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a b s t r a c t

The effects of climate change have wide-ranging impacts on
wildlife species and recent studies indicate that birds’ spring arrival
dates are advancing in response to changes in global climates. In
this paper, we propose a spatio-temporal approach for comparing
avian first arrival data for multiple species. As an example, we
analyze spring arrival data for two long-distance migrants (Ruby-
throated Hummingbird Archilochus colubris; and Purple Martin
Progne subis) in eastern North America from 2001–2010 using
Citizen Science data. The proposed approach provides researchers
with a tool to compare mean arrival dates while accounting
for spatial and temporal variability. Our results show that on
average, Purple Martins arrive 29.95 to 31.84 days earlier than
Ruby-throated Hummingbirds, but after accounting for this overall
difference, spatial nuances exist whereby martins arrive earlier in
the southern United States and migrate northward at a slower rate
than hummingbirds. Differences were also noted in how climate
and weather variables such as the North Atlantic Oscillation index,
winter temperature, winter–spring precipitation, sampling effort,
and altitude impacted migration dates. Our method may easily be
generalized to analyze a broad range of temporal and spatial Citizen
Scientists data to help better understand the ecological impacts of
climate change.
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1. Introduction

The effects of climate change are apparent and have wide-ranging impacts on wildlife species
(Parmesan and Yohe, 2003). Advancements in spring events, poleward range shifts, and changing
interactions among species have been predicted (Matthews et al., 2011) and demonstrated (McKinney
et al., 2012). In many cases, birds are sentinels of change and many studies have reported that avian
migration dates have advanced in response to changes in global climates (Møller et al., 2010; Knudsen
et al., 2011). These advancements have been correlated with changes in temperature (Courter et al.,
2013a; Hurlbert and Liang, 2012), precipitation (Studds and Marra, 2011), and large-scale climate
indices such as the North Atlantic Oscillation (NAO) index (Gordo et al., 2011).

Not only are the life history characteristics of many birds suitable for detecting potential climate-
related impacts (e.g., birds are volant, migratory, and highly responsive to environmental changes),
but birds are also popular among naturalists and continental-scale monitoring programs for birds
have been in place in North America since the 1880s (Zelt et al., 2012). Today, smartphones and
associated web-based platforms make it easier than ever for groups of Citizen Scientists to contribute
data to field-based phenology studies (Sullivan et al., 2014). One advantage of assessing changes in
avian arrival dates using Citizen Science data is the ability of researchers to understand ecological
processes at broader spatial scales (Knudsen et al., 2011). Traditional bird phenology studies have been
conducted at broad temporal but narrow spatial scales (Ledneva et al., 2004; Swanson and Palmer,
2009). While there are benefits to site-based approaches (e.g., the ability to reduce observer error,
to utilize consistent weather data, etc.), inferences are limited spatially and may not account for the
spatial variability of ecological process such as climate change (Primack et al., 2009). Data collected
at broad spatial scales are especially important for assessing changes in arrival dates of long-distance
migrants that sometimes fly thousands of kilometers between breeding andwintering grounds during
their annual cycles (Hostetler et al., 2015).

At a time when long-term migration data and climate data are becoming increasingly available
for use by researchers (e.g., through programs such as the North American Bird Phenology Program,
eBird, etc.), large-scale comparisons of migratory changes at broad temporal and spatial scales are
beginning to emerge (Hurlbert and Liang, 2012), although most studies assess migratory changes for
a particular species (e.g., Courter et al., 2013a, Laughlin et al., 2013, Arab and Courter, 2015). Therefore,
the objective of our study is to provide a technique for comparingmigratory changes among species. As
an example, we demonstrate a spatio-temporal comparison of two long-distance migrants in parts of
the eastern United States from 2000 to 2010 to elucidate potential differences in the effects of spatial
and climate variables on the timing of migration. Our proposed model provides a straightforward
exploratory data analysis tool for inferential purposes as well as for predictive modeling.

