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a  b  s  t  r  a  c  t

The  value  of  information  is  a  general  and  broadly  applicable  concept  that  has  been  used for several
decades  to  aid in  making  decisions  in  the  face  of uncertainty.  Yet  there  are  relatively  few  examples  of
its use  in  ecology  and  natural  resources  management,  and  almost  none  that  are  framed  in terms  of  the
future  impacts  of  management  decisions.  In  this  paper  we discuss  the  value  of  information  in a context  of
adaptive management,  in which  actions  are  taken  sequentially  over a timeframe  and  both  future  resource
conditions  and  residual  uncertainties  about  resource  responses  are  taken  into  account.  Our  objective  is  to
derive  the  value  of  reducing  or eliminating  uncertainty  in  adaptive  decision  making.  We  describe  several
measures  of the  value  of  information,  with  each  based  on  management  objectives  that  are  appropriate
for  adaptive  management.  We  highlight  some  mathematical  properties  of these  measures,  discuss  their
geometries,  and  illustrate  them  with  an  example  in  natural  resources  management.  Accounting  for  the
value of  information  can  help  to  inform  decisions  about  whether  and  how  much  to  monitor  resource
conditions  through  time.

Published by Elsevier B.V.

1. Introduction

In recent years there has been a growing concern about uncer-
tainty in natural resources management, and a recognition of the
impact uncertainty can have on effective resource management.
Vulnerability analysis, risk assessment, and adaptive management
are three of many approaches that explicitly account for uncer-
tainty and attempt to factor it into resource assessments and
management policies. A particularly important source of uncer-
tainty in natural resources concerns a lack of understanding
about the factors and processes influencing resource dynamics
(Williams, 2010b).  This “structural” or “epistemic” uncertainty
is often expressed through models that incorporate different
hypotheses about how the resource system works. Here incomplete
knowledge of natural systems is distinguished from other sources
of irreducible uncertainty such as demographic and environmental
variation.

Structural uncertainty can limit management effectiveness
because in its presence decision making relies on a less than com-
plete understanding of system responses. Conversely, the reduction
or elimination of that uncertainty can result in improved manage-
ment that is better tailored to actual resource dynamics. It often is
useful to measure the loss associated with structural uncertainty,

∗ Corresponding author. Tel.: +1 703 648 4260; fax: +1 703 648 4269.
E-mail address: Byron ken williams@usgs.gov (B.K. Williams).

or equivalently, to determine the potential gain in resource value
that is possible with its reduction or elimination.

The “value of information” is a generic term for potential man-
agement value that is foregone under uncertainty. Among other
things, the value of information can inform an assessment of the
potential effectiveness of monitoring and analysis to reduce that
uncertainty. For example, the value gained by reducing uncer-
tainty can be compared against opportunity and other costs that are
associated with collecting and analyzing information, to determine
whether monitoring should be undertaken.

The concept of a value of information has been around for sev-
eral decades and is now well developed. Raiffa and Schlaifer (1961)
provided one of the first seminal treatments, coining the name and
developing many of its key expressions. Since then it has been
applied in economics, finance, medicine, engineering and many
other fields (e.g., Frauendorfer, 1992; Bontems and Thomas, 2000;
Karnon, 2002; Koerkamp et al., 2006; Eidsvik et al., 2008). How-
ever, there have been relatively few applications in ecology and
natural resources management, and almost all of them involve an
assessment of the utility of information with non-iterative decision
making.

Here we  describe and discuss the value of information in a con-
text of adaptive management with iterative decision making. A
useful framework for adaptive management recognizes manage-
ment objectives, a range of potential actions, models that forecast
resource changes, and measures of confidence in those models
(Williams et al., 2007). In adaptive management, actions are taken
sequentially over a timeframe, with the choice of an action at any
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point guided by its potential consequences for immediate returns
and future value. There is an explicit recognition of uncertainty
about the biological processes influencing resources dynamics, and
the uncertainty is tracked through time along with the status of
the managed resource. The generic idea is to reduce uncertainty
by monitoring and assessing resource responses to management
actions, so that management can be improved over time based on
the accumulation of learning (Walters, 1986; Williams et al., 2007).

The objectives of this paper are to describe the value of reduc-
ing or eliminating uncertainty through adaptive decision making.
We describe several measures of the value of information in terms
of management objectives that are appropriate for adaptive deci-
sion making. The focus initially is on the expected value of perfect
information, and later we  include the expected value of partial and
sample information. We  highlight the mathematical properties of
these values, develop the geometry of the expected value of perfect
information, and provide a natural resource example to illustrate
the value of information.

