
genotype information provides a more precise estimate of the Mendelian sampling 

term. When genotyping a proportion of the selection candidates at random, information 

on the parent average and Mendelian sampling values are not utilized when deciding 

who to genotype, both of which provide information on the probability of an animal 

being selected to serve as a parent. As a result, a greater proportion of animals needed 

to be genotyped to ensure all animals that have a high probably of being selected to 

serve as parents are genotyped, which is what was observed. For example, 80% to 100% 

of the selection candidates needed to be genotyped when genotyping was done at 

random in order for there not to be a reduction in the index response. The genotype 

proportion with diminishing returns is likely to be population specific and depends on 

the proportion of the selection candidates that are selected within a given generation 

and the mating design. For example, assortative mating plans result in a subset of the 

families with a high probability of generating selection candidates compared to random 

mating which was utilized in the simulation. As a result, the genotype proportion with 

diminishing returns needs to be taken in the context of a population breeding design. 

Lastly, when EBV were estimated using ssGBLUP instead of pBLUP, the selection 

response for trait 1 was reduced and increased for trait 2. When EBV were estimated 

with pBLUP, EBV for trait 2 had a lower accuracy and the resulting EBV were regressed 

more toward zero resulting in a lower EBV standard deviation compared to trait 1. As a 

result, under pBLUP the EBV for the second trait contributed less to the overall index 

compared to the EBV estimated using ssGBLUP. 

Genotyping an animal resulted in a large increase in the accuracy and an even larger 

increase was observed when a selection candidate did not have phenotypic information 

on the trait. For strategies that genotyped a certain proportion of the selection 

candidates, the increase in accuracy as a greater number of animals were genotyped 

was negligible for trait 1 as a result of phenotypic information being available at the 

time of selection. For strategies that genotyped a certain percentage of the selection 

candidates, the accuracy of genotyped animals for trait 2 increased as more selection 

candidates were genotyped and the increase in accuracy was dependent on the 

genotyping strategy. For the selective genotyping strategy, the accuracy increased to a 

greater extent as more selection candidates were genotyped compared to the random 

genotyping strategy. Across both species and both phenotyping strategies, when 

genotyping the same proportion of animals, the accuracy was numerically larger under 

the random scenario compared to the selective genotype strategy. The accuracy when 

selectively genotyping at a given percentage is, in part, lower than randomly genotyping 

at the same percentage due to only having a portion of the full-sib and/or half-sib 

families genotyped. As a result, additive genetic variation explained by the markers is 

not being fully captured, which is verified by a smaller numerical difference in the 

accuracy of selective versus random genotyping as a greater proportion of the animals 



are genotyped. It should be noted that the accuracy in this context is population-wide 

and does not reflect the standard error associated with an individual animal’s EBV. As a 

result, selective genotyping allows for one to obtain a more precise EBV prediction (i.e., 

individual animal accuracy) for animals which have a high probability of being parents 

without any significant reduction (P-value > 0.05) in the population-wide accuracy. For 

random selection, a EBV prediction was more accurate, but an animal with a low and 

high probability of being selected has an equal chance of getting genotyped. For 

example, when genotyping the same proportion of animals, the numerically largest 

difference in accuracy for selective genotyping versus random was observed at 20%, 

although the selection response was larger for the selective genotyping scenario versus 

the random genotyping scenario. This highlights the importance of genotyping 

selection candidates in order to obtain an estimate of the Mendelian sampling term. For 

the nongenotyped animals, minor changes in the accuracy were observed for trait 1 and 

when randomly genotyping selection candidates for trait 2. Lastly, the accuracy for the 

nongenotyped animals for trait 2 decreased as a greater proportion of the high index 

value selection candidates were genotyped, although the error surrounding the accuracy 

estimate was much larger for trait 2 compared to trait 1. In the nongenotyped group for 

trait 2, as more individuals were genotyped the nongenotyped group was comprised of 

selections candidates whose parents were older compared to the genotyped group. As a 

result, selection candidates with older genotyped parents along with changes in allele 

frequencies and the additive genetic variance across time likely resulted in compatibility 

issues between G and A22. In a real population, these issues are not likely to arise due to 

multiple traits being selected for simultaneously and as a result less change is expected 

for each trait. In order to verify that the decrease was partially explained by older 

genotyped parents with nongenotyped offspring, a simulation similar to the swine 

scenario, but with discrete generations (i.e., parents are only allowed to serve as parents 

for 1 generation) was generated (results not shown). With discrete generations, the 

accuracy for nongenotyped individuals on trait 2 no longer decreased as a greater 

proportion of the selection candidates were selectively genotyped. 