2. Materials and methods

2.1. Focal species

Ruby-throated Hummingbirds (Archilochus colubris) winter in Central America and migrate across
the Gulf of Mexico between February and May to their breeding grounds in eastern North America.
They feed primarily on nectar and small insects during migration (Robinson et al., 1996). Purple
Martins (Progne subis) winter in South America and migrate to North America between February and
May, with male ‘‘scouts’’ often arriving several weeks before females to look for suitable breeding
territories (Tarof and Brown, 2013). Martins are aerial insectivores and arrive in North America
approximately one month earlier than hummingbirds (Tarof and Brown, 2013; Courter et al., 2013a).
For the purposes of our study, we considered both species to be ‘‘long-distance’’ migrants because
they regularly winter outside of the United States (Butler, 2003).

2.2. First arrival and weather data

We use first arrival data for these species from two Citizen Science programs: First arrival dates
of Ruby-throated Hummingbirds from 2001 to 2010 were reported by Citizen Science volunteers
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through hummingbirds.net and Journey North, and were accessed from the Journey North online
database (https://www.learner.org/jnorth/; for additional details, see Courter et al., 2013a). Purple
Martin data from 2001 to 2010 were collected by a similar network of volunteer naturalists from
the Purple Martin Conservation Association (PMCA; www.purplemartin.org; for additional details,
see Arab and Courter, 2015). To approximate weather conditions associated with each first arrival
report, we used weather data from the National Oceanic and Atmospheric Administration Time Bias
Corrected Divisional Temperature–Precipitation–Drought Index data set reported by climate division.
We included spatial and climatic variables in our analysis that had previously been linked to changes
in first arrival dates such as temperature, precipitation, winter (December–March) values of the North
Atlantic Oscillation Index (WNAO), and altitude, and kept variables in our final models that explained
significant variation for either hummingbirds or martins. See Supplementary File for further details
about the variables (see Appendix A).

We then developed a grid system to aggregate first arrival dates (given as day-of-the-year with
January 1st as ‘‘1’’) by year and species. First arrival dates were most consistently reported in mid-
latitudes of North America (i.e., between 32–41° N, and 95–80°W) throughout our study, so for each
degree of latitude between 32° and 41° N, arrival dates were grouped into one of three 5° longitude
bands (i.e., 94.99° W–90.0° W, 89.99° W–85.0° W, and 84.99° W–80.0° W). Setting up a grid in this
manner ensured that ≥5 observations were available in each grid cell (total of 30 grid cells) for each
species/year combination. We calculated a mean first arrival date for each grid cell, year, and species
combination.

2.3. Hierarchical spatio-temporal modeling

We used a hierarchical modeling approach to account for spatial and temporal variability in
the data. Hierarchical modeling has become increasingly popular in ecological and environmental
studies due to their flexibility for handling complex data (Clark, 2005; Wikle, 2003). In a hierarchical
model, a complex problem is decomposed into a series of simpler sub-problems linked by rules of
conditional probability (Berliner, 1996; Arab et al., 2008). This flexible modeling approach allows the
analyst to simultaneously account for data sampling variability, parameter uncertainty, and potential
dependence structures such as spatial and temporal structures.

LetYj,t = (Y1,j,t , . . . , Yn,j,t)
′ denote the vector ofmean arrival dates for the jth species (j = 1, . . . , J;

J = 2 in our case,) for the grid cells (i = 1, . . . , n; n = 30 in our case) over years in the study (t = 1,
. . . , T ; T = 10 for years 2001–2010) where Yi,j,t represent the mean arrival dates for the jth species,
for the ith grid cell in the tth year. Using a hierarchical modeling framework (Berliner, 1996) which
relies on three stages of Data, Process, and Parameter Models, we define the following Data Models for
the Purple Martins and Ruby-throated Hummingbirds

Yj,t ∼ N(mj,t ,Dj,t), for j = 1, 2, (1)

where mj,t = (m1,j,t , . . . ,mn,j,t)
′ denotes the vector of the mean arrival process, and Dj,t =

diag(σ 2
1,j,t , σ

2
2,j,t , . . . , σ

2
n,j,t) denotes the error variance–covariancematrix for the jth species (j = 1, 2;

our arbitrary notation uses 1 for Purple Martin, and 2 for Ruby-throated Hummingbird) and year t .
Here, the observed mean arrival dates, mi,j,t ’s, in (1) are assumed to be conditionally independent
(conditioned on a process model that accounts for spatial and temporal dependence) and thus, the
off-diagonal elements of Dj,t ’s are set to zero.

