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A B S T R A C T

There is global interest in quantifying changing biodiversity in human-modified landscapes. Ecoacoustics may
offer a promising pathway for supporting multi-taxa monitoring, but its scalability has been hampered by the
sonic complexity of biodiverse ecosystems and the imperfect detectability of animal-generated sounds. The
acoustic signature of a habitat, or soundscape, contains information about multiple taxa and may circumvent
species identification, but robust statistical technology for characterizing community-level attributes is lacking.
Here, we present the Acoustic Space Occupancy Model, a flexible hierarchical framework designed to account for
detection artifacts from acoustic surveys in order to model biologically relevant variation in acoustic space use
among community assemblages. We illustrate its utility in a biologically and structurally diverse Amazon
frontier forest landscape, a valuable test case for modeling biodiversity variation and acoustic attenuation from
vegetation density. We use complementary airborne lidar data to capture aspects of 3D forest structure hy-
pothesized to influence community composition and acoustic signal detection. Our novel analytic framework
permitted us to model both the assembly and detectability of soundscapes using lidar-derived estimates of forest
structure. Our empirical predictions were consistent with physical models of frequency-dependent attenuation,
and we estimated that the probability of observing animal activity in the frequency channel most vulnerable to
acoustic attenuation varied by over 60%, depending on vegetation density. There were also large differences in
the biotic use of acoustic space predicted for intact and degraded forest habitats, with notable differences in the
soundscape channels predominantly occupied by insects. This study advances the utility of ecoacoustics by
providing a robust modeling framework for addressing detection bias from remote audio surveys while pre-
serving the rich dimensionality of soundscape data, which may be critical for inferring biological patterns
pertinent to multiple taxonomic groups in the tropics. Our methodology paves the way for greater integration of
remotely sensed observations with high-throughput biodiversity data to help bring routine, multi-taxa mon-
itoring to scale in dynamic and diverse landscapes.

1. Introduction

Biodiversity loss as a direct and indirect result of human activity
represents a major threat to life on Earth (e.g., Cardinale et al., 2012).
Operational capacity to monitor known biodiversity is extremely lim-
ited, resulting in incomplete species inventories (Troudet et al., 2017)
and sparse data coverage (Meyer et al., 2015). There is broad interna-
tional interest in improving biodiversity monitoring, including efforts
by the Group on Earth Observations Biodiversity Observation Network
(GEO BON) to harmonize biodiversity measurements across space and
time as essential biodiversity variables (EBVs). The success of EBVs for
expanding the scope of routine monitoring fundamentally depends on

advances in distributed monitoring technology with increased taxo-
nomic coverage, including DNA metabarcoding, camera traps, and
ecoacoustic surveys. Since most of Earth’s taxonomic diversity is not
visible from air or space, such high-throughput biodiversity observa-
tions may complement spatially extensive Earth observations to
monitor biodiversity trends at policy-relevant extents (Bush et al.,
2017). Scaling up biodiversity observations on the level needed to
support global conservation commitments will also require advances in
computational methods designed to adjust for data sparsity and other
sampling artifacts that could otherwise confound estimates of biodi-
versity trends.

Strategies for routine monitoring of biodiversity confront a range of
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trade-offs related to taxonomic coverage and sampling bias. The ex-
isting body of biodiversity data is strongly skewed towards popular taxa
(e.g. plants, vertebrates), resulting in data gaps for invertebrates and
other organisms (Troudet et al., 2017). These data disparities also re-
flect limitations in taxonomic expertise, especially in biodiverse tropical
forests, which harbor over 50% of Earth’s species, many of which are
not readily identifiable. Even birds, the most well-studied taxa, suffer
from high rates of imperfect detection and species classification errors
in tropical forests, where over 95% of individuals are heard but not seen
by surveyors tasked with discriminating among hundreds of species
with rich vocal repertoires in dark forest understories (Robinson et al.,
2018). Additionally, there is seldom enough information about species
distributions to establish sampling protocols that account for key
sources of sample bias from spatial variability and habitat hetero-
geneity, especially in tropical forests where visibility is limited, canopy
structure is complex, and extents are large.