Across both species and phenotyping strategies and within each genotyping scenario 

for trait 1 and 2, the degree of inflation/deflation in EBV was similar across 

nongenotyped versus genotyped selection candidates. This is of primary importance in 

order to alleviate issues when comparing the EBV for animals that are not genotyped 

versus have genotyped information. Furthermore, across all genotype scenarios in the 

swine population, the 95% CI contained 1.0, although for some genotype scenarios in 

the cattle population the 95% CI did not contain 1.0. As outlined in Koivula et al. (2015) 

and more recently in Martini et al. (2017), different scaling values for G and A22 when 

setting up ssGBLUP will impact the degree that EBV are inflated/deflated. As a result, the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247857/#CIT0011
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choice of the blending factors can be optimized, although outside the scope of the 

current manuscript, in order to minimize the amount EBV are inflated/deflated. 

Across both phenotyping strategies the same plateau was observed in terms of the 

genotype proportion, but the response was lower in the dense_sparse scenario 

compared to the dense_dense across both populations. Therefore, optimizing the 

number of phenotypes and genotypes simultaneously needs to be investigated in order 

to further optimize the response to selection as a function of the cost to run a breeding 

program. Furthermore, under the dense_sparse scenario, it was assumed that within 

each sex, 20% and 40% of the selection candidates in the swine and cattle scenario 

obtained phenotypes for trait 2. A simplistic scenario was generated herein. Admittedly, 

in cases where traits are sex-limited, when the density of phenotypic information varies 

across sexes for other reasons, or when having phenotypic information on certain traits 

necessitates genotyping, the proportion of selection candidates that need to be 

genotyped could be impacted. 

 

CONCLUSIONS 

When simulating 2 phenotyping scenarios, the current study has shown that animals can 

be selectively genotyped in order to reduce the cost of genotyping animals, with 

minimal reduction in the response to selection. Using a simulated swine and cattle 

population, the plateau of diminishing returns was observed when only 60% of the 

selection candidates with the largest index values were genotyped. Therefore, selective 

genotype can be utilized to optimize the response to selection as a function of the cost 

to conduct a breeding program. Further research investigating the optimization of 

genotyping and phenotyping strategies is needed. 
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Figure S1. Linkage disequilibrium (r2) decay for SNP in the marker panel in the founder 
population for the swine and cattle population. 

 
 
 
 
 
 
 
 
 
 
 





 
 
Table S2. Mean (95 % Confidence Interval) true breeding value response per generation for 
trait 1, trait 2 and the index across different genotyping1 and phenotyping2 scenarios for the 
cattle population. 
Phenotyping 

Scenario 

Genotyping 

Scenario 
Trait 1 Trait 2 Index 

dense_dense 

pblup 0.189 (0.186-0.192) 0.229 (0.228-0.231)* 0.241 (0.24-0.242)* 

random20 0.184 (0.181-0.187) 0.245 (0.243-0.246)* 0.253 (0.252-0.254)* 

index20 0.187 (0.184-0.19) 0.252 (0.25-0.253)* 0.259 (0.258-0.261)* 

random40 0.180 (0.177-0.183) 0.249 (0.248-0.25)* 0.257 (0.255-0.258)* 

index40 0.184 (0.181-0.187) 0.255 (0.254-0.257)* 0.262 (0.261-0.263)* 

random60 0.184 (0.181-0.187) 0.253 (0.252-0.255)* 0.26 (0.259-0.262)* 

index60 0.185 (0.182-0.188) 0.257 (0.256-0.259) 0.264 (0.263-0.265) 

random80 0.185 (0.182-0.188) 0.256 (0.254-0.257)* 0.263 (0.261-0.264)* 

index80 0.185 (0.182-0.188) 0.258 (0.257-0.26) 0.265 (0.264-0.266) 

all 0.186 (0.183-0.189) 0.260 (0.258-0.261) 0.266 (0.265-0.267) 

dense_sparse 

pblup 0.189 (0.185-0.192)* 0.203 (0.201-0.205)* 0.220 (0.218-0.222)* 

random20 0.176 (0.172-0.180) 0.222 (0.22-0.224)* 0.234 (0.232-0.235)* 

index20 0.179 (0.175-0.182) 0.232 (0.23-0.234)* 0.243 (0.241-0.244)* 

random40 0.178 (0.174-0.181) 0.228 (0.226-0.23)* 0.239 (0.238-0.241)* 

index40 0.178 (0.175-0.182) 0.235 (0.233-0.237)* 0.245 (0.243-0.247)* 

random60 0.179 (0.175-0.182) 0.231 (0.229-0.233)* 0.242 (0.240-0.244)* 

index60 0.179 (0.175-0.182) 0.237 (0.235-0.239) 0.246 (0.245-0.248) 

random80 0.179 (0.176-0.183) 0.237 (0.235-0.239) 0.247 (0.245-0.248) 

index80 0.177 (0.173-0.180) 0.240 (0.238-0.242) 0.249 (0.247-0.250) 
all 0.180 (0.176-0.183) 0.240 (0.238-0.242) 0.249 (0.247-0.251) 

1 Within a phenotype scenario, a genotyping scenario with a * is statistically different  ( P-value < 0.05) 
from the scenario where all animals are genotyped (i.e. all).  
2 See Table 1 for a description of the heritability, genotyping and phenotyping scenarios. 

 

 
 
 