We define the Process Models as follows

mi,j,t = b0,j + µi,j + X′

i,j,tbj + U′

i,j,taj, for j = 1, 2; i = 1, . . . , n; t = 1, . . . , T , (2)

where µj = (µ1,j, . . . , µn,j)
′ denotes the spatially-varying mean for the jth species, b0,j is the

‘‘global mean’’, bj = (b1,j, . . . , bK ,j)
′ represent the vector of regression coefficients with elements

for K predictor variables, and aj = (a1,j . . . , aC,j)
′ denote the vector of coefficients with elements

for C temporal trend parameters (linear, quadratic, cubic, etc.). Xi,j,t denotes the vector of predictor
variables for the ith grid cell, andUi,j,t denotes the vector of temporal predictors (e.g., with all elements
equal to t , t2, t3, etc.) for the ith grid cell. Note that in our case we only have 10 years of data with

https://www.learner.org/jnorth/
http://www.purplemartin.org
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no strong evidence of temporal dependence in the data and thus, an autoregressive model for the
temporal component of the model does not seem appropriate (e.g. Arab and Courter, 2015 use an
AR(1) process to model temporal dependence). Our predictor variables include January–February
temperature (JF-Temp), February–April precipitation (FA-Precip), WNAO, mean altitude (calculated
based on the mean of altitude values for each cell), and sampling effort (i.e., the number of observers
in each cell). All the predictor variables were standardized.

Additionally, we consider a process model for the measurement error of data. This is a critical
component of our approach given that the data are obtained using Citizen Science programs in lack
of a scientific sample design, and with varying sampling efforts over space and time. We extend
the approach described in Yan (2007) and Reich and Hodges (2008) to model spatially-varying
measurement error variances using a heteroskedastic Conditional Autoregressive (CAR)model. To this
end, we model the ‘‘true’’ standard deviations for each cell, in each year, based on constant, spatial,
and temporal components of variability, as well as predictor information:

log(σi,j,t) = uj + φi,j + vj,t + αjxsi,j,t , for j = 1, 2; i = 1, . . . , n; t = 1, . . . , T , (3)

where uj ∼ N(0, σ 2
u,j) denotes the log error standard deviation for species j, φi,j represents the

change of log error standard deviation for the ith grid cell compared to the average error standard
deviation for species j, vj,t ∼ N(0, σ 2

v,j) denotes the log error standard deviation for time t for species
j, xsi,j,t denotes the predictor variable that predicts the magnitude of the error, and αj denotes the
corresponding regression coefficient for xsi,j,t . In general, we may consider several predictor variables,
however, based on model selection results, we only consider sampling effort as a predictor variable
for the error standard deviation.

We consider the spatial structure for the spatially-varying parameters µj, for j = 1, 2 based on
CAR models (see, e.g., Cressie and Wikle, 2011 and Banerjee et al., 2014):

µj,l|µj,−l, τ
2
j,l ∼ N


s∈Nl

cj,lsµj,s, τ
2
j,l


. (4)

where l, s = 1, . . . , n, and µj,−l denotes the vector of spatially-varying parameters for all grid cells
except the lth grid cell. Also, Nl is the set of neighboring sites for l, and cj,ls’s are weights defined such
that cj,ls = 1 for l ≠ s, cj,qq = 0 for q = 1, . . . , n, and cj,lsτ 2

j,l = cj,slτ 2
j,s. τ

2
j,l’s denote precision parameters

(i.e., the inverse of variance components) and are commonly assumed to be the same and equal to τ 2
j .

Alternatively, one may consider a bivariate intrinsic CAR (BICAR) model for the spatial structure of
µ1 andµ2 (for details seeMardia, 1988; Carlin and Banerjee, 2003 and Gelfand and Vounatsou, 2003).
This choice poses an assumption of dependence between spatialmeans for the two species. The choice
ofmultivariate CARmodels seems appropriate for analyzing spring arrival data for ecologically related
species. However, we do not have strong scientific evidence supporting this assumption for the two
species under study.

Similarly, we considerφj ∼ CAR(τ 2
φ,j)whereφj = (φ1,j, . . . , φn,j)

′ is the vector of spatially-varying
components for the log measurement error standard deviation, and τ 2

φ,j represents the precision
parameter of the CAR model (defined similarly as in Eq. (4)).

