






Telemetry Data Collection and Processing
We tracked condors with solar-powered GPS-Global System
forMobile Communications (GPS-GSM) patagial telemetry
units (Cellular Tracking Technologies [CTT], Rio Grande,
NJ, USA or Microwave Telemetry [MTI], Columbia, MD,
USA). The CTT telemetry units collected GPS data at 30-
second or 15–30-minute intervals, whereas the MTI units
collected data at intervals between 1minutes and 2 hours. The
GPSdata included location, date, time, altitude, ground speed
(knots), horizontal and vertical dilution of precision (HDOP
and VDOP), and fix quality (2D or 3D). The CTT telemetry
units collected altitude data as meters ASL, whereas theMTI
units collected altitude data as meters above the ellipsoid.
We interpreted behavior in telemetry data collected from

condors during December 2013 to August 2016. For analysis
purposes, we sub-sampled higher-frequency GPS telemetry

data from the CTT and MTI units to 15-minute intervals,
and we removed GPS data collected at night (time between
sunset and sunrise). For theMTI units, we converted altitude
above ellipsoid to altitude ASL by associating each GPS
location with a value representing a geoid undulation in a
2.5-minute grid (Pavlis et al. 2012). We then subtracted this
value from altitude above ellipsoid to obtain altitude ASL.
We filtered the remaining telemetry data to remove GPS

locations for which diagnostic or altitudinal data indicated
errors. For example, we removed 2D fixes and locations with
HDOP or VDOP �10 (D’Eon and Delparte 2005), and we
removed fixes with altitudes ASL >4,000m that were also
inconsistent with neighboring data points. For example, if
altitudes at points in a series were 1,500m, 6,000m, and
1,500m, we interpreted the location with the larger altitude
as indicative of a GPS error.

Figure 1. Global positioning system locations during the 1-week period from day 15–21 before blood collection of 31 California condors tracked in southern
California, USA, December 2013–August 2016, and locations of Bitter Creek and Hopper Mountain National Wildlife Refuges (NWR).
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We used ArcGIS v.10.3 (Environmental Systems Research
Institute, Redlands, CA, USA) to obtain the ground
elevation ASL at each GPS location from an approximately
30-m resolution digital elevation model (USGS 2015). We
then subtracted the ground elevation value from the altitude
ASL of each location to calculate flight altitude above ground
level (AGL). Finally, we removed fixes with altitudes AGL
� �50m (Katzner et al. 2012).

Flight Behavioral Data
Because we had little prior knowledge of how lead exposure
affects movements of condors (other than acutely poisoned
birds greatly reduce their activity and thus would not be likely
to fly to the trapping pen), we evaluated 3 different metrics of
condor flight behavior that we expected could be indicative of
lead exposure. These were hourly distances traveled by
condors, movement speeds between points, and the
proportion of GPS locations that indicated birds were in
flight. We chose these 3 parameters because illness in birds
causes reduced or erratic movements (USGS 1999) and
because these 3 metrics measure movements and flight
behaviors of condors. As a first step to calculate the first 2 of
these metrics, we used the movement.pathmetrics tool in
GeospatialModelling Environment (Beyer 2015) tomeasure
distances between each consecutive GPS location.
To calculate hourly distances traveled, we then summed the

distance traveled between the points nearest to the start and
end of each nominal hour (e.g., 0800–0900), limiting a
defined hour to 45–80minutes, and then standardized those
distances to a 60-minute hour (Rus et al. 2017). Because the
hourly distances had a varying number of locations within
each hour (e.g., 15-min data had 5 locations/hr and 30-min
data had 3 locations/hr), we determined that calculating
speed between points would be important, as this is a more
standardized distance metric. To do this, we calculated the
linear distance between 2 consecutive points and divided that
number by the time difference between those 2 points
(Katzner et al. 2015). We assigned each of these measure-
ments to the hour of the day in which the first GPS telemetry
point occurred.
To compute the proportion of GPS locations in flight, we

defined flight locations using published information on
golden eagles (Aquila chrysaetos; Katzner et al. 2015) that we
modified to account for condor behavior. We defined flight
locations as those with either a recorded speed �3.5 knots or
a recorded speed <3.5 knots that also had an altitude AGL
�100m. We then calculated the proportion of locations
within a specified time period (defined below) that were in
flight. Because of a known issue with estimation of flight
speeds in the 30-second data from the CTT units (speeds
were underestimated), we did not include in this analysis the
sub-sampled 30-second data.

