
that there is a small proportion of loosely linked SNP 
pairs have low level of LD.  

Figure 8. Average of the observed LD measures adjusted by recombination rate as a function of map distance between two 
SNPs of each pair. A, r2; B, r2/ r2

max as defined in Eq. 5. 
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Figure 9. Standard deviation of the observed LD measures adjusted by recombination rate as a function of map distance 
between two SNPs of each pair. A, r2; B, r2/ r2

max as defined in Eq. 5. 
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As expected, the size of r2/ r2max was 

considerably larger than r2 for all linkage distance 
groups (Fig. 8). In a similar pattern to r2, the ratio of r2 
over r2max continuously decreased as the linkage 
distance between the SNPs increased. For a loosely 
linked SNP pair (e.g., >20 cM), the rate of change 
(defined by change per unit of linkage distance) in r2/ 
r2max was similar to that of r2. As linkage between two 
SNP of a pair became tighter, rate of change in r2/ 
r2max was faster than that in r2. For a pair of SNPs in 
very tight linkage (e.g., <0.3 cM), the rate of change in 
r2/ r2max was slightly slower than that of r2. One 
possible underlying cause to the slower rate change in 
r2/ r2max in case of very tight linkage is that r2 of a 
proportion of tightly linked SNP pairs has reached the 
maximum or its neighborhood of r2. For more explicit 
illustration, r2 was predicted for numerous linkage 
distances (Table 2). The most tightly linked group had 
the highest average r2 (0.513). As linkage distance 
increased to 0.1, 0.25, 0.5, 1.0, 3.0, 5.0, 10, 20, and 40 cM, 
the average r2 was reduced to 0.371, 0.321, 0.260, 0.206, 
0.103, 0.069, 0.035, 0.018, and 0.008, respectively. These 
results suggested that the LD in pig populations was 
extended to 1 to 3 cM and is more extensive than those 
in human population (e.g., [29-31]).  

The standard deviations of r2 estimates were 
estimated for each group formed based on linkage 
distances using data from six lines and were plotted 
against their corresponding linkage distances (Fig. 9). 
The standard deviations of r2 continuously decreased 
as linkage distance between two SNPs of a pair 
increased. The rate of change in standard deviations of 
r2 as a function of linkage distance was only slightly 
slower than those in r2. LD measure r2/ r2max displayed 
higher variability than r2 for all linkage distances 
investigated, especially for more loosely linked SNP 
pairs.  

Table 2. Effect of recombination rate on population-wise 
linkage disequilibrium 

Linkage 
distance (cM) 

r2 Linkage 
distance (cM) 

r2 

<0.1 0.513 5 0.069 
0.1 0.371 10 0.035 
0.25 0.321 20 0.018 
0.5 0.260 40 0.008 
1 0.206 60 0.006 
2 0.145 100 0.005 
3 0.103 150 0.005 

8. Discussion 
For pair-wise LD evaluation, D’ and r2 are the 

most commonly used LD measures (e.g., [6]). It is 
known that D’ depends on allele frequency, especially 
in cases of small sample sizes (e.g., [5]). In this study, 
we attempted to quantify the dependency of LD 
measures on minor allele frequency, by forming a 
large number of groups based on linkage distance and 
adjusting the effect of recombinant rates using group 
means of LD measures. This approach is chosen over 
correction via a general linear regression analysis for 
the following reasons: relationship between LD and 
linkage distance (or recombination rate) isn’t strictly 
linear; and a larger number of observed values should 
allow the adjustment of group means. The results of 
this study show that D’ is strongly dependent on allele 
frequency, and the dependency continuously 
decreased as the average MAF increased (Fig. 2), 
namely as heterozygosity of the two loci increased 
(because heterozygosity is an increasing function of 
MAF for biallelic loci). In analyzing microsatellite 
marker genotype data, McRae et al. [12] attempted to 
adjust the bias in D’ by fitting heterozygosity of the 
two loci as covariates, and showed that D’ slowly 
increased as heterozygosity of the two loci increased, 
implying that high heterozygosity inflated bias in D’ 
estimation. One probable reason for this contradiction 
is that D’ is most sensitive to number and frequencies 
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of minor alleles because the denominator of D’ is 
equal to a minimum of frequency products (Eq. 4). For 
biallelic data (such as SNP data), lower heterozygosity 
strictly corresponds to lower frequency of the rare 
allele, and therefore, inflates D’. However, with 
multiallelic data (such as microsatellite markers), 
markers with high heterozygosity often have 
one/more alleles with very low frequency, resulting in 
much inflated D’. On the other hand, markers with 
lower heterozygosity often have fewer alleles with 
intermediate frequency, which would correspond to 
smaller bias in D’. Therefore, caution needs to be taken 
when analyzing LD of SNPs and microsatellite 
markers. Whether or not heterozygosity is the best 
covariate is questionable, especially for multiallelic 
data.  