2. Resource management under uncertainty

A general statement of the natural resource problem under con-
sideration here involves a dynamic resource system that changes
over a discrete timeframe {0, 1, . . .,  T} in response to changing
environmental conditions and time-specific management actions.
A policy At expresses state-specific actions to be taken at each
point in time, starting at time t and extending over the remain-
der of the timeframe. For notational convenience we  assume in
what follows that there are only finitely many states, so that the
system state can be represented with counting indices. We  begin
with a description of optimal decision making on assumption that
resource dynamics are fully known and understood. Then we allow
for uncertainty about the system processes and/or parameters in
the decision framework. In what follows we use the following nota-
tion:

• i and j denote process state.
• a denotes an action.
• q denotes a model state consisting of a probability or confidence

measure q(k) for each model in a set of potential process models.
• Pk(j|i, a) is the probability of transition for model k from state i to

state j at the next time if action a is taken.
• R(a|i) is the return for action a if the process is in state i.
• Vk(At|i) is the process value for model k corresponding to policy

At, given that the process is in state i at time t.
• Vt[i, q] is the optimal process value at time t over all policies given

the process and model states are i and q respectively.
• Qt(a|i, q) is the process value at time t for a strategy consisting of

action a at time t, followed by actions that are optimal over the
remainder of the time frame.

Structural certainty. The control of a fully known resource system
has been comprehensively treated in the optimal control literature
(Puterman, 1994; Bertsekas, 1995). The data consist of realizations
{i0, i1, . . .,  iT} of states, with transition structure

j = F(i, a, z), (1)

for single-step transitions. Control a at time t is an element of a
policy At of state- and time-specific actions, and {zt} is a white
noise process representing environmental variation. Demographic
stochasticities as well as randomness from z induce Markovian
transition probabilities P(j|i, a) over the timeframe. First-order
Markovian dynamics is a key feature underlying the following
development. The problem of optimal decision making is consider-

ably more complex with non-Markovian processes (e.g., Williams,
2007).

The reward structure for this problem is based on returns R(a|i)
that depend on system state i and action a. A process value function

V(At |i) = E

[
T∑

�=t

R(a� |i�)|i
]

, (2)

accumulates returns over time for a particular policy At, starting in
state i at time t. The value function can be expressed recursively in
terms of current and future expected returns (see Williams, 2009):

V(At |i) = R(a|i) +
∑

j

P(j|i, a)V(At+1|j). (3)

Eq. (3) can be used to determine a policy-specific process value for
any state at any time, with an optimal policy A∗

t and value function
Vt[i] = V(A∗

t |i) given by (Puterman, 1994; Bertsekas, 1995)

Vt[i] = max
a

⎧⎨
⎩R(a|i) +

∑
j

P(j|i, a)Vt+1[j]

⎫⎬
⎭ . (4)

Structural uncertainty. A key variation on the above framework
allows for uncertainty about system functions and their influencing
parameters. Here we characterize uncertainty with models incor-
porating different functional forms (or a discrete set of parameter
values), along with a measure of confidence in the ability of each
model to describe resource dynamics. Thus, system transitions are
described by

j = Fk(i, a, z), (5)

with the transition from i to j depending on the particular model
k. Randomness from z induces a Markovian probability structure
Pk(j|i, a) that also is model-specific.

The uncertainty about which model is the most appropriate is
represented by a time-varying distribution of confidence measures
for the models, denoted here by q and referred to as a model state.
The distribution specifies a probability mass q(k) for each model
k, and averaging the transition probabilities over the model state
produces

P̄(j|i, a, q) =
∑

k

q(k)Pk(j|i, a). (6)

The model state evolves through time, with the single-step tran-
sition from q to q′ expressed via Bayes’ theorem (Lee, 1989) as

q′(k) = q(k)Pk(j|i, a)

P(j|i, a, q)
, (7)

where the denominator P̄(j|i, a, q) is the average probability of tran-
sition to state j. From Eq. (7) the transition from q to q′ depends on
the state i, the action a taken, and the resulting state j.

The reward structure for this problem also can be model-
specific, with state- and action-specific returns Rk(a|i). Accumulat-
ing these returns over time produces

Vk(At |i) = E

[
T∑

�=t

Rk(a� |i�)|i
]

, (8)

and averaging the accumulated returns over the model state pro-
duces a process value function

V(At |i, q) =
∑

k

q(k)Vk(At |i). (9)
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Denoting the average return across index values by

R̄(a|i, q) =
∑

k

q(k)Rk(a|i), (10)

the value function can be expressed recursively in terms of current
and future expected returns:

V(At |i, q) = R̄(a|i, q) +
∑

j

P̄(j|i, a, q)
∑

k

q′(k)Vk(At+1|j), (11)

or

V(At |i, q) = R(a|i, q) +
∑

j
P(j|i, a, q)V(At+1|j, q′) (12)

(Williams, 2009). Eq. (12) can be used to determine an optimal
policy A∗

t and value function Vt[i, q]:

Vt[i, q] = max
a

⎧⎨
⎩R̄(a|i, q) +

∑
j

P̄(j|i, a, q)Vt+1[j, q′]

⎫⎬
⎭ . (13)

Including model state in the argument of the value function
extends the optimization described by Eq. (4) to cover both the
discrete space of system states and the continuous space of model
states.