Lead Exposure Events and Movement Periods
We studied lead exposure events for the subset of condors for
which we had blood-lead concentration values and telemetry
data. We defined an event as the combination of the blood-
lead measurement and the telemetry data collected prior to
the blood draw. In these analyses, we used blood-lead

concentration values from laboratory tests rather than those
from field test kits. Because we did not know how long before
capture that condors may have been exposed to lead, for each
event we tested the degree to which blood-lead concen-
trations predicted movement over 6 periods of different
durations and at different times before blood collection. The
length and timing of these periods were 4 fixed time intervals
of 2, 7, 14, and 30 days before blood collection and 2 1-week
intervals, from day 15–21 and from day 31–37 prior to blood
collection. We used these specific lengths and timings based
on the half-life of lead in condor blood samples (14 days; Fry
et al. 2009) and on deviations from that half-life that we
deemed might reasonably capture the uncertainty caused by
our lack of knowledge of the time of lead exposure.
Birds were in captivity from 0 to 11 days before blood

collection occurred. If a bird was in captivity for �1 day
before blood collection, then we counted those captive days
as part of the period, but we did not consider movement data
for those days. For example, if a bird was in captivity for 1 day
before blood was collected, then the 2-day period only
included data from the single day that the bird was free-
ranging. Likewise, the 7-day period only included 6 days of
data, the 14-day period only included 13 days of data, and the
30-day period only included 29 days of data. The 1-week
periods from day 15–21 and day 31–37 would be unaffected.
We also only included telemetry data on the day of capture if
the unit collected �5 locations on that same day, in the time
before the bird was captured. However, if a bird was captured
and blood was collected on the same day, then we did not
include telemetry data from the day of capture (i.e., periods
always began the day before blood collection).
Statistical Analyses
We ran 3 sets of linear mixed-effects models using the lme4
package (Bates et al. 2015) in R (R Core Team 2016) to test
for a behavioral response that was predicted by blood-lead
concentrations. The response variables in each of the 3 model
sets were hourly distances (averaged over each period), speeds
between points (reported as distance/min), and proportion of
locations in flight (within each period). We used a square
root transformation of the hourly distance moved response
variable and a log transformation of the speeds between
points response variable to meet the distributional assump-
tions of our statistical tests (Zuur et al. 2007). The
proportion of locations in flight response variable met
distributional assumptions so no transformation was neces-
sary.
For the model sets with hourly distances and proportion of

locations in flight as the response variables, our predictors
included as fixed effects the blood-lead measurement (mg/
dL), age (in years), and a categorical variable for describing
the period, as defined above. We included month and event
number nested within individual bird as random effects in
these models. All birds were of known age because they were
either raised in captivity and released into the wild or they
were wild-hatched at monitored nests.
For each of these 2 model sets, we first ran a global model as

described above with all fixed effects, and we calculated 95%
Wald confidence intervals for each coefficient. We then used
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the dredge function in the MuMIn package in R (Barton
2016) to run all possible sub-model combinations (Doherty
et al. 2012). We used Akaike’s Information Criterion
corrected for small sample size (AICc) to rank the models and
identify the models with the most support in the data (sum of
model weights [Swi] >0.9; Burnham and Anderson 2002,
Anderson 2008).
Because the results of these 2 model sets did not show an

effect of lead on flight behavior (see Results), we grouped the
data by period and ran 12 additional models, 2 for each
period. For these additional models, we did not include a
fixed effect for period, and within each period, we tested for
effects of lead exposure and age on our 2 response variables,
hourly distances moved and proportion of locations in flight.
For these models, we included month and individual bird as
random effects, and we calculated confidence intervals and
performed model selection as described above. For each
period, we also used a likelihood ratio test (using the lmtest
package in R; Zeileis and Hothorn 2002) to determine if 2
nested models within a model set differed from each other.
For the input dataset analyzed by models with speeds

between points as the response variable, instead of calculating
averages by period, our response variable was measured for
every time interval between consecutive GPS points. Because
each measurement can therefore be assigned to multiple
periods, the different periods cannot be included in a single
linear model. For this reason, we grouped the data by period
and ran 6 separate full models, one for each period, and in
each we included the blood-lead measurement and age as
fixed effects. In this case, we included random effects for
month, hour, and event number nested within individual
bird. We calculated confidence intervals and used model
selection and likelihood ratio tests as described above.