2.4. Model implementation and inference

Inference is conducted in a Bayesian framework using Markov chain Monte Carlo (MCMC; e.g., see
Robert and Casella, 2004). We define the following relatively non-informative prior distributions
(i.e., distributions with small mean and relatively large variance) for the unknown parameters (also
called the Parameter Models in the hierarchical framework) for species j = 1, 2,

bk,j ∼N(µ = 0, σ 2
= 100), k = 0, 1, . . . , K ,

ad,j ∼N(µ = 0, σ 2
= 100), d = 1, . . . , C,

σ 2
ϵ,j ∼InvGamma(mean = 1, var = 100).
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We also define the following prior distributions for the precision parameters of the CAR priors for
both models (i.e., hyperparameters for the CAR priors)

τ 2
j ∼Gamma(mean = 1, var = 100), j = 1, 2,

τ 2
φ,j ∼Gamma(mean = 1, var = 100), j = 1, 2.

For the remaining unknown parameters of the measurement error process model, we considered
the following relatively non-informative prior distributions for species j = 1, 2,

αj ∼N(µ = 0, σ 2
= 100),

σ 2
u,j ∼InvGamma(mean = 1, var = 100),

σ 2
v,j ∼InvGamma(mean = 1, var = 100).

The model is implemented using OpenBUGS (http://www.openbugs.net). The algorithm was
implemented for 30,000 iterations. We discarded the first 5000 iteration for ‘‘burn-in’’ and based
our inference on the remaining 25,000 iterations. TheMCMC algorithm achieved convergence rapidly
(within the first 1000 iterations). Convergence was assessed using visual inspection of the MCMC
chains and their autocorrelations.We did not experience any sensitivity of the results to the variances
of the prior densities. In order to assess the difference between the spatially-varying means between
the two species, at each iteration of the MCMC, we compute the difference between the spatially-
varying means, yielding a posterior distribution for the spatial mean differences (µ1 − µ2). We
similarly obtain posterior distributions for the difference of the constant means for the two species
(b0,1−b0,2), and the difference of spatially-varying components of error standard deviations (eφ1−eφ2 ).
The data and code are available upon request from the corresponding author.

3. Results

We considered several competing models with different spatial and temporal structures. We
conducted all the comparisons based on the deviance information criterion (DIC; Spiegelhalter et al.,
2002). For example, different temporal trendswith linear, quadratic, and cubic trendswere compared.
We considered the range of altitudes in each cell as an alternative to the mean of altitudes, however,
the models with the mean of altitudes outperformed the models with the range of altitudes. Also, we
considered models with spatially-varying coefficients for the temporal trend components in Eq. (2)
to account for potential space–time interactions, and different sets of potential predictor variables
for the measurement error process model. For brevity, the details of the model comparisons are
not presented. The final model discussed below includes a third-order polynomial for the temporal
trend (linear, quadratic and cubic terms) for the Purple Martin data, and a second-order polynomial
for the temporal trend (linear and quadratic terms) for the Ruby-throated Hummingbirds’ with no
space–time interaction for either of the two models, and uses sampling effort as the only predictor
variable for the measurement error process model.

The posterior mean first arrival date of Purple Martins and Ruby-throated hummingbirds in our
studywasMarch 14 (i.e., the 73rd day of the year; Table 1) and April 14 (i.e., the 104th day of the year;
Table 1), respectively. Differenceswere noted in how spatial and climate variables impactedmigration
dates; for example, WNAO was not statistically significant for predicting first arrival dates of Purple
Martins, however, it was positively correlated with arrival dates of Ruby-throated Hummingbirds
(Table 1). Higherwinter temperatureswere associatedwith earliermigration dates for hummingbirds,
but did not appear to impact first arrival dates of martins (Table 1). For hummingbirds, later arrival
dates were reported at higher altitudes (Table 1). The temporal trends (linear, quadratic, and cubic)
were only significant for hummingbirds (Table 1). On average, martins arrived approximately 31
days earlier than hummingbirds (Table 2), although martin arrivals in relation to the overall mean
difference were most pronounced at lower latitudes (Fig. 1) with lower variability in the central to
higher latitudes (Fig. 2). The average differences in measurement error standard deviations were
more pronounced in the central latitudes (Fig. 3) with higher variability in the lower and higher
latitudes (Fig. 4). Our results did not show any significant effect of sampling effort on logmeasurement

http://www.openbugs.net
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Table 1
Posterior results for the model parameters for both species Purple Martins (PUMA) and Ruby-throated
Hummingbirds (RUTH).