Recognition of uncertainty and the opportunity to reduce it is
the basis of an adaptive approach to resource management, which
emphasizes the influence of actions not only on resource status
but also on learning through time (Walters, 1986). In this partic-
ular case, learning is represented by changes in the model state
that occur in response to management actions, as in Eq. (7).  At
each time the state of the system is identified through monitoring,
and the model state is updated. The model state reveals the resid-
ual uncertainty about resource structure, and systematic change
in that uncertainty through time represents incremental learning
based on the accumulation of monitoring data. Learning through
management, with the use of what is learned to guide future man-
agement actions, is definitive of adaptive management (Williams
et al., 2007).

3. Derivation of the expected value of perfect information

Q-functions. In developing the expected value of perfect infor-
mation (EVPI) we use the concept of a “Q-function” representing the
expected reward for taking action a at time t in state i and then act-
ing optimally over the remainder of the timeframe (Kaelbling et al.,
1998). Under structural certainty, the Q-function is the bracketed
term in Eq. (4),

Qt(a|i) = R(a|i) +
∑

j

P(j|i, a)Vt+1[j], (14)

and its optimization produces the optimal value function:

Vt[i] = max
a

Qt(a|i). (15)

A process Q-function under structural uncertainty utilizes
model-specific Q-functions. Let

Q k
t (a|i) = Rk(a|i) +

∑
j

Pk(j|i, a)Vk
t+1[j], (16)

denote the Q-function for model k, representing the expected
reward under model k for taking action a at time t in state i, and
then acting optimally over the remainder of the timeframe. A pro-

cess Q-function can be obtained by averaging the model-specific
Q-functions:

Qt(a|i, q) =
∑

k

q(k)Q k
t (a|i)

= R̄(a|i, q) +
∑

k

q(k)
{∑

j
Pk(j|i, a)Vk

t+1[j]
}

= R̄(a|i, q) +
∑

j

P̄(j|i, a, q)Vt+1[j, q′]

. (17)

Thus, the process Q-function is simply the bracketed term in
Eq. (13), and its optimization produces the process optimal value
function:

Vt[i, q] = max
a

Qt(a|i, q). (18)

Expected value of perfect information. The Q-function provides an
intuitive way to derive EVPI. For a particular model k, consider the
loss in value that comes from the use of action a

lkt (a|i) = Q k
t (a∗|i) − Q k

t (a|i)
= Vk

t [i] − Q k
t (a|i)

, (19)

with a* the optimal action for model k when the process is in state i
at time t. Losses are non-negative for different actions, and the loss
vanishes when a = a*. The average loss over the model state is

l̄t(a|i, q) =
∑

k

q(k)lkt (a|i)

=
∑

k

q(k)[Vk
t [i] − Q k

t (a|i)]

=
∑

k

q(k)Vk
t [i] −

∑
k

q(k)Q k
t (a|i)

, (20)

and the smallest average loss over the actions is

min
a

l̄t(a|i, q) = min
a

{∑
k

q(k)Vk
t [i] −

∑
k

q(k)Q k
t (a|i)

}

=
∑

k

q(k)Vk
t [i] − max

a

∑
k

q(k)Q k
t (a|i)

=
∑

k

q(k)Vk
t [i] − Vt[i, q]

. (21)

The latter form defines the expected value of perfect informa-
tion:

EVPI(i, q) =
∑

k

q(k)Vk
t [i] − Vt[i, q]. (22)

From Eq. (21), EVPI(i,q) can be seen as expressing the smallest
average loss in value associated with model state q when the sys-
tem is in system state i. In essence, the presence of uncertainty (as
expressed by the model state q) leads to an expected loss in value
that is at least as much as indicated by the EVPI metric. Alterna-
tively, EVPI can be interpreted as a measure of the “importance” of
eliminating that uncertainty.