RESULTS

Our analyses included data from 67 events from 31 condors
(16 F and 15M, ranging in age from 1 to 36 yr at time of
blood collection). We considered 79,835 GPS locations
(x�� SD¼ 1,192� 430 locations/event). Our models con-
sidered data from 23 to 67 events/period and from 1,288 to
61,586 measurements of speeds between points/period
(Table 1). Blood-lead concentration values ranged from 0
(below the limit of detection) to 180mg/dL.

We calculated distances moved by condors over
21,567 hours in the 67 events (321� 103 hr/event). Average
hourly distances moved per event ranged from 5.7 km to
7.4 km over the 6 periods (Table 1). Our global model
suggested little to no predictive value for any of the fixed
effects we used to predict distances traveled by condors
(Table 2), and the confidence intervals for coefficients all
overlapped zero. Model selection suggested that only 2
models had support in the data (54% and 41% model
weights). Both of these included the period identifier and the
top model also included age (Table 3). Again, neither of
these models suggested any predictive value for the fixed
effects (i.e., the confidence intervals for the coefficients
overlapped zero). Models with the blood-lead measurement
did not have support in the data.
For the 6 models we ran that evaluated data by period,

either the null model or the age only model was the top
model, and these 2 models had 90–95% of all model weights.
The age model was different from the null model (based on a
likelihood ratio test) only in the day 15–21 period when it
was the top model, and the age coefficient did not overlap
zero. During this period, older birds traveled longer
distances. The blood-lead measurement did not predict
hourly distances in any of the 6 periods.
Speeds between points ranged from 0m/minute to

1,481m/minute over the 6 periods (Table 1). For each of
the 6 models we ran, the global model suggested no
predictive value for any of the fixed effects we used to
describe speeds between points (Table 4), and the confidence
intervals for each coefficient overlapped zero. In each of the 6
model sets, the null model had �95% of all model weights
(Table 3), and the likelihood ratio test indicated that the null
model was different from the second model. The blood-lead
measurement did not predict speeds between points in any of
the 6 periods.
Of the 79,835 GPS locations, 26,943 (34%) met our

definition of flight locations (402� 169 locations/event).
The average proportion of locations in flight in any period
ranged from 0.34 to 0.40, although, for any one event within
a period, from 1% to 95% of recorded locations indicated that
the bird was in flight (Table 1). The global model suggested
no predictive value for any of the fixed effects we used to
predict the proportion of locations in flight (Table 2), the

Table 1. Behavioral metrics evaluated to test for movement response during 67 lead exposure events for 31 California condors tracked in southern California,
USA, December 2013–August 2016. Data for each period include sample sizes (n), means� standard deviations, and ranges for the 3 response variables used in
models to investigate flight behavior: hourly distances, speeds between points, and the proportion of locations in flight.

Hourly distances (km) Speeds between points (m/min) Proportion of locations in flight

Period
n

condors
n

events x� SD Range
n

condors
n

measurements x� SD Range
n

condors
n

events x� SD Range

2-day 17 24 5.7 4.9 0.3–17.3 17 1,288 102.7 200.8 0–1,481 17 23 0.38 0.19 0.06–0.76
7-day 29 60 7.4 4.9 0.5–31.3 29 8,961 115.1 203.7 0–1,481 29 59 0.40 0.17 0.03–0.80
14-day 31 67 6.4 3.2 0.2–16.8 31 25,185 109.9 199.2 0–1,481 31 66 0.36 0.14 0.01–0.88
30-day 31 66 6.5 2.9 0.3–18.1 31 61,586 108.8 200.8 0–1,481 31 65 0.36 0.12 0.02–0.87
Day 15–

21
30 65 6.1 2.8 0.4–13.5 31 16,211 104.9 199.2 0–1,342 31 65 0.34 0.12 0.02–0.68

Day 31–
37

31 65 6.6 2.9 1.3–12.7 31 15,922 112.1 207.5 0–1,380 31 65 0.36 0.14 0.09–0.95
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confidence intervals almost always overlapped zero, and the
null model contained 100% of weights in the model set
(Table 3). For each of the 6 models we ran that included data
only for each of the 6 periods, the confidence intervals for
each coefficient overlapped zero, the null model had 100% of
all model weights in each model set, and the likelihood ratio
test indicated that the null model was different from the
second model. The blood-lead measurement did not predict
the proportion of locations in flight in any of the 6 periods.