Species Parameter Posterior mean Posterior St. Dev. 95% credible interval

PUMA
Intercept 72.73 0.344 (72.06, 73.41)
WNAO 0.035 0.31 (−0.57, 0.64)
JF-Temp −0.042 0.54 (−1.079, 1.029)
Mean altitude 1.563 0.78 (0.008, 3.06)
FA-Precip −0.1624 0.23 (−0.621, 0.282)
Sampling effort 1.16 0.434 (0.33, 2.02)
Temporal (linear) −1.001 0.584 (−2.167, 0.128)
Temporal (quadratic) 0.972 0.326 (0.335, 1.609)
Temporal (cubic) 1.116 0.3402 (0.453, 1.802)

RUTH
Intercept 103.6 0.251 (103.1, 104.1)
WNAO 0.738 0.1998 (0.343, 1.122)
JF-Temp −2.726 0.426 (−3.54, −1.88)
Mean altitude 1.507 0.509 (0.56, 2.561)
FA-Precip −0.287 0.138 (−0.558, −0.017)
Sampling effort 0.1162 0.241 (−0.354, 0.595)
Temporal (linear) −0.1993 0.227 (−0.644, 0.25)
Temporal (quadratic) 0.3575 0.2184 (−0.0703, 0.7915)

Table 2
Posterior results for the difference in global means (b0,1 − b0,2) for PUMA and RUTH.

Parameter Posterior mean Posterior St. Dev. 95% credible interval

Difference (PUMA–RUTH) −30.9 0.4806 (−31.84, −29.95)

error standard deviation of martins after accounting for spatial and temporal variability components
(Table 3). However, sampling effort was negatively related with log measurement error standard
deviation of hummingbirds (Table 3). Additionally, Table 3 shows the results for constant and temporal
variability components of the log measurement error model.

4. Conclusion and discussion

Our results indicate that spatial and climate variables affect first arrival dates of Ruby-throated
Hummingbirds and Purple Martins both similarly and differently (Table 1). Arrival dates of Purple
Martin were not associated with WNAO. Later arrival dates for hummingbirds were associated with
higher WNAO values (Visbeck et al., 2001) which is somewhat unexpected (although, see Hubálek
and Čapek, 2008) and may reflect their more specialized food preferences during migration or the
relatively short temporal scale of our study (i.e., 2001–2010; Stervander et al., 2005). Warmer January
and February temperatures, and higher precipitation levels for February throughAprilwere associated
with earlier arrivals of hummingbirds in our study (Table 1) and suggest that warming winter
temperatures and higher precipitation levels may lead to migratory advancements over time. Both
martins and hummingbirds arrived later at higher and presumably cooler altitudes (Table 1) which is
consistentwith the hypothesis that first arrival dates are, at least partially, dependent on temperature.

Sampling effort (based on number of observations for each cell) were only significant for Purple
Martins. This means earlier arrival dates were associated with lower sampling effort which could
indicate potential inaccuracy of the earlier arrival reports. Sampling effort was not significant for
hummingbirds and thus, these reports may be considered as more reliable in some sense.

A key benefit of our approach is the ability to compare migratory changes of two (or more)
species across space (Table 2; Figs. 1 and 2). Although Purple Martins arrived 30.9 days earlier than
hummingbirds, this difference was most pronounced in southern latitudes (Fig. 1). This suggests that
martins arrived much earlier in southern portion of our study region, but migrated northward at
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Table 3
Posterior results for the measurement error model parameters for PUMA and RUTH.