4. Properties of EVPI

EVPI is essentially a comparison of 2 terms that utilize expecta-
tion and optimization of the model value functions, but in reverse
order. Thus, the summation term

∑
kq(k)Vk

t [i] in Eq. (22) con-
sists of (i) optimization over the available actions to produce
model-specific value functions, followed by (ii) an expectation that
averages these functions over the model state. On the other hand,
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( | )V a i q( | , )tV a i q

1 2(1 )t tqV i q V i

1( | , )tV a i q

2( | , )tV a i q 3( | , )tV a i q

(1 )t tqV i q V i

4( | , )tV a i q

q
*q **q0 1

Fig. 1. Value functions for a structurally uncertain process involving 2 models with
model state [q(1), q(2)] = [q̃, 1 − q̃], where q̃ ∈ [0,  1]. A value function Vt(a|i, q̃) =
q̃V1

t (a|i) + (1 − q̃)V2
t (a|i) is defined for each of 4 actions. An optimal partition of belief

space is defined by the intersection points q̃∗ and q̃∗∗ , with the optimal value func-
tion  shown in bold. The average of the 2 model-specific optimal value functions for
q̃ ∈  [0,  1] is shown with a dashed line. The expected value of perfect information is
the distance between the bold and dashed lines.

the term Vt[i, q] is the result of (1) an expectation that averages
the model-specific value functions over the model state, followed
by (2) optimization over the available actions, as in Eq. (13). EVPI
is simply the difference between these 2 treatments of the model
value functions. That it is non-negative follows from the fact that
the average of functional maxima is necessarily greater than the
maximum of an average of functional values (Williams et al., 2002).

The geometry of EVPI is inherited from the terms in Eq. (22).
Following the same arguments that demonstrate the optimal value
function of a partially observable Markov decision process is piece-
wise linear convex in belief state (Sondik, 1971; Smallwood and
Sondik, 1973), the optimal value function Vt[i, q] under structural
uncertainty also can be seen to be piecewise linear convex in model
state (Williams, 2010a).  Since the summation

∑
kq(k)Vk

t [i] is linear
in q, EVPI, which is simply the difference between the two value
expressions, is piecewise linear concave in model state (concavity
follows from negation of the convex value function in EVPI).

Piecewise linearity simplifies the interpretation of the value of
information. For example, Fig. 1 displays the optimal value function
for a problem involving 2 models and 4 actions. Because there are
2 models, the model state can be expressed by a single confidence
value q̃ with q(1) = q̃ and q(2) = 1 − q̃. From the figure optimiza-
tion leads to a policy with actions that are specific to the model
state, with a partition of the model space into regions over which
the same action is optimal. Fig. 1 also exhibits the average of the

EVPI(, )iq

q
*q **q0 1

Fig. 2. Expected value of perfect information as a function of model state q̃. EVPI
is  piecewise linear concave in the model state q̃ ∈ [0,  1]. Maximum EVPI is in the
interior of the [0,1] interval, with convergence to 0 at the endpoints.

model-specific optimal values as a function of the model state. The
vertical distance between the optimal value function and the aver-
age of model-specific optimal values represents the expected value
of perfect information, as shown in Fig. 2.

Some patterns in EVPI are evident from Figs. 1 and 2. One is that
EVPI vanishes as the confidence in any model approaches unity (e.g.,
as q̃ converges to 0 or 1 in Fig. 2). Another is that EVPI is maximal for
a model state somewhere in the interior of the model space (e.g.,
for q̃ distant from 0 and 1). Yet another is that EVPI changes linearly
within the interior of a partition region, but not across regions (EVPI
is linear on either side of an intersection point, but not across that
point). In essence, EVPI exhibits a constant gradient for all model
states within a partition segment. Finally, EVPI is specific to sys-
tem state, in that the value of information recorded in EVPI varies
depending on the state at which it is evaluated (Fig. 3). The depen-
dence on system state is clear from the notation in Eq. (22), where
state i is shown as an argument in EVPI(i, q).

These same patterns are evident for an optimal value function
involving 3 models. As shown in Fig. 4, the model space is a two-
dimensional simplex within which model states can vary. From the
figure, EVPI is seen to be piecewise linear in the two-dimensional
model state. It goes to zero at the 3 corners of the state space where
confidence in one of the models is unity, and it is maximal some-
where in the interior of the state space. Finally, the optimal value
function partitions state space into regions within which the func-
tion changes linearly. In fact, an examination of the terms in Eq.
(22) makes clear that these same properties hold irrespective of
the number of models under consideration. Because Vt[i, q] is piece-
wise linear and convex for any time t in the timeframe (Williams,
2010a), the properties also hold irrespective of time t.