Emerging remote sensing tools, such as lidar and ecoacoustics, may
support goals to expand the scope of biodiversity monitoring by col-
lecting biodiversity variables across taxonomic, spatial, and temporal
domains in a cost-effective and non-invasive manner. Lidar, short for
Light Detection and Ranging, provides detailed, three-dimensional (3D)
information on habitat structure, and lidar-derived measures of forest
structure have been used to assess patterns of species diversity and
abundance in forested environments (e.g., Goetz et al., 2007; Bergen
et al., 2009). High-density airborne lidar data capture fine-scale
changes in forest structure from human activity, with 3D data over
hundreds to thousands of hectares needed to support landscape-scale
investigations (Longo et al., 2016; Rappaport et al., 2018). Ecoacoustic
surveys offer a complementary perspective by providing direct ob-
servations of the animal community over diurnal, seasonal, and inter-
annual time scales. Remote acoustic surveys have the potential to track
many animal taxa (e.g. birds, amphibians, insects, mammals, bats), and,
unlike traditional field methods (e.g. point-counts), the acoustic en-
vironment can be surveyed simultaneously at multiple sites with con-
current recorders covering large spatial extents (Gibb et al., 2019).
These remote sensing tools have been used independently for biodi-
versity monitoring, but they have rarely been used together, despite
known associations between habitat structure, habitat use, and acoustic
signal transmission (Pekin et al., 2012; Royle, 2018).

Three primary developments are needed to enable widespread use
of ecoacoustics for routine biodiversity monitoring. First, acoustic
analysis techniques that derive information about multiple taxa while
bypassing the need for species identification are critical to enable rapid,
replicable, and scalable assessments of biodiversity change. The sonic
signature of a site, or “soundscape,” encodes information about the
resident animal community, and the 3D structure of the soundscape
defined by time, frequency, and amplitude represents a valuable op-
portunity to capture multiple taxa. As taxonomic groups emit acoustic
signals (vocalizations, stridulations) at routine periods of the day and at
standard frequency ranges, the soundscape can be regarded as an ab-
stracted representation of the animal community, comprised of acoustic
transmission channels in time–frequency space that are occupied by
distinct species composites (Aide et al., 2017).

Second, analytic methods are needed to handle the data complexity
of soundscapes from biodiverse environments in a manner that is robust
across time scales, sensors, and acoustic conditions (Gibb et al., 2019).
A diversity of acoustic indices have been developed by collapsing the
3D soundscape into measures of energy distribution along either the
time or frequency dimensions, but seldom both (as reviewed by Sueur
et al., 2014). Such indices have been used to predict species richness in
low-diversity temperate ecosystems dominated by a single vocal taxon,
but predictive performance has been less stable in tropical forests,
which are characterized by diverse signaling assemblages, multi-taxa
choruses, and constant background noise (e.g. routine rainfall, insect
stridulations) (Eldridge et al., 2018). Retaining the time and frequency
dimensions may be crucial for capturing the complex patterns of

acoustic energy in biodiverse tropical systems (Eldridge et al., 2016,
2018; Aide et al., 2017). Furthermore, preserving the spectral-temporal
structure of soundscapes is conceptually consistent with the hypothe-
tical link between biodiversity and acoustic diversity, originally in-
troduced in the Acoustic Niche Hypothesis (ANH; Krause, 1987). The
ANH purports that acoustic space is partitioned into spectral-temporal
‘niches’ through evolutionary processes and competitive interactions
that minimize signal overlap among co-existing species. Whether taxa
do in fact occupy coherent acoustic niches is an area of active research,
and, while much remains to be learned about the factors that structure
acoustic transmission space (Pijanowski et al., 2011), the proportion of
that space occupied by biota has been found to be an effective proxy for
species richness in tropical forests (Aide et al., 2017). Exploiting this
spectral-temporal structure—referred to henceforth as “acoustic space
occupancy”— may open up new analytic pathways for rapid and re-
plicable assessments of biodiversity.

Third, statistical solutions must be developed to account for ob-
servation bias in soundscape recordings. The likelihood of detecting a
soniferous species occupying a site depends not only on whether it is
acoustically active during a given survey, but also on a myriad of fac-
tors that influence the detectability of its acoustic signals, such as in-
terference with vegetation, obfuscating abiotic noise, signal amplitude
and frequency, distance of the animal to the recorder, micro-
meteorology, and survey effort, among others (Wiley and Richards,
1982). Nonetheless, most soundscape analysis methods do not adjust
for sampling artifacts and detectability, despite the fact that imperfect
detection can skew ecological inferences (Royle, 2018). For example,
vegetation selectively limits the propagation of certain frequencies due
to the physics of sound attenuation in forested environments (Wiley and
Richards, 1982), so unless properly addressed by statistical methods,
raw soundscape observations are likely to underestimate the extent of
occupied acoustic space in dense forest habitats.

Here, we accommodated these three methodological objectives
using a novel analytic framework for capturing signals relevant to
multiple taxa while accounting for sources of detection bias in remote
audio surveys. Our methodological approach, the Acoustic Space
Occupancy Model (ASOM), assumes that the observed soundscape is
not a perfect characterization of the acoustic community, and therefore
the modeling framework reconstructs the true, latent soundscape in a
manner that is directly analogous to the ‘occupancy model’ framework
for estimating species occurrence probability (e.g. MacKenzie et al.,
2002). ASOM is a hierarchical model with explicit covariate effects to
separate the ecological process (i.e., acoustic space occupancy) from the
observation process (i.e., acoustic space detection) and quantify para-
meter uncertainties. Furthermore, its flexible framework can accom-
modate a range of extensions and study designs (MacKenzie et al.,
2018).