Species Parameter Posterior mean Posterior St. Dev. 95% credible interval

PUMA
Sampling effort −0.09443 0.05923 (−0.2084, 0.01631)
u1 1.014 0.09672 (0.8275, 1.216)
v1,1 −0.1199 0.1604 (−0.4229, 0.1919)
v1,2 −0.1156 0.1618 (−0.4532, 0.1952)
v1,3 −.00033 0.1598 (−0.3247, 0.3078)
v1,4 −0.2148 0.1607 (−0.5549, 0.0931)
v1,5 −0.0115 0.1617 (−0.327, 0.2921)
v1,6 −0.0106 0.1586 (−0.3244, 0.3182)
v1,7 −0.0205 0.1573 (−0.3368, 0.3003)
v1,8 0.1666 0.155 (−0.1405, 0.492)
v1,9 −0.1223 0.1649 (−0.4502, 0.1996)
v1,10 0.415 0.1592 (0.1231, 0.7599)

RUTH
Sampling effort −0.2378 0.0689 (−0.3721, −0.1022)
u2 0.7099 0.1042 (0.4911, 0.91)
v2,1 0.1541 0.1601 (−0.1523, 0.4805)
v2,2 −0.0339 0.1627 (−0.3537, 0.2878)
v2,3 0.08604 0.1631 (−0.2274, 0.4136)
v2,4 −0.2143 0.1742 (−0.5695, 0.119)
v2,5 −0.1549 0.1687 (−0.4882, 0.1806)
v2,6 −0.01747 0.1684 (−0.339, 0.3149)
v2,7 0.1137 0.1696 (−0.2165, 0.4625)
v2,8 −0.04379 0.1706 (−0.3824, 0.2921)
v2,9 −0.1195 0.1858 (−0.4979, 0.2316)
v2,10 0.2768 0.1743 (−0.05178, 0.6501)

Fig. 1. Posterior means of the difference between the spatially-varying means of Purple Martins and Ruby-throated
Hummingbirds.
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Fig. 2. Posterior standard deviations of the difference between the spatially-varying means of Purple Martins and Ruby-
throated Hummingbirds.

slower rates than hummingbirds. We propose at least four possible explanations for this difference.
First, early arriving martins in this study are likely to be male ‘‘scouts’’ that may arrive several
weeks before other martins and spend additional time investigating suitable breeding areas (Tarof
and Brown, 2013; hummingbird males also arrive before females but typically only about 10 days;
Robinson et al., 1996). The breeding range of hummingbirds also extends well into many Canadian
provinces whereas the breeding range of martins is primarily within the United States, meaning that
‘‘slower migration’’ in martins may actually be a result of more birds stopping to nest at suitable
locations in more southerly latitudes. Thirdly, a number of manufactured birdhouses available for
Purple Martins to shelter in may slow their northward advancement during the early migration
period. Finally, PurpleMartins are aerial insectivores and insect development and life stage is typically
advanced in response to warming winter temperatures (Robinet and Roques, 2010). Hummingbirds,
on the other hand, are primarily nectarivores and recent evidence suggests that a failure to meet
winter chilling requirements may actually delay budbreak in some plants (Cook et al., 2012) in more
southerly latitudes (Zhang et al., 2007), and could potentially impact the migratory timing of species
such as hummingbirds that depend on these plants for food (Courter et al., 2013a). For our analysis,
we chose to compare migration in two long-distance migrants which may help pinpoint some of
the more subtle ecological and life history reasons for the differences that we observed in migration
patterns. As data to elucidate reasons for migratory change become increasingly available, we suggest
that researchers carefully consider the feeding ecologies and life history traits of candidate species (or
ecological guilds) for future comparisons.

Another important element of our modeling approach is to model measurement error through
a spatio-temporal log error standard deviation process. Our results (Table 3) indicate that higher
sampling effort for hummingbirds was associated with lower log measurement error standard
deviation. However, sampling effort was not significantly important for Purple Martins. In these
models, constant, spatial, and temporal components of the variability for the log error standard
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Fig. 3. Posterior means of the difference between the spatially-varying standard deviations of log measurement models for
Purple Martins and Ruby-throated Hummingbirds (eφ1 − eφ2 ).

deviation were considered (Table 3, Figs. 3 and 4). The average differences between themeasurement
error standard deviations between the two species were pronounced more in the central latitudes
(Fig. 3), with higher uncertainty in the lower and higher latitudes (Fig. 4).