5. Example

We  consider the value of information for an adaptive man-
agement project to promote the recovery of Florida scrub-jay
(Aphelocoma coerulescens) populations in Brevard County, Florida,
USA. The scrub-jay is Florida’s only endemic bird species, and it

a b

Fig. 3. Optimal value function Vt(a|i, q̃) = q̃V1
t (a|i) + (1 − q̃)V2

t (a|i) for different system states. (a) Value function for state i = 1. (b) Value function for state i = 2.
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Fig. 4. Value functions for a structurally uncertain process with model state
[q(1),q(2),q(3)]. Model space consists of the 2-dimensional simplex defined by
q(1) + q(2) + q(3) = 1. The optimal value function is piecewise linear convex, and the
average of the 3 model-specific optimal value functions is linear. The expected value
of  perfect information is the distance between the linear and piecewise linear forms.
An  optimal partition of belief space is defined by the intersection points and lines.

is an indicator for the rare and endangered Florida scrub ecosys-
tem (Noss et al., 1997). Scrub habitat (and by extension scrub-jays,
which are restricted to this ecosystem) is threatened by fragmen-
tation and the disruption of natural succession patterns. Scrub
habitat composition and density were maintained historically by
fire, but fragmentation and active fire suppression have resulted
in unchecked scrub succession to the point where scrub-jays are
unable to sustain viable populations (Breininger and Carter, 2003).
Land managers therefore rely on prescribed fires and mechanical
thinning of overgrown vegetation to produce conditions believed
to be optimal for maintaining stable scrub-jay populations (Johnson
et al., in press).

Management actions are performed at the scale of individual fire
management units (FMU) within a management reserve. Reserve
managers have expressed a desire to base annual decisions on a
combination of habitat and occupancy states of scrub-jay territories
in an FMU. Florida scrub-jays are highly territorial, with a fam-
ily (generally a breeding pair and one or more juvenile ‘helpers’)
defending a territory of approximately 10-ha when the landscape
is at carrying capacity (Carter et al., 2006; Breininger et al., 1995).
To incorporate the scales of both management and the biological
system, we define habitat and occupancy states on the basis of a
regular grid of 10-ha cells within an FMU.

If an FMU  contains N 10-ha scrub-jay territory patches, its state is
described at the beginning of each management cycle by the num-
ber of territories in each of 4 possible succession stages – short
(n1), optimal height with open sandy patches (n2), optimal height
with no sandy patches (n3), and tall (n4) – and the number of ter-
ritories occupied by scrub-jays (c), which can take any value from
zero to the total number of territories. At any given time step, each
territory of the FMU  can be in only one of the 4 habitat types and
is either occupied or not. The number of possible states an FMU
can take is the product of the combination of 4 habitat types dis-
tributed across N territories and the number of territories that are
occupied. Let N- = [n1, n2, n3, n4] represent habitat state, consist-

ing of the number of territories of each type. The total count of all
occupied territories is denoted by c ∈ [0, 1, ..., N].

Building directly on the work of Breininger and colleagues
(unpublished data) we developed an integrated habitat-occupancy
model in which habitat transitions are predicted as a function
of management action, and occupancy dynamics depend on FMU
habitat state. Annual changes in habitat state are modeled via a
Markovian process, with probabilities P(j′|i′, a) that a territory in
state i′ at a particular time t is in state j′ at time t + 1, given that
action a is taken between t and t + 1. Reserve managers hope to
influence habitat transitions to favor scrub-jays by selecting among
four possible actions each year: controlled burning, light mechani-
cal cutting followed by a controlled burn, heavy mechanical cutting
followed by a controlled burn, or a “do nothing” action. As in nearly
all natural resource management problems, significant uncertainty
exists in the habitat response expected after implementing any
action. Uncertainty regarding the rate of scrub regeneration and the
effects on future burning success of reducing highly combustible
palmetto following restoration actions diminishes confidence in
selecting the most appropriate management policies. We  capture
this uncertainty by considering multiple transition models that
reflect differing beliefs regarding system dynamics. This model or
‘structural’ uncertainty is represented by competing versions of the
state transition matrix model, in which the matrix elements Pk(j′|i′,
a) describing the transition of a territory from state i′ to state j′ can
vary among models. A Markov model for habitat state transitions
is given by

E(N- t+1) = N- t × P-k(a), (23)

where N- is a row vector of territory counts for each of the four habi-
tat types and P-k(a) = [Pk(j′|i′, a)] is a model-specific 4 × 4 matrix of
model-specific transition probabilities for action a.

Annual probabilities of extinction and colonization for each ter-
ritory are modeled as linear-logistic functions of the composition
of anticipated habitat types (N- t) in the FMU  following implementa-
tion of a specified management action. Parameter coefficient values
for these functions were derived from a 14-year data set containing
observations on habitat state transitions and scrub-jay occupancy
dynamics across 40 Brevard County scrub reserves (D. Breininger,
unpub. data).

The annual state transitions for the integrated model are the
combined transitions for the habitat and occupancy states. Letting
i and j represent particular combinations of N- and c at times t and
t + 1, the probability of transition from i to j is expressed as

P̃-k(a) = [P̃k(j|i, a)]
= [Pk(N- t+1|N- t , a)p(ct+1|ct, N- t+1, a)]

, (24)

where ct+1 is predicted as a function of action a, model k and states
N- t+1 and ct.