DISCUSSION

The behavioral and physiological consequences to birds of
lead exposure are poorly known, and wildlife managers would
benefit from the development of behavioral tests for illness in
wild animals. These tests would be beneficial whether lead
exposure is clinical, thus resulting in treatment, or sub-
clinical. We attempted to use high-resolution telemetry data
to design a behavioral test to aid in the diagnosis of lead
exposure of condors. However, the metrics we measured did
not vary in ways that allowed us to detect a behavioral
response by condors to lead exposure. We discuss below 3

possible categories of explanations for our results based on
the biology of birds, especially obligate-soaring birds, the
sample of condors we used in this study, and the specific
parameters we measured to infer lead exposure.

Bird Biology
Animals that are sick may be subject to an increased risk of
predation or a loss in social status (Hart 1988). A variety of
social contexts can modulate the expression of behaviors
indicative of sickness (e.g., birds may behave as if they are not
sick to defend their territories, to gain access to mates, or to
maintain their social ranking [Lopes 2014]). Because strong
selection is present to suppress external signs of illness, mildly
or moderately sick birds may not show changes in movement
patterns that could be detected in telemetry data. Thus, with
the exception of extremely sick birds, identifying illness in
condors by analyzing their behaviors may be difficult.
Because condors are an obligate-soaring species, perhaps

flight is so critical to them that sick condors do not
substantially alter their flight patterns until they are near
death. Evidence from other work indicates that sick birds
may travel over long distances (Dusek et al. 2014, van Dijk
et al. 2015). Rather than flight performance declining at a
gradient with increasing blood-lead concentrations, response
to lead exposure instead may follow a threshold-type
response such that, when some critical blood-lead concen-
tration is reached, the bird ceases all routine flight activity.
Anecdotal observations from USFWS-led condor monitor-
ing suggest that this does occur; biologists previously have
found very sick birds based on observing that they did not fly
or leave a given area for an extended period of time. If such a
threshold-based response influences movement of these
birds, then we would be unlikely to detect a response with our
tests (unless the bird was acutely poisoned).

Sample of Condors
The sample of birds we used in this study may not have been
fully representative of the full range of lead exposure that
condors experience. Our sample was limited to birds that
were able to fly into the trapping pens and that were equipped
with working telemetry units. Further, the highest blood-
lead concentration we recorded in our sample birds was
180mg/dL; lead concentrations in living condors have been
recorded as high as 800mg/dL (authors’ personal observa-
tions). We are uncertain at which blood-lead concentration
value condors begin to show clinical symptoms from lead
exposure. If our sample had included birds with higher
blood-lead concentration values, those birds may have been
affected clinically and we may have detected a movement
response to lead exposure. Finally, although condors are
sensitive to diseases such as lead poisoning, they may be less
so than are golden eagles, a non-obligate soaring species that
have shown a negative flight response to increasing blood-
lead concentrations (Ecke et al. 2017).

Parameters Measured to Infer Lead Exposure
The behavioral and biological parameters we measured may
not have been appropriate to test for a response to lead
exposure. Other metrics besides the flight behaviors we
measured may be more valuable to study and should be

Table 2. Beta coefficients and standard errors from the global linear mixed-
effects models describing factors influencing average hourly distances
traveled and the proportion of locations in flight by 31 California condors
tracked in southern California, USA, December 2013–August 2016, during
67 lead exposure events. The reference variable for period is the 14-day
period.

Hourly distances
Proportion of

locations in flight

Parameter Beta SE Beta SE

Intercept 70.90 5.30 0.34 0.04
Lead 0.01 0.06 0.00 0.00
Age 0.58 0.32 0.00 0.00
2-day period �6.99 3.61 0.00 0.02
7-day period 3.62 2.57 0.03 0.02
30-day period 1.37 2.56 �0.01 0.02
Day 15–21 period �0.50 2.59 �0.03 0.02
Day 31–37 period 1.98 2.80 0.00 0.02

Table 3. Top model in Akaike’s Information Criterion corrected for small
sample size (AICc) model selection in each of 8 model sets describing factors
influencing flight behavior of 31 California condors tracked in southern
California, USA, December 2013–August 2016, during 67 lead exposure
events. Model results include 1 model set for hourly distances, 1 model set
for the proportion of locations in flight, and 6 model sets for speeds between
points. Model refers to the response variable for the model, effects refers to
the fixed effects in each top model, K refers to the number of parameters
(including intercepts) in a model plus 1 for the residual error term, and wi is
the weight of evidence in favor of each model.