We applied ASOM to ecoacoustic and airborne lidar data from a
frontier forest mosaic in the southern Brazilian Amazon to illustrate the
utility of our model and investigate hypothesized synergies between 3D
observations of acoustic space-filling and physical space-filling. The
enormous structural diversity of the study region represents a valuable
test case for evaluating the role of forest structure in explaining varia-
bility in acoustic community assembly between sites and informing
models of detection failure.

2. Materials and methods

2.1. Case study region

We collected ecoacoustic and lidar data in the municipalities of
Nova Ubiritã and Feliz Natal, Mato Grosso, near the southern extent of
closed-canopy forests in the Brazilian Amazon (Fig. 1). More than
40 years of agricultural expansion, selective logging, and understory
fires have given rise to a mosaic of fragmented and degraded forests
with a diversity of canopy structures (Rappaport et al., 2018). The non-
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forest matrix is dominated by large-scale commodity agriculture, in-
cluding soy, corn, and cattle ranching. The largest area of intact forest
remaining in the region is in the adjacent Xingu Indigenous Park; air-
borne lidar acquisitions include intact forest areas for reference.

2.2. Lidar surveys and analysis

High-density airborne lidar surveys (≥14 returns per m2) were
conducted by the Sustainable Landscapes Brazil project between 2013
and 2016 to target a range of intact and degraded forest conditions in
the region. Within the lidar coverage, 34 sites (forest patches ≥ 300 m
in radius) with uniform degradation history were identified (Rappaport
et al., 2018). Sites were spaced at least 300 m from one another and
from the non-forest matrix to avoid edge effects and establish spatial
independence (Fig. 1). Standard lidar metrics were calculated for each
site following methods developed for NASA Goddard’s Lidar,

Hyperspectral, and Thermal (G-LiHT) Airborne Imager (Cook et al.,
2013; Table 1), and biomass was estimated using a regional lidar-bio-
mass model based on mean top of canopy height (Longo et al., 2016).

2.3. Acoustic surveys and analysis

We deployed passive acoustic recording sensors at the center of each
site to survey the spatiotemporal patterns of acoustic communities be-
tween August and October 2016. ARBIMON acoustic sensors (Aide
et al., 2013) were installed at breast height (1.37 m) to record all ac-
tivity between 0 and 22 kHz. The acoustic environment was sampled for
one minute every five minutes for a minimum of five days at each site,
totaling more than 1100 h of acoustic survey data.

Three preprocessing steps were used to convert the recording ar-
chive into soundscape matrices of acoustic space use following previous
methods (Aide et al., 2013). First, the ARBIMON analysis platform was
used to transform each one-minute recording into a graphical re-
presentation of its spectral components, known as a spectrogram
(constructed with 512 samples per temporal interval). Second, a su-
pervised machine learning-based model (Aide et al., 2013) was applied
to the entire volume of spectrograms to classify rain-contaminated
spectrograms, which were removed to isolate the biotic contribution to
the soundscape. Manual validation of the rainfall screening procedure
(n = 100) yielded no false negatives and a precision of 0.93 (7% false
positives). Third, the spectrograms collected at each site (n = 34) and
during each day (n = 5) were aggregated by hour (24 h) and frequency
(0–22 kHz; bin size: 344 Hz). For each of the constituent 1536 acoustic
channels (24 h × 64 frequency bands), a binary detection history was
generated based on an amplitude threshold of 0.02 (Aide et al., 2013).
The resulting 3D matrix (x = hour, y = frequency, z = evidence of
biotic activity) represented the synoptic signature of the acoustic
community for each site and each daily survey.

2.4. Acoustic space occupancy model

We developed the ASOM framework to predict acoustic variability
relevant to multiple taxa while accounting for biologically irrelevant
variability due to observation bias. The model was adapted from the
standard single season occupancy model (MacKenzie et al., 2002) to
account for the fact that the occupancy status of an acoustic channel is
not perfectly observable and that failure to detect acoustic space oc-
cupancy may result from inactivity of the constituent species or factors
that limit signal propagation and detection (e.g. survey effort, sound
attenuation).

Fig. 1. The locations of the ecoacoustic and lidar surveys (red polygons;
n = 34) shown in relation to the case study landscape (2014 Landsat compo-
site, bands 543) and broader regional context (map inset).

Table 1
Lidar and ecoacoustic covariates evaluated for models of detection and occupancy. The only candidate covariates not fit to both model components were n and
(Cn + Sn), which were exclusively used as detection and observation covariates, respectively.