The reward structure for this problem is model-specific and
based on expected scrub-jay occupancy:

Rk(at |i) = Ek(ct+1|at, i). (25)

For the purpose of this example, we  represent a portion of
the uncertainty in system dynamics by considering 2 models that
differed in their predictions of the effects on habitat transitions
under the 4 available management alternatives. Model 1 hypothe-
sized slower scrub growth of the optimal states in the absence of
management, relative to Model 2. Model 1 also anticipated higher
retention of palmetto scrub under burning, resulting in increase
flammability and higher probability of remaining in a short state.
However, Model 1 posited that light mechanical cutting resulted
in a greater reduction of palmetto relative to Model 2, leading to
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a b

Fig. 5. Value functions for structural uncertainty represented by two  models that predict the consequences of management actions on scrub habitat succession dynamics
and  Florida scrub-jay occupancy. System state (i) is the number of potential bird territories in each of 4 possible habitat types and the number of those territories that are
occupied. (a) System state dominated by tall scrub, N = [0,0,0,5], and 4 of 5 territories occupied. (b) Heterogeneous system with a mix of habitat succession states, N = [2,2,0,1]
and  only 1 of 5 territories occupied by jays. The state-dependent differences in EVPI is evident from the geometry of the optimal piecewise linear value functions, with a
greater gain expected by reducing uncertainty when the system is dominated by tall shrub.

reduced flammability and higher probabilities of transitioning to
taller scrub classes. The value function at time T − 1 is

V(aT−1|i) =
∑

k

q(k)Rk(aT−1|i)

= q̃E1(cT |aT−1, i) + (1 − q̃)E2(cT |aT−1, i)
, (26)

with q̃ ∈ [0,  1]. Fig. 5 displays value functions at T − 1 for two ini-
tial system states in an FMU  of size N = 5, for the 4 management
actions. The system state with N = [0,  0, 0, 5] and c = 4 represents a
predominance of tall vegetation in the FMU. For this state the par-
titioning of belief space is defined by the intersection at q̃∗ = 0.33,
where the optimal action switches from light mechanical cutting
(action 3) to burning (action 2). This result is explained by the
belief under Model 1 that reduced palmetto and increased growth
rate moves post-treatment habitat more quickly into optimal con-
ditions, whereas cutting under Model 2 greatly reduces growth
relative to burning. The intersection at q̃∗∗ = 0.82 reverts the opti-
mal  decision to heavy mechanical cutting (action 4) due to the
hypothesis that heavy cutting is required to stimulate growth under
Model 2. The ‘do nothing’ action (action 1) is dominated by the other
actions across model space, and thus is not included in the optimal
strategy. In comparison, the system state with N = [2,  2, 0, 1] and
c = 1 represents earlier successional stages in 4 of the 5 territories in
the FMU. Here, light mechanical cutting (action 3) is optimal only
with strong belief in model 1 (q̃ = 0.0–0.06) because of increased
growth of optimal scrub classes. The “do nothing” option is opti-
mal  between q̃∗ = 0.06 and q̃∗∗ = 0.76, and the burn option (action
2) is optimal when there is confidence in model 2 (q̃ = 0.76–1.0)
which predicts suppression of palmetto by fire and thus higher
rate of transition into optimal vegetation height. The geometries
in Fig. 5 demonstrate that the potential average loss in value due
to model uncertainty is dependent on system state, with a greater
loss expected for the system state corresponding to N = [0,  0, 0, 5]
and c = 4. This is seen by the greater vertical distance between the
piecewise optimal value function and the average model-specific
optimal value for N = [0,  0, 0, 5] and c = 4.

6. Extensions

Expected value of partial information. From Eqs. (19)–(22), EVPI
is described in terms of a loss of value in the model-specific Q-
function Q k

t (a|i), with each loss function based on a Q-function that
is specified unconditionally. An alternative measure relaxes this
requirement to obtain the expected value of partial information,
sometimes written as EVPXI (Yokota and Thompson, 2004).