Model Effects K wi

Hourly distances Ageþ period 11 0.54
Proportion of locations in flight Intercept only 5 1.00
Speeds between points
2-day Intercept only 6 0.95
7-day Intercept only 6 0.97
14-day Intercept only 6 0.98
30-day Intercept only 6 0.95
Day 15–21 Intercept only 6 0.98
Day 31–37 Intercept only 6 0.98
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considered in future efforts when comparing healthy and
lead-exposed birds. Possible metrics to consider may include
the altitude at which birds fly, the timing of arrival to and
departure from roost sites, the duration of time on the
ground, or the timing of arrival at a carcass. A condor with
severe lead exposure may be more aggressive than typical (as
may be the case for lead-exposed humans; Needleman et al.
1996, Nevin 2007, Mielke and Zahran 2012) and thus the
first to feed on a carcass, or it may behave subordinately to
others, regardless of its social status, and thus the last one to
feed on a carcass.
Our measurement technique (i.e., data collected at 15–30-

min intervals) may have been too coarse to detect a response
to lead exposure. Although some of the telemetry data we
collected were at 30-second intervals, the number of birds
from which we collected those data was so small that we were
compelled to analyze all of our data at less frequent intervals.
Because birds are so effective at concealing illness, possibly
only more intensive data collection (e.g., shorter intervals
between fixes or use of accelerometry data) would allow the
detection of behavioral changes in the parameters we
considered. However, such finer-scale data may not be
necessary because others have found a response with coarser
data. For example, in the golden eagle study (Ecke et al.
2017), the negative response to lead exposure was measured
with telemetry data collected at 15-minute intervals.
We also did not know the date or severity of each bird’s

exposure to lead. The lead concentration values we used in
our study were only a snapshot in time and likely did not
indicate the severity of lead exposure. Blood-lead concen-
trations are dynamic and influenced by the nature of the
exposure. Therefore, they may be of clinical concern shortly
after a severe exposure to lead, in a situation where lead
concentrations in the bird are increasing. Alternatively,
blood-lead concentrations can be of clinical concern some
time after an exposure of intermediate severity to lead, in a
situation where lead concentrations in the bird are peaking.
Finally, blood-lead concentrations can be of clinical concern
a longer time after a severe exposure to lead, in a situation
where lead concentrations in the bird are decreasing. Thus,
because elevated blood-lead concentrations are so dynamic
and can be indicative of so many different internal states and
exposure routes, our analyses may have been confounded so
thoroughly that the broad-scale data and statistical tools we
used were unable to detect effects of lead exposure on
movement.
The effects of lead exposure are individual-dependent

and likely influenced by the bird’s history of such exposure
(Finkelstein et al. 2010). In particular, birds with a history

of lead exposure or acute lead poisoning may show a
stronger response to a non-severe lead exposure event than
would a bird with less historical exposure to lead.
Although we attempted to account for this by including
age as one of the fixed effects in our models, age is
indicative of potential, not actual, exposure to lead. Future
studies should therefore also consider known past exposure
events when evaluating current behavioral responses to
illness.
Finally, sampling tissues other than blood or multiple

tissues may be indicative of diverse exposure events and
histories. Different tissues within a single bird may have
widely varying lead concentrations, indicating that lead is
unequally distributed throughout the bodies of organisms
(Behmke et al. 2017). This may be due largely to variations
in uptake and half-life of lead in tissues. Thus, measuring
lead exposure by sampling any one tissue may not be
sufficient to determine the degree of lead exposure and
intoxication. That said, sampling feathers may provide more
precise linkages to lead exposure, allowing tracking of the
trajectory of lead concentrations (whether they are
increasing, peaking, or decreasing) over the feather growth
period (at �5-day resolution; Finkelstein et al. 2010). That
finer-grained resolution may therefore be more closely
associated with movement patterns than are blood-lead
concentrations.

MANAGEMENT IMPLICATIONS

Our work represents one of the first attempts to identify lead
exposure in condors through behavioral analyses. Lead
poisoning is critical to many wildlife species, and conse-
quently, developing a behavioral test is an important goal for
wildlife management. As such, reporting the inability to
detect a response in movement behavior to lead exposure is
useful because it reduces the pool of potential metrics that
may be considered in future evaluations of behavioral tests.
Future study of this issue should consider using a more
representative sample of condors, testing other tissues for
lead concentrations (rather than, or in addition to, blood), or
focusing on behaviors less fundamental to condor survival
than flight.