Data source Covariates Description

Lidar surveys all_mean Mean of all return heights (m)
all_kurtosis Kurtosis of all return heights (m)
all_skewness Skewness of all return heights (m)
all_stdev Standard deviation of all return heights (m)
all_p10…all_p100 Height percentiles (10% increments) of all returns (m)
tree_fract Fraction of all returns classified as tree* (m)
tree_fcover Fraction of first returns intercepted by tree* (m)
tree_iqr Interquartile range (p75-p25) of returns classified as tree* (m)
shrub_mean Mean height of returns classified as shrub** (m)
shrub_stdev Standard deviation of return heights classified as shrub** (m)
biomass Aboveground carbon density (Mg C ha−1) (Longo et al., 2016)
residual_canopy The percentage of the site with canopy heights ≥ intact reference (21 m) (Rappaport et al., 2018)

Acoustic surveys freq The frequency associated with a given transmission channel (Hz)
n Sample density, corresponding to the number of rain-free acoustic samples aggregated for each hour bin
(Cn + Sn) The sine–cosine pairs for the harmonic regression used to approximate the multimodal patterns in acoustic activity over a 24-hour

period =n( 1: 4)

*Tree returns: returns > 1.37 m.
**Shrub returns: non-ground returns < 1.37 m.
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Formally, let zni be the true occupancy status of acoustic channel n
at sample location (“site”) i. Each acoustic channel n is comprised of a
frequency/time coordinate =n (f, t)such that n is analogous to a “site”
in the classical occupancy modeling vernacular. Thus, acoustic channel
n is the unit of occupancy in our study, whereas we use the term “site”
to represent higher-level structure across which acoustic space occu-
pancy might vary, such as a geographic stratum (e.g., forest patch),
which is analogous to some type of blocking structure in classical oc-
cupancy modeling vernacular. Let ynik denote the observed occupancy
for acoustic channel n, site i, and sample occasion k.

Here, the five daily soundscapes (k = 1:5) for each site were treated
as temporal replicate observations of each acoustic channel. We used a
maximum likelihood estimation framework to build separate models for
the observation process (i.e., acoustic space detection) and the true
state process (i.e., acoustic space occupancy).

The true latent occupancy state of an acoustic channel (zni) can be
modeled as a Bernoulli process described as:

z Bernoulli~ (Ψ )ni ni (1)

where Ψni is the probability of occupancy of acoustic channel n at site i.
We modeled the probability of occupancy as a function of covariates
using a logistic model. For example, with a single covariate the model
has the form:

= +β β xlogit(Ψ )ni ni0 1 (2)

where xni is a measured covariate that varies by dimensions of the
acoustic soundscape (frequency and time) or varies across the different
sample sites.

The observation process can be modeled as another Bernoulli
random variable conditional on the state process:

Bernoulli py |z ~ (z )nik ni ni nik (3)

where ynik is the realized detection of acoustic channel n at site i during
survey k, and pnik is the detection probability. We also modeled mea-
sured covariates on detection probability according to a logistic model,
e.g., with one covariate:

= +p α α xlogit( )nik nik0 1 (4)

where xnik is a measured covariate that varies by frequency, time of day,
survey occasion or sample location.

We used Akaike’s information criterion (AIC) to select the best-
supported models for inference (Burnham & Anderson, 2003), and
performed model selection stepwise. First, the top-ranked models
(ΔAIC ≤ 2) were identified for the detection component, p, by as-
suming the null model for the occupancy component, Ψ. Then, the best-
approximating models were identified for Ψ assuming the previously
selected covariate set for p. The R program unmarked was used for
ASOM model fitting and selection (R Development Core Team, 2018;
Fiske & Chandler, 2011).

The ASOM framework allows covariate effects in the spectral or
temporal dimensions of the soundscape, which can be used to model
variability in either acoustic space occupancy or detection probability.
In all candidate models, frequency was included either in linear or
quadratic form as a fixed covariate for both Ψ and p to account for
possible curvilinear effects of frequency-dependence on occupancy and
sound transmission. Note that the frequency covariate ( f ) was trans-
formed to facilitate model convergence ( f -12/4 kHz) and models were
fit to a frequency subset containing the central mass of the data
(1.4–10 kHz) to avoid issues with data sparsity at the frequency ex-
tremes. Sample density (i.e. usable recordings per hour) was also in-
cluded as a fixed covariate for p to account for detection bias due to
variability in survey effort. Additionally, harmonic regression terms
were used to model the multimodal peaks in occupancy from the
diurnal periodicity in acoustic activity (Weir et al., 2005), estimated as:

⎜ ⎟ ⎜ ⎟= + ⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

β β
πtf

β
πtf

logit(Ψ ) cos
2
24

sin
2
24ni

c c
0 1 2 (5)

where β1 and β2 represent the sinusoidal amplitude and phase during
the diurnal period, t represents the sampling time period, and fc re-
presents the frequency of the sinusoid, with up to 4 cycles per day

=c( 1: 4) considered within each candidate model.
The ASOM framework also permits covariate effects to vary across

the sites in which the soundscapes were observed. We used 22 lidar
metrics to account for variability in forest structure across sites
(Table 1). Covariate selection was guided by a priori hypotheses re-
garding the influence of habitat structure on biotic community as-
sembly and signal attenuation, and our previous findings on the lidar
metrics most useful for discriminating among complex Amazon forest
structures (Longo et al., 2016; Rappaport et al., 2018). The lidar metrics
were calculated using a 50 m radius from the location of the recording
devices, and they were scaled and centered to assist with model con-
vergence. We constructed candidate models with≤2 lidar metrics for Ψ
and p using an exhaustive model-fitting procedure (R package MuMIN;
Barton, 2018), which evaluated linear combinations of predictors in the
stepwise fashion described above. All variable pairs with Pearson cor-
relation coefficients ≥0.6 were excluded from consideration to address
potential issues with multicollinearity.

We evaluated three ecologically viable interactions among covari-
ates selected in the top-ranked model: 1) An interaction between the
lidar metrics and signal frequency in p to test the influence of habitat
structure on frequency-dependent attenuation; 2) an interaction be-
tween the sinusoids and frequency in Ψ to account for the expected
variability in diurnal activity across frequency bands (i.e. pseudo-taxa);
and 3) an interaction between the lidar metrics and the sinusoids in Ψ
to account for the hypothesized influence of 3D habitat structure on
diurnal activity (i.e. from differences in community composition).

The model was calibrated with 33 of the 34 sites, and its predictive
capacity was evaluated using cross validation with the remaining site.
To assess classification accuracy, we calculated the area under the re-
ceiver operator curve at the site level (AUC) following Sadoti et al.
(2013). AUC ranges from 0.5 to 1.0, and values above 0.80 indicate
adequate discriminatory power.

Lastly, we used the top-supported model to generate predictions
over the sampled range of degraded forest structures to support inter-
pretation of covariate effects, as well as covariate ranges derived from
the intact reference forests in the Xingu Indigenous Park to illustrate the
utility of the ASOM framework for predicting outside of the immediate
zone of study and forecasting conservation outcomes.

3. Results

There was substantial spectral-temporal variability in detected
acoustic activity within and among the surveyed sites. The observed
site-level proportion of occupied acoustic space, or ‘naive’ occupancy,
ranged between 2 and 17% (mean: 7%). There was a marked influence
of time of day on the observed utilization of frequency channels, and
the diurnal patterning was not uniform across sites (Fig. 2). On average,
naive occupancy was highest during the dusk to pre-dawn period
(17:00–3:00), with detections progressively decreasing from a peak in
activity during the dusk chorus. The largest gaps in utilized acoustic
space were detected during the dawn to pre-dusk period (6:00–15:00)
and only a small subset of sites contributed to aggregate detections at
those hours (Fig. 2). On average, naive occupancy was highest at the
middle frequencies (3–8 kHz) and lowest at the low (< 3 kHz) and high
frequencies (> 8 kHz) (Fig. 3). At the high-frequency range, the relative
proportion of detections in closed versus open forests progressively
decreased with increasing frequency, and detections> 10 kHz were
exclusively registered in degraded forests with open canopies (Fig. 3).

By accounting for the factors that influence signal detection, the
ASOM framework permitted us to estimate latent soundscape structure
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that would have otherwise been unobservable from the naive detections
alone. The top-ranked model (Table 2) showed evidence of good pre-
dictive accuracy (AUC = 0.91), and results for the observation process
(p) and state process (Ψ) model components will be presented in turn.

The sub-model for p revealed a strong frequency dependence of
detection bias. The likelihood of detecting acoustic activity peaked
around 5 kHz, and was governed by a quadratic effect of frequency
(Fig. 4). The requisite sampling effort needed to maximize p also varied
as a function of frequency, and high frequencies were predicted as
being most susceptible to detection failure regardless of sample density
(Fig. 5). In an average forest, the likelihood of detecting the lowest,
average, and highest frequency bands was 8%, 39% and 1%, respec-
tively, assuming maximum temporal coverage from our study design
(12 samples/hour). At the most intensive sampling protocol theoreti-
cally possible (60 samples/hour), it increased to 77%, 96%, and 21%,
respectively.