The underlying idea with EVPXI is that if there are multiple
sources of uncertainty, one can describe a loss in value for some

uncertainty factors conditional on others. To illustrate, assume
there are 2 sources of uncertainty, expressed by indices k and k′ For
example, the index k might represent uncertainty about survival
rates for a biological population, with k′ representing uncertainty
about recruitment. In this situation the model state is effectively a
joint distribution q(k, k′) of the 2 indices, and it can be written in
terms of conditional distributions as

q(k, k′) = q(k|k′)q(k′)
= q(k′|k)q(k)

. (27)

Let qk and qk′ represent marginal distributions over the indices
k and k′, with qk|k′ and qk′ |k the associated conditional distributions.
By conditioning on k, one can compute an average of Q-functions
over k′,

Q |k
t (a|i) =

∑
k′

q(k′|k)Q k,k′
t (a|i), (28)

thereby incorporating uncertainty about recruitment into the Q-
function for a given survival model k. Letting a* represent the action
that maximizes Q |k

t (a|i), the loss corresponding to a less than opti-
mal  action is

l|kt (a|i) = Q |k
t (a∗|i) − Q |k

t (a|i)
= Vt[i, qk′ |k] −

∑
k′

q(k′|k)Q k,k′
t (a|i) . (29)

Then the average loss over the marginal model state qk is

l̄t(a|i, qk) =
∑

k

q(k)l|kt (a|i)

=
∑

k

q(k)

{
Vt[i, qk′ |k] −

∑
k′

q(k′|k)Q k,k′
t (a|i)

}

=
∑

k

q(k)Vt[i, qk′ |k] −
∑

k

∑
k′

q(k, k′)Q k,k′
t (a|i)

, (30)

and the smallest average loss over the actions is

min
a

l̄t(a|i, q) = min
a

{∑
k

q(k)Vt [i, qk′ |k] −
∑

k

∑
k′

q(k, k′)Q k,k′
t (a|i)

}

=
∑

k

q(k)Vt [i, qk′ |k] − max
a

∑
k

∑
k′

q(k, k′)Q k,k′
t (a|i)

=
∑

k

q(k)Vt [i, qk′ |k] − Vt [i, q]

. (31)
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The latter form defines the expected value of partial informa-
tion:

EVPXI(i, qk) =
∑

k

q(k)Vt[i, qk′ |k] − Vt[i, q]. (32)

Thus, EVPXI expresses the minimum loss in value associated with
qk, except in this instance the loss function for the value of infor-
mation incorporates residual uncertainty about k′. In the example,
EVPXI averages over the distribution of survival rates, using a loss
function that includes uncertainty about recruitment. EVPXI(i,qk)
has the same general computing form as EVPI(i,q) except it uses
a different loss function, one that includes the conditional distri-
bution qk′ |k. Thus, EVPXI(i,qk) is “conditional,” in that the value of
information it expresses will vary depending on the form of this
distribution. Because the terms in Eq. (32) are piecewise linear, the
expected value of partial information is as well.

The expected value of partial information offers a way to address
system complexity that might otherwise be problematic for adap-
tive optimization. By investigating the components of uncertainty
with EVPXI, one can compare the relative importance of differ-
ent uncertainty sources and use the comparison to decide which
uncertainty factor is most important to focus on with adaptive
management.

Expected value of sample information. It often is useful to consider
the gain in value that could result from a sample of observations
that produce less than perfect information. This “expected value
of sample information” is sometimes written as EVSI (Yokota and
Thompson, 2004)

To simplify notation, consider a situation at time t in which the
system state is i and model state is q. Optimization as in Eq. (13)
produces Vt[i, q], along with a stochastic transition to a new system
state j and an updated model state q′ at time t + 1. Now imagine
that somehow one could know the new system state j and updated
model state q′ at time t. With this new information, optimization
could then produce Vt[j, q′]. The difference between Vt[i, q] and Vt[j,
q′] represents the information value for the data that produced the
updated system state j and derived model state q′. Of course, this
difference is conditional on the state j that is produced. By averaging
over the all system states using the average transition probabilities
P̄(j|i, a∗, q), one produces the expected value of sample information:

EVSI(i, q) =
∑

j

P̄(j|i, a∗, q){Vt[j, q′] − Vt[i, q]}

=
∑

j

P̄(j|i, a∗, q)Vt[j, q′] − Vt[i, q]
.  (33)

Like EVPI, the expected value of sample information is a function
of the system state i and model state q.

In the context of adaptive management, the key difference
between EVSI and EVPI is seen by comparing Eqs. (22) and (33).
Thus, EVPI in Eq. (22) uses an average of model-specific optimal val-
ues across model probabilities, and EVSI in Eq. (33) uses an average
of weighted combinations of these values∑

j

P̄(j|i, a∗, q)Vt[j, q′] =
∑

j

P̄(j|i, a∗, q)
∑

k

q′(k)Vk
t [j]

=
∑

j

∑
k

Pk(j|i, a∗)q(k)Vk
t [j]

=
∑

k

q(k)
{∑

j
Pk(j|i, a∗)Vk

t [j]
}

. (34)

The notation makes clear that EVSI and EVPI both are functions
of model state q, and both are conditional on system state i. Like
EVPI, the expected value of sample information is piecewise linear

in q, a result of the fact that the value terms in Eq. (33) are piece-
wise linear. However, EVSI produces different and somewhat more
complicated patterns in the value of information.