ACKNOWLEDGMENTS

The findings and conclusions in this article are those of the
authors and do not necessarily represent the views of the
USFWS. Any use of trade, product, or firm names is for
descriptive purposes only and does not imply endorsement
by the U.S. Government. We thank A. L. Fesnock, A. V.
Blackford, K. A. Martin, S. L. Kirkland, J. C. Hall, and

Table 4. Beta coefficients and standard errors from the 6 global linear mixed-effects models (1 model per period) describing factors influencing speeds between
points by 31 California condors tracked in southern California, USA, December 2013–August 2016, during 67 lead exposure events.

2-day 7-day 14-day 30-day Day 15–21 Day 31–37

Parameter Beta SE Beta SE Beta SE Beta SE Beta SE Beta SE

Intercept 2.56 0.55 1.90 0.42 1.94 0.35 1.80 0.33 1.83 0.38 1.98 0.34
Lead 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Age �0.03 0.04 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01

Poessel et al. � California Condor Response to Lead Exposure 7



others for their support of this research. We also thank the
many people who assisted with condor monitoring,
trapping, handling, and telemetry at USFWS; this study
would not have been possible without their efforts. This
work was supported by the California Department of Fish
and Wildlife (agreements P1182024 and P148006), the
Bureau of Land Management (contract L11PX02237), the
National Fish and Wildlife Foundation, and the authors’
institutions.

LITERATURE CITED
Abel, B., and I. Grossman. 1992. Observations of a lead poisoned trumpeter
swan. Passenger Pigeon 54:215–219.

Anderson, D. R. 2008. Model based inference in the life sciences: a primer
on evidence. Springer ScienceþBusiness Media, New York, New York,
USA.

Barton, K. 2016. MuMIn: multi-model inference. R package version 1.15.6.
http://CRAN.R-project.org/package=MuMIn.

Bates, D., M.M€achler, B. M. Bolker, and S. C.Walker. 2015. Fitting linear
mixed-effects models using lme4. Journal of Statistical Software 67:1–48.

Behmke, S., P. Mazik, and T. Katzner. 2017. Assessing multi-tissue lead
burdens in free-flying obligate scavengers in eastern North America.
Environmental Monitoring and Assessment 189:139.

Beyer, H. L. 2015. Geospatial Modelling Environment, version 0.7.4.0.
http://www.spatialecology.com/gme. Accessed 15 Jan 2017.

Beyer, W. N., J. W. Spann, L. Sileo, and J. C. Franson. 1988. Lead
poisoning in six captive avian species. Archives of Environmental
Contamination and Toxicology 17:121–130.

Buechley, E. R., and SC. H. SSekercio�glu. 2016. The avian scavenger crisis:
looming extinctions, trophic cascades, and loss of critical ecosystem
functions. Biological Conservation 198:220–228.

Burnham, K. P., and D. R. Anderson. 2002. Model selection and
multimodel inference: a practical information-theoretic approach. Second
edition. Springer-Verlag, New York, New York, USA.

Church, M. E., R. Gwiazda, R. W. Risebrough, K. Sorenson, C. P.
Chamberlain, S. Farry, W. Heinrich, B. A. Rideout, and D. R. Smith.
2006. Ammunition is the principal source of lead accumulated by
California condors re-introduced to the wild. Environmental Science &
Technology 40:6143–6150.

D’Eon, R. G., and D. Delparte. 2005. Effects of radio-collar position and
orientation on GPS radio-collar performance, and the implications of
PDOP in data screening. Journal of Applied Ecology 42:383–388.

Doherty, P. F., G. C. White, and K. P. Burnham. 2012. Comparison of
model building and selection strategies. Journal of Ornithology 152:
S317–S323.

Dusek, R. J., G. T. Hallgrimsson, H. S. Ip, J. E. J�onsson, S. Sreevatsan,
S. W. Nashold, J. L. TeSlaa, S. Enomoto, R. A. Halpin, X. Lin, N.
Fedorova, T. B. Stockwell, V. G. Dugan, D. E.Wentworth, and J. S. Hall.
2014. North Atlantic migratory bird flyways provide routes for
intercontinental movement of avian influenza viruses. PLoS ONE 9:
e92075.

Ecke, F., N. J. Singh, J. M. Arnemo, A. Bignert, B. Helander, Å. M. M.
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