Our frequency-dependent predictions of detection probability were
improved by including estimates of forest structure to account for signal
interference with vegetation. Two lidar covariates were selected in the

Fig. 2. Naive observations per hour for the 33 sites used for model calibration.
Colors correspond to the degree of canopy openness of the corresponding sites
(higher values of shrub standard deviation indicate greater canopy loss from
degradation). The greyscale indicates the percentage of sites with ≥5 detec-
tions.

Fig. 3. Naive observations per frequency band. Colors correspond to the degree of canopy openness and the greyscale corresponds to the percentage of sites with ≥5
detections.

Table 2
The model with the most substantial level of empirical support is shown with
coefficients (SE) presented separately for the detection and occupancy com-
ponents. Covariate descriptions are provided in Table 1.

Probability of acoustic space detection
∗ + + +ρ freq n biomass shrub stdevY ( ) ( _ )nik nik

2

Intercept −10.08 (0.35)
biomass 0.46 (0.03)
freq −9.87 (0.47)
freq2 −2.75 (0.15)
n 0.07 (0.01)
shrub_stdev 0.13 (0.03)

Probability of acoustic space occupancy
∙ + + + + + + + ∙ +freq C S C S C S C S tree fract shrub stdevΨ ( ( ) _ _ )ni 1 1 2 2 3 3 4 4 2

Intercept −4.69 (0.41)
shrub_stdev −0.07 (0.05)
shrub_stdev2 0.24 (0.04)
C1 1.93 (0.53)
C2 −1.75 (0.47)
C3 −0.69 (0.48)
C4 1.27 (0.34)
S1 −4.96 (0.51)
S2 −1.62 (0.52)
S3 1.72 (0.44)
S4 −0.89 (0.35)
tree_fract −1.59 (0.44)
freq −0.81 (0.21)
C1:tree_fract −0.88 (0.76)
C2:tree_fract 1.09 (0.60)
C3:tree_fract 0.69 (0.49)
C4:tree_fract 0.49 (0.39)
S1:tree_fract 0.73 (0.48)
S2:tree_fract 0.58 (0.48)
S3:tree_fract 0.57 (0.46)
S4:tree_fract −1.25 (0.40)
C1:freq 0.07 (0.26)
C2:freq −0.67 (0.23)
C3:freq −0.18 (0.23)
C4:freq 0.47 (0.17)
S1:freq −1.87 (0.24)
S2:freq −0.87 (0.25)
S3:freq 0.73 (0.22)
S4:freq −0.36 (0.17)
tree_fract:freq −0.58 (0.23)
C1:tree_fract:freq −0.23 (0.39)
C2:tree_fract:freq 0.29 (0.31)
C3:tree_fract:freq 0.52 (0.25)
C4:tree_fract:freq 0.17 (0.20)
S1:tree_fract:freq 0.49 (0.24)
S2:tree_fract:freq 0.31 (0.24)
S3:tree_fract:freq 0.19 (0.24)
S4:tree_fract:freq −0.49 (0.21)
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top-ranked model for p, aboveground biomass and the standard de-
viation of shrub heights (Table 2). When predicted over the entire
sampled distribution of degraded forest structure, maximum estimates
of p increased compared to the estimates above, exceeding 60% for the
lowest, average, and highest frequency channels (assuming sample
density of 12 recordings/hour). In each case, maximum p was predicted
for heavily degraded forests that ranked in the top 10th percentile of
sampled shrub standard deviation, a lidar metric that indicates more
heterogeneous vegetation cover from 0 to 1.3 m, typical of degraded
Amazon forests with low fractional tree cover. This suggests that
acoustic signals were more readily detectable in heavily altered and
open forest environments (Fig. 4).

Forest structure was also important for explaining variation in

acoustic space occupancy. Based on model selection of the state process
component (Table 2), variability in Ψ was best approximated by a
three-way interaction between four sinusoids, frequency, and the lidar-
derived covariate, tree fractional cover, which allowed the diurnal
patterns of acoustic activity to vary across the frequency and habitat
domains. The top-ranked model also included shrub standard deviation
as a quadratic effect, which further constrained variability in Ψ as a
function of forest structure. Patterns of predicted and observed occu-
pancy were in close agreement over the sampled habitat distribution. In
most cases, transmission channels that were predicted as having a high
likelihood of occupancy were also registered by the acoustic surveys
(Fig. 6). Divergence between modeled and observed occupancy oc-
curred primarily for predictions in dense forest conditions and fre-
quency bands estimated as most vulnerable to attenuation (Figs. 3, 6).