Still, D’ has been the primary LD measure for 
genotype data of multiple alleles in animal 
populations [10 to 13]. To eliminate the dependency of 
D’ on allele frequency and sample size, Devlin et al. 
[14] estimated D’ under independency (D’H0) by 
permuting alleles at each locus independent of alleles 
at the other locus and proposed to adjust the observed 
D’ by subtracting D’H0. In this study, we applied a 
similar permutation to evaluate the adjustment of D’ 
and r2. Our results showed a clear dependency of D’H0 
on allele frequency (Fig. 4). However, the dependency 
of D’H0 appears to be less severe than that in observed 
D’, and the adjustment of D’ using D’H0 only partially 
removes the bias caused by allele frequency: adjusted 
D’ is still a function of allele frequency (Figs. 2, 4, and 
6). One possible interpretation is that the dependency 
of D’ in absence of LD on MAF is different from that 
in presence of LD.  

The LD measure r2 is considerably more robust to 
allele frequency variation than D’, albeit not 
completely independent of allele frequency. In general, 
r2 appears to be inflated when the average MAF is 
either too low or too high (Fig. 3). The inflation of LD 
in case of high MAF can be at least partially due to the 
dependency of the maximum of r2 on allele frequency 
(Eq. 7 and data not shown). Permutation results show 
that r2 in absence of LD (i.e., r2H0) appears to be 
independent of allele frequency, and the adjustment of 
the observed r2 by r2H0 shows no detectable effect.  

In comparison to the extent in human 
populations, this study identified considerably more 
extensive LD in pig populations. However, the extent 
of LD found in this study appears to be somewhat 
lower than those implied by most previous studies 
using microsatellite markers (e.g., [10, 12, 13]). For 
example, Farnir et al. [10] suggested LD was extended 
to several tens of centiMorgans in a dairy cattle 
population, and these results were supported by 
several other studies [11, 12]. Although LD was 
detected among loosely markers in this study, the 
observed r2 averaged over six pig lines was generally 
low for loosely linked markers (e.g., r2 = 0.069, 0.035, 
and 0.018 for a pair of markers being 5, 10, and 20 cM 
apart, respectively). While LD is a property of a 
population, we think the discrepancy between this 

study and those using microsatellite markers is mainly 
due to the bias in D’ caused by allele frequency and its 
interpretation of the observed D’. As an example, the 
average of bias in D’ due to allele frequency and 
sample size under independence was equal to 0.26 
among microsatellite markers studied by Devlin et al. 
[14]. For pairs with several minor alleles of very low 
frequencies at both loci, the probability of D’ reaching 
0.5 or higher can be reasonably high in case of no or 
low LD. Therefore, inference based on the size of D’ 
and the proportion of marker pairs having D’ ≥ 0.5 can 
overestimate the extent of population-wise LD. On the 
other hand, the extent of LD found in this study is 
somewhat higher than those reported by Spelman and 
Coppieters [15]. For example, the average level of r2 
for markers within 1 and 5 MB was equal to 0.1 and 
0.04 in a Jersey sample, respectively, while average 
level of r2 for markers with an average linkage 
distance of 1 and 5 cM in this study was equal to 0.206 
and 0.069, respectively. These discrepancies could 
result from nature of different populations in two 
species, accuracy in linkage map marker order, and 
inaccurate translation between physical and genetic 
distances, and use of comparative information for 
marker order and distance. 

