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ANIMAL WELL-BEING AND BEHAVIOR

Effect of cooled perches on performance, plumage condition, and foot health
of caged White Leghorn hens exposed to cyclic heat

J. Y. Hu,∗ P. Y. Hester,∗ M. M. Makagon,∗,1 Y. Xiong ,† R. S. Gates,† and H. W. Cheng‡,2

∗Department of Animal Sciences, Purdue University, West Lafayette IN 47907, USA; †Agricultural and
Biological Engineering Department, University of Illinois, Urbana, IL 61801, USA; and ‡USDA-Agricultural

Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907, USA

ABSTRACT We examined the effects of water-chilled
perches as cooling devices on hen performance during 2
summers using daily cyclic heat. White Leghorns, 17 wk
of age, were assigned to 36 cages arranged into 6 banks.
The banks were assigned to cooled perches, air perches,
and no perches resulting in 2 replicate banks and 12
cages per treatment. Chilled water (10◦C) was circu-
lated through the cooled perches during heat episodes.
Daily cyclic heat of 35◦C was applied from 0600 to1800
h with a lowering of temperature to 28◦C from 1800 to
0600 h during the 2014 and 2015 summers when hens
were 21 to 35 and 73 to 80 wk of age, respectively. Mor-
tality and egg production were recorded daily. Feed uti-
lization, egg weight, and shell quality traits were mea-
sured at 4-wk intervals during the heat episodes and
at 8-wk intervals during thermoneutrality. Body weight
was determined at 17, 35, 72, and 80 wk of age and
physical condition at 80 wk of age. At several ages

during the heat episodes, cooled perch hens had in-
creased egg production (P < 0.0001) and feed usage
(P < 0.04) as compared to both air perch and control
hens. The cooled perch hens had higher BW at 35 and
72 wk of age (Ptreatment∗age = 0.03) and lower cumula-
tive mortality (P = 0.02) than control hens but not
air perch hens. Eggs from cooled perch hens had over-
all heavier weights (P < 0.0001) and higher breaking
force (P < 0.0001) than eggs from the other two group
hens. Greater eggshell percentage (Ptreatment∗age = 0.03)
and eggshell thickness (Ptreatment∗age = 0.01) occurred at
some ages during the 2 heat episodes as compared to
the other 2 treatments. Nail length, feet hyperkerato-
sis, and overall feather score were similar among treat-
ments. These results indicate that cooled perch amelio-
rates the negative effects of heat stress on egg traits and
performance without influencing the physical condition
of hens.
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INTRODUCTION

High environmental temperature is one of the most
detrimental problems facing the commercial egg indus-
try during hot summers. Numerous egg production fa-
cilities are located in tropical or subtropical regions
causing hens to be exposed to heat year round. Cli-
mate change in the last 50 yr has resulted in more hot
days with more frequent and unexpected heat waves
(Russo et al., 2017). These conditions prevent animals
from dissipating heat to the surrounding environment
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to maintain body temperature within a physiological
range resulting in heat stress (HS). Heat stress sup-
presses feed consumption in order to reduce metabolic
heat production (Etches et al., 2008) in various domes-
ticated species including cows (Kadzere et al., 2002),
pigs (Collin et al., 2001), sheep (Marai et al., 2007),
broiler chickens (Quinteiro et al., 2010), and laying
hens (Mashaly et al., 2004). Laying hens exposed to
both acute and chronic HS have impaired immunity
and oxidative damage (Panda and Cherian, 2014), neg-
atively affecting livability, egg production, egg weight,
and eggshell quality (Lin et al., 2006; Rozenboim et al.,
2007; Ajakaiye et al., 2011; Yoshida et al., 2011; Lara
and Rostagno, 2013); by which HS leads to welfare dam-
age and profound economic loss (Hristov et al., 2018).

In order to alleviate the effect of HS on laying
hens, a variety of strategies have been employed such
as feed manipulation, genetic selection, and physical
cooling (Lin et al., 2006). Evaporative cooling pads
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and fogging are the most common methods used in
hen housing that effectively lower ambient tempera-
ture (Gates and Timmons, 1986; Timmons and Gates,
1988; Lin et al., 2006). However, these methods increase
humidity of housing facilities, which leads to wet ma-
nure and litter, overgrowth of bacteria, and excessive
ammonia levels (Chepete and Xin, 2000; Dawkins et al.,
2004). The increased humidity from evaporative cooling
pads and fogging ultimately interferes with the bird’s
ability to dissipate heat through panting, a thermoregu-
latory behavior releasing body heat through accelerated
respiration (Yahav et al., 1995).