7. Discussion

The value of information is a potentially useful but infrequently
utilized construct in natural resources management. The few exam-
ples documented in the literature typically are limited to decision
making at a single point in time, and do not account formally
for the future impacts of decisions (see Runge et al., 2011 for a
recent example). Yet a great many important problems in natu-
ral resources management are fundamentally sequential in nature,
with the opportunity to improve resource understanding as deci-
sions are made through time.

The value of information as discussed here links naturally to
economics through the framing of VOI in terms of potential looses,
including opportunity costs, and potential benefits to be accrued
through the reduction of uncertainty. It is straightforward to frame
the decision making problem as aggressively seeking to eliminate
uncertainty when the benefit for doing so exceeds the cost, but
adopting less informative strategy when the cost in information is
high relative to benefits.

We have discussed 3 different measures for the value of infor-
mation, namely the expected value of perfect, partial and sample
information. In each case the notation makes clear that the mea-
sure is a function of the model state, and is parameterized by the
system state. The value of information will vary with the amount of
uncertainty (i.e., the model state), and decline to zero as the most
appropriate model is recognized. It also will vary with the state of
the resource – for a given model state the value of information may
be high in one resource state and low in another (Fig. 5 and the
above example).

The value of information will exhibit general trends through
time. Because adaptive management tends to identify the most
appropriate model as decision making progresses, the model state
can be expected to converge to a unit vector representing that
model. In turn, the value of information is expected to decline as
uncertainty is reduced. One implication is that the value of elimi-
nating any residual uncertainty is expected to decrease over time.

A few points about differences among the measures of informa-
tion value are noteworthy. One is that the expected values of partial
information do not sum to the expected value of perfect informa-
tion. For example, if uncertainty is represented by the indices k and
k′, then the measures EVPXI(i, qk) and EVPXI(i, qk′ ), representing the
expected values of partial information for each uncertainty factor,
need not sum to the value of perfect information:

EVPXI(i, qk) + EVPXI(i, qk′ ) /= EVPI(i, q). (35)

On reflection this is expected; the 2 expected values of partial
information are constructed with the conditional distributions qk|k′
and qk′ |k, whereas the expected value of perfect information is con-
structed with a joint distribution over both uncertainty factors.
Unless k and k′ are independent, the partial distributions do not
relate in a straightforward way to the joint distribution:

q(k|k′)q(k′|k) /= q(k, k′). (36)

For that reason alone it seems reasonable that the 2 EVPXI values
would not necessarily relate to EVPI in a straightforward way.

A second point of comparison concerns the value of sample
information. From Eqs. (22) and (34) it is clear that the only sub-
stantive difference between EVPI and EVSI are the multiplicands for
q(k) in the 2 expressions. Thus, EVPI uses model-specific value func-
tions, whereas EVSI uses a linear combination of these functions.
The net effect of this difference is that EVPI is effectively an upper
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bound on EVSI for any particular system and model state (Yokota
and Thompson, 2004).

A possible application of the value of information for adap-
tive management involves a decision about whether to conduct
monitoring or not (McDonald-Madden et al., 2010). The amount of
monitoring (including the possibility of foregoing monitoring alto-
gether) can be incorporated in adaptive management as a decision
to be made sequentially. For example, a decision about whether to
monitor might depend on a combination of resource conditions
and the amount of uncertainty, with monitoring deferred if the
resource is abundant and well understood (Hauser et al., 2006). One
of the metrics for the value of information could be used in such an
assessment to decide if resource understanding is adequate to defer
monitoring, through a comparison of the value gained by additional
monitoring against the cost of acquiring the information. In the con-
text of adaptive decision making, a decision to forego monitoring
at a given time step could be handled naturally, simply by using the
information about system state from the previous time for current
decision making. In consequence, the model state from the previ-
ous time would remain unchanged, i.e. the same model state would
be used in successive time periods.

Finally, a natural extension of the above treatment of VOI would
focus on systems that include both partial observability and struc-
tural uncertainty (Williams, 2009). Assuming partial observability
but complete certainty as to model form, a VOI function that is
analogous to Eq. (22) would be a function of belief state only:

EVPI(b) =
∑

i

b(i)Vt[i] − Vt[b], (37)

where the “belief state” b represents a distribution of likelihoods
over the possible system states, Vt[i] is the optimal value func-
tion corresponding to state i, and Vt[b] is based on the average of
state-specific value functions (Williams, 2009). A measure of the
true value of information for processes that include both forms
of uncertainty should account for both uncertainty components.
Useful investigations might include comparative assessments of a
“partial value of information” from including one source of uncer-
tainty but not the other, and a comparison of these partial values
against the value of information resulting from the inclusion of
both.
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