Distinguishing “usable” and “detectable” LD has 
practical implications. Theoretically (namely with an 
infinitely large sample), all instances of LD are 
detectable. However, only a sufficiently large degree 
of LD is “usable” in an LD mapping. While the level of 
LD needed in an LD mapping study depends on size 
of QTL effect, experimental power, and sample size, 
not all LD is “usable” in practice. Moreover, the 
threshold for “usable” LD could depend on 
applications and the nature and accuracy of trait 
phenotype measurements. In a case-control study, the 
required sample size is approximately equal to N/r2, 
where N is the sample size needed for genotyping the 
causal mutation. The size of most segregating QTL 
that are targets of mapping are expected to be 
moderate or small, and most economically important 
traits are moderately or lowly heritable, implying 
large residual error variance. Moreover, weak LD 
exists among unlinked loci [10], implying that one 
needs a stricter p value threshold for inference of 
linkage. Consequently, a large sample sizes are 
needed to achieve reasonably high power of detection 
when a causal mutation is genotyped. For a large 
proportion of QTL, it is unrealistic to further 
dramatically increase sample size (e.g., >10 times) by 
genotyping a marker in LD with a causal mutation. 
Therefore, the threshold for population-wise LD in a 
genome-wise association study should be set to be 
reasonably high. To our knowledge, no LD measures 
exist that allow us to calculate sample size for an 
association study of continuous traits. Using a 
case-control study as an analog, we think r2 of 0.3 (or 
slightly lower) as a threshold of “usable” LD in 
experimental designs for continuous traits in pigs is 
appropriate.  

Further analysis is needed for planning whole 
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genome association study using r2 = 0.3 as an 
appropriate threshold of LD in pigs. On average, SNPs 
that are 0.3 cM apart have r2 = 0.3. Because a marker 
would be in LD with loci on both sides, 0.6 cM spacing 
corresponds to r2 = 0.3 for a pair of marker and 
underlying QTL. While 0.6 cM SNP spacing could 
serves as an appropriate threshold for an initial whole 
scan, there are substantial benefits and therefore a 
denser SNP map is used for the following reasons. 
First, approximately half of the pairs that are 0.3 cM 
apart will have r2 <0.3, implying an incomplete search 
of QTL when r2 = 0.3 is used as a threshold; Second, 
the variance of r2 is large for tight linked SNPs, 
implying that more SNP genotyping would increase 
the probability of having a SNP in tight LD with 
underlying QTL; third, to view r2 = 0.3 as a threshold 
in pigs, will achieve power only for moderate or large 
size of QTL and generally with very large sample size. 
On the other side, a proportion of SNP pairs will have 
higher r2, and QTL can be detected using more loosely 
linked QTL. For a genome scan that is aimed to 
identify a proportion of QTL using sizeable sample 
size, sparse spacing (e.g., 1 cM) is appropriate. Scan of 
sparser spacing could be interesting in special 
situations (e.g., limited by marker availability). Based 
on these observations, we recommend a density of 0.1 
to 1 cM for an initial whole genome scan that uses 
population-wise LD. It is noted that this 
recommendation is considerably denser than those 
recommended by Nsengimana et al. [11] who 
suggested that genome-wise association studies are 
feasible in commercial pig populations at a marker 
density of 5 to 10 cM.  

The relationship between recombinant rates and 
the extent of LD was proposed to be used in linkage 
map construction [34]. For this purpose, steep slope 
with minimum noise would be desirable. The results 
in this study indicated that there exists a strong 
relationship between linkage distance and LD for 
reasonably tightly linked loci (e.g., <5 cM), and the 
extent of LD is only slightly affected by linkage 
distance for more loosely linked loci. Therefore, using 
data with higher extent of LD than some minimum 
threshold (e.g., 0.1) is probably more efficient than 
using all LD data for linkage map construction. Our 
results also show that the variations in LD for a given 
range of linkage distance is generally large, suggesting 
it will be difficult to achieve high accuracy in linkage 
map construction using LD data only. 

Characterization of population-wise LD will help 
us in rediscovering population breeding history 
including historic effective population sizes [7, 16] and 
chromosomal regions under consistent selection [19]. 
These areas are expected to attract more interests as 
genotypes of dense marker maps become more readily 
available. Another area that will be of great 
importance is the effect of presence of population-wise 
LD on efficiency of MAS. As more QTL are fine 
mapped, MAS will play an increasingly larger role in 
animal selection for breeding, and optimization of 
MAS in presence of population-wise LD will be 

increasingly important.  
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