Laying hens are highly motivated to perform roost-
ing behavior when they have the opportunity to ac-
cess perches (Olsson and Keeling, 2000, 2002). Perches
installed in both cage and cage-free environments in-
crease the comfort level of hens, which not only provides
places for roosting but also improves skeletal strength
(Appleby et al., 2002; Hester, 2014). Installed perches
could also serve as a cooling device to reduce the nega-
tive effects of HS on laying hens via the transfer of body
heat to the cooled perches during roosting. Approxi-
mately 25% of the body heat of chickens can be released
via their feet through the unique feature of the arteri-
ovenous anastomose system (Hillman and Scott, 1989).
Cooled perches improved broiler welfare and growth
performance including decreased mortality, improved
feed efficiency, and increase BW under HS (Pettit-Riley
and Estevez, 2001; Reilly et al., 1991; Estevez et al.,
2002; Okelo et al., 2003; Zhao et al., 2012, 2013). Lim-
ited studies, however, have been conducted in laying
hens. In our previous study, under natural weather, the
mild summer temperature (averaged 24◦C) was not suf-
ficient to influence egg production and most measured
physiological parameters, but birds used the cooled
perches more frequently during the single 4-h heat ex-
posure at 33.5◦C, as an acute heat wave, and several
other hot days during that summer. (Strong et al., 2015;
Hu et al., 2016). The objective of the present experi-
ment was to investigate if water-chilled perches improve
production performance and the physical condition of
caged laying hens under more severe elevated tempera-
tures using daily cyclic heat episodes during 2 summers.

MATERIALS AND METHODS

Chickens, Management, and Cyclic Heat

A total of 390 day-old Hy-Line W-36 White Leghorn
female chicks were randomly distributed to 30 cages
at the Grower Research Unit of the Purdue Univer-
sity Poultry Research Farm. Chicks were infrared beak
trimmed at the hatchery. Among the cages, 20 pullet
cages were furnished with 2 perches. Cage dimensions
and perch location within the pullet cage are described
by Enneking et al. (2012). All pullets were reared fol-
lowing standard management guidelines and vaccina-
tion schedule (Hy-Line, 2016).

At 17 wk of age, 324 hens were transferred to the
Layer Research Unit. The hens were assigned randomly

to 36 cages of 9 birds per cage within 6 banks, each bank
had 3 decks, and each deck had 2 cages. The banks
were semirandomly assigned into 1 of 3 treatments
(Figure 1): thermally cooled perch (Figure 1a), air
perches containing ambient air (Figure 1b), and no
perch (Figure 1c). There were 12 cages per treatment.
The pullets assigned to the treatments were based on
their rearing condition, i.e., the ones with or with-
out perches were randomly assigned to perch groups
(cooled perch or air perch) or non-perch group (con-
trol), respectively. The layer cage dimension and the
perch location have been described by Hester et al.
(2013). The perches of each cage provided 16.9 cm of
perch space/hen, which was adequate for all 9 hens
to roost simultaneously (United Egg Producers, 2017).
Day-old female chicks consumed a starter diet with
20% CP, 1.0% Ca, and 0.45% non-phytate phospho-
rus to 3.9 wk of age, and a grower diet from 4 to
15.9 wk with 18.6% CP, 1.0% Ca, and 0.40% non-
phytate phosphorus. A pre-lay diet with 18.4% CP,
2.50% Ca, and 0.35% non-phytate phosphorus was fed
from 16 to 17 wk of age followed by a laying diet with
18.3% CP, 4.2% Ca, and 0.3% non-phytate phospho-
rus. Food and water were provided for ad libitum. The
lighting schedule was gradually stepped up from 12L:
12D beginning at 17 wk of age to 16L: 8D, which was
achieved at 30 wk of age (Hu et al., 2016). In the perch
groups, the 2 perches were connected to form a con-
tinuous loop for each deck. Each loop of the cooled
perch banks was controlled independently by a wa-
ter pump connected to a water reservoir where wa-
ter was cooled to approximately 10◦C using a water
chiller (ELKAY Manufacturing Co., Oak Brook, IL;
Figure 1a; Gates et al., 2014). Pumps were turned on
by a central controller when the cage temperature rose
above 25◦C so as to circulate chilled water through
the round, galvanized metal perch pipes (Big Dutch-
man, Holland, MI). Two temperature sensors were in-
stalled in each cooled perch loop of each deck to mea-
sure the supply and return water temperatures. A sin-
gle point for the ambient air perch temperature was
also measured. Room relative humidity and the tem-
peratures of the room, cage, as well as the supply and
return of the water within the cooled perch at each
deck level were monitored independently at 1-min in-
tervals throughout the entire experiment using HOBO
data loggers (model ZW-007 for cages with perches
and model ZW-003 for cages without perches, Onset
Computer Co., Bourne, MA; Gates et al., 2014; Xiong
et al., 2015).

Hens were subjected to daily cyclic heat of 35◦C
from 6:00 am to 6:00 pm. The ambient temperature
was lowered to 28◦C from 6:00 pm to 6:00 am. This
daily cyclic heat was applied using furnaces from 21
to 35 wk of age (2014 summer) and from 73 to 80 wk
of age (2015 summer). From 36 to 39 wk of age, the
ambient temperature was stepped