Our analysis also identifies several areas that require further development of statistical
methodology. First, our choice of the grid system to aggregate data was limited by data availability
(due to lack of a consistent design, data collected in some areas and/or years are very sparse). We
believe that ideally one should use careful methodology to form an ‘‘optimal’’ grid over the study
domain based onminimizing aggregation error (e.g., Bradley et al., 2015). Next, data collected through
Citizen Science programs are prone to many sources of bias (e.g., see discussion in Courter et al.,
2013b). Provided additional statistical information is collected regarding the observers and conditions
of data collections, methods for assessing or estimating bias in Citizen Science datamay be developed.
Moreover, first arrival dates are the dates that species were first reported by an observer in an area
and do not necessarily indicate the actual date that the species arrived to the area (i.e. detection
may be imperfect). Here, we limit our interpretation of the results to the first observed arrival dates.
However, if one is interested in modeling the actual arrival dates of species, one should use statistical
methods that may address the censored/truncated nature of these data. And, finally, the comparison
of spatially-varying means may be adjusted using multiple comparison procedures, however, most of
the existing multiple comparison methods are only suitable for independent cases and extensions to
spatial data are subjects of ongoing research (see Sun et al., 2015 and references therein).

Here, we demonstrate a technique for comparing migratory changes in two commonly reported
bird species in eastern North America during a 10-year time span. Our proposed method may be
adjusted and extended to includemore complex settings (e.g., potential non-linear effects of predictor
data, and temporal dependence, among others). Additionally, our approach considers modeling
measurement error based on modeling the error standard deviation using constant, spatial, and
temporal components, as well as potential predictor information to address the issue of varying
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Fig. 4. Posterior standard deviations of the difference between the spatially-varying standard deviations of log measurement
models for Purple Martins and Ruby-throated Hummingbirds (eφ1 − eφ2 ).

sampling effort over time and space which is a common issue in Citizen Science data. Furthermore,
our model may be generalized to compare spatial patterns of first arrival data for multiple species.
Our hope is that our results and spatio-temporal methodology provide direction for others to analyze
similar Citizen Science datasets in ways that provide us with an improved ecological understanding
of our changing environment.
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Supplementary Material: “Exploratory data analysis for Purple Martins and 
Ruby-Throated Hummingbirds data and the predictor variables” 
 

 

Purple Martins (PUMA) 
 
Purple Martins data show a strong spatial structure which is mainly due to the 
northbound migration process of Purple Martins. The latitudinal structure is 
strongly evident, however, there is some evidence of longitudinal structure too. The 
side-by-side boxplots below show all the data (over 10 years of 2001-2010) for each 
spatial grid cell. Cells are numbered 1-30 with 1, 2, and 3 as the lowest latitudinal 
portions of the grid.  
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The temporal trends for each of the grid cells shows non-linear behavior. For 
brevity only odd-numbered cells are shown below. Each plot shows the mean of 
observations over the period 2001-2010 for a grid cell. 
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Plot of Jan-Feb Temperature versus Purple Martins Arrival Data:  

 
 
  

PUMA Arrival Dates

40 50 60 70 80 90 100 110

J
a

n
-F

e
b

 T
e

m
p

e
ra

tu
re

 (
C

e
ls

iu
s
)

-10

-8

-6

-4

-2

0

2

4

6

8

10



 4 

Plot of Sampling Effort versus Purple Martins Arrival Data:  
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Plot of Mean Altitude versus Purple Martins Arrival Data:  
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Ruby-Throated hummingbirds (RUTH) 
 
Ruby-throated Hummingbirds data show a strong spatial structure which is mainly 
due to the northbound migration process of hummingbirds. The latitudinal 
structure is strongly evident, however, there is some evidence of longitudinal 
structure too. The side-by-side boxplots below show all the data (over 10 years of 
2001-2010) for each spatial grid cell. Cells are numbered 1-30 with 1, 2, and 3 as the 
lowest latitudinal portions of the grid.  
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The temporal trends for each of the grid cells shows non-linear behavior. For 
brevity only odd-numbered cells are shown below. Each plot shows the mean of 
observations over the period 2001-2010 for a grid cell. 
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Plot of Jan-Feb Temperature versus Ruby-throated Hummingbirds Arrival Data:  
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Plot of Sampling Effort versus Ruby-throated Hummingbirds Arrival Data:  
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Plot of Mean Altitude versus Ruby-throated Hummingbirds Arrival Data:  
 

 
 
  

RUTH Arrival Dates

70 80 90 100 110 120 130

M
e
a

n
 A

lt
it
u
d

e

50

100

150

200

250

300

350

400

450

500

550



 11 

Winter Northern Atlantic Oscillation (WNAO) 
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