Estimates of Ψ revealed a diversity of acoustic community assem-
blages with distinct occupancy patterns across the time and frequency
domains, and notable differences between intact and degraded habitats.
When predicted for the average degraded forest and mean frequency,
the largest peak in Ψ (mean acoustic space occupancy: 56%) occurred
during the early evening hours of the insect chorus (18:00–19:00)
(Fig. 7). The diurnal peaks in acoustic activity varied within each fre-
quency channel. Often, the low and high frequencies had contrasting
patterns of occupancy. For example, within the same two-hour time

Fig. 4. The combined effects of signal frequency and forest structure, indicated
by the standard deviation of shrub-classified lidar returns, on top-ranked model
predictions of detection probability (p), assuming 12 samples/hour and mean
values for other detection covariates (not shown).

Fig. 5. The influence of sample density on frequency-dependent detection
probability (p) predicted from the top-ranked model, assuming average forest
characteristics and a maximum sample density of 60 one-minute recordings per
hour.

Fig. 6. Predicted occupancy (blue scale) overlaid with naive detected occu-
pancy aggregated over five days (orange outline) for four study sites with dif-
fering fractional canopy cover (CC).
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interval associated with the onset of the insect chorus, acoustic space
occupancy ranged between 7% and 97% in the lowest and highest
frequency channels, respectively. The opposite dynamic was observed
for the pre-dawn/dawn period (24:00–7:00), during which low fre-
quencies predominated (33%) and high frequencies were virtually ab-
sent (1%). The differences in model predictions between intact and
degraded forest habitats were large, particularly for the same two
contrasting time intervals (Figs. 6 and 7). For example, estimates of Ψ
during the pre-dawn/dawn period (24:00–7:00) ranged between 23%
and 85% for the most utilized frequency channel (1.4 kHz), depending
on whether canopy structure was closed or open, respectively (Fig. 7).

4. Discussion

We developed a flexible methodological framework for capturing
biologically plausible variation in acoustic quantities while accounting
for sampling artifacts and failure in detecting animal-generated signals.
Application of ASOM to a complex tropical forest mosaic illustrated
four key attributes of our analytic framework. First, in assuming that
the true underlying acoustic community is an unobservable structure,
ASOM provides a clear coherent linkage between the observed
soundscape and the true latent soundscape, the object of inference.
Second, the flexible hierarchical structure of our modeling framework
allows the factors that govern the ecological process and the observa-
tion process to be modeled separately. We provide clear evidence that
the likelihood of detecting biotic signals varies across degraded forest
environments, which could otherwise confound inferences about the
legacy of habitat degradation on biodiversity. Third, by retaining the
multidimensional structure of the community-level acoustic signature,
ASOM captures multiple taxa, even in tropical forests where sonic space
is shared by simultaneous biotic signals and noisy abiotic processes.
Lastly, ASOM provides a flexible framework for predicting the assem-
blage of acoustic communities, and we demonstrate its use for making
predictions for intact forests beyond the sampled distribution of de-
graded habitats and for populating data-poor regions of the soundscape.

Hierarchical models that combine 3D observations of physical space
filling and acoustic space filling provide a path forward for handling
detection bias in soundscape studies. Existing analysis methods regard
soundscapes as unbiased representations of the underlying animal
community, yet soundscapes are intrinsically imperfect and vulnerable
to the same issues of detection bias that affect species distribution
modeling in general (e.g., MacKenzie et al., 2002). Even within an in-
dividual site, there are important sources of detection heterogeneity,
including minor variations in the expression of biotic signals over time
(e.g. weather, phenology, etc.). Fortunately, multi-day soundscape
surveys capture temporal heterogeneity by design, and hierarchical

occupancy models are uniquely equipped to model the effects re-
sponsible for observed heterogeneity. Our hierarchical framework also
provides estimates of between-site detection heterogeneity. By drawing
upon the synergies between ecoacoustics and airborne lidar to capture
aspects of the physical interactions between sound and structure, our
empirical predictions of frequency-dependent detection failure were
consistent with expectations from physics. We estimated that the risk of
detection failure was greatest for high frequencies (> 8 kHz), slightly
lower for low frequencies (< 3 kHz), and lowest for middle frequencies
(3–8 kHz), similar to physical models of the forested environment that
account for sound attenuation from interference with vegetation and
ground (e.g. Wiley & Richards, 1982). It is not surprising, then, that the
mode of our naive observations was in the most-detectable middle-
frequency zone, or that the majority of our high-likelihood predictions
that were not registered by our recorders were in the high-frequency
zone, which is most vulnerable to attenuation from scattering (Wiley &
Richards, 1982). Similarly, only samples from heavily degraded sites
with only a few trees remaining to scatter sound contained detections
with frequencies above 10 kHz. It should be noted that scattering is also
caused by non-stationary heterogeneities (e.g., atmospheric turbu-
lence), which mediate the effect of habitat on sound transmission
(Wiley & Richards, 1982) and cannot be captured by lidar alone, but
could perhaps be better approximated with physical models of acoustic
attenuation. Signal transmission may also be better parameterized with
alternative estimates of the structural environment, such as tree dia-
meter distributions retrievable from terrestrial laser scanning or forest
inventory data.

Formalized procedures for characterizing uncertainty, such as the
ASOM framework, also provide a means to guide sampling effort allo-
cation and adjust for data sparsity. We demonstrated the utility of our
model for informing study design by predicting detection uncertainties
over a range of sampling protocols. For example, we estimated that in
an average forest, the probability of detecting acoustic activity in the
least detectable frequency channel would not exceed 10%, even when
increasing sample density to 50% daily coverage, a probability which
may or may not be considered adequate depending on the uncertainty
thresholds and objectives of the monitoring program in question.
Optimizing predictive power amidst resource constraints requires a
clear understanding of sampling tradeoffs (e.g. spatial vs. temporal
replicates). Hierarchical occupancy models are uniquely suited to in-
form such assessments through simulation-based exercises (Bailey et al.,
2007). Further, as acoustic monitoring networks expand in scale (Gibb
et al., 2019), there will be an increasing need to obtain accurate con-
fidence intervals on ecological inferences derived from sparse and
complicated ecoacoustic datasets.

Since the multidimensional soundscape reflects the taxonomic
complexity of the biodiversity process (Aide et al., 2017), its constituent
‘channels’ may offer sufficient resolution for monitoring change. As-
sessing differences between soundscapes (β diversity) is even more
challenging than estimating biodiversity within soundscapes, and the
current set of β-diversity methods require perfect homologies that are
often impractical, even for simultaneous recordings (Sueur et al., 2014),
and readily confounded by environmental variation and noise (Buxton
et al., 2018). By abstracting the soundscape into a map of spectral-
temporal transmission channels, our analytic framework permitted us
to model differences between biotic community assemblages across a
complex forest landscape mosaic with variable sources of background
noise and signal interference. Since the coarseness of the channels and
number of diurnal replicates are effectively model assumptions, ex-
ploring the synoptic scale of the soundscape to address underlying
heterogeneity should be a logical extension of this work. Targeting
soundscape regions that represent peak activity of particular taxa could
also be informative and possibly more tractable than modeling the full
diurnal signal. Our findings from disaggregating the community-level
response curves suggest that the signal of Amazon forest degradation
may be most evident in the transmission channels predominantly

Fig. 7. Predicted occupancy probability (Ψ) over the 24-hour cycle and fre-
quency spectrum for two divergent habitats, a heavily degraded forest (44%
canopy cover), and an intact forest (93% canopy cover).
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occupied by insects (e.g. midnight), warranting targeted investigations
into their potential role as acoustic indicators of habitat change.

We anticipate a range of methodological developments to extend
the applicability of the ASOM framework. A Bayesian implementation
could allow for greater flexibility in capturing the fine-scale structure
and dependencies in time–frequency space than what can be approxi-
mated with sinusoidal functions and low-order polynomials. A Bayesian
framework would more easily allow for flexible spatial surface mod-
eling using GAMs (Carroll et al., 2010) or computationally efficient
methods used in high-dimensional space–time applications such as
Empirical Orthogonal Functions (EOFs, Wikle & Cressie, 1999). More
sophisticated techniques could be used to adjust for the abiotic occu-
pancy of acoustic space, including Poisson processes to differentiate
true and false positives from continuous detection information on the Z-
axis (e.g. Chambert et al., 2018). Moreover, collapsing the Z-axis into
binary presence-absence values, as required by the traditional binomial
model, may not be the most efficient use of the 3D soundscape. For
example, the relative abundance of soundscape quantities could be used
with N-mixture models (e.g. Royle, 2004) to investigate how metapo-
pulation dynamics are reflected in acoustic assemblages. Lastly, the
ASOM framework could also be readily extended to track longitudinal
dynamics (e.g. MacKenzie et al., 2003).

5. Conclusion

Ecoacoustics represents an exciting pathway for routine biodiversity
monitoring on the scale needed to support the derivation of essential
biodiversity variables (EBVs). Yet, its operational potential depends on
statistical solutions for characterizing multiple taxa, handling data
complexity, and addressing observation bias—methodological criteria
that have proven most challenging in biodiverse tropical forests
(Eldridge et al., 2018; Gibb et al., 2019). By applying our analytic
framework to a dynamic Amazon forest frontier, we show its potential
for meeting these objectives while addressing knowledge gaps from
chronically under-sampled taxa, such as insects. Our findings also un-
derscore important synergies between lidar and ecoacoustics for in-
forming models of occupancy and detection, and supporting future in-
vestigations into the role of habitat structure in shaping habitat use.
Our flexible framework can be readily extended to other forest types
and regional contexts to account for observation bias from imperfect
detection of forest pseudo-taxa likely to be affected by sound attenua-
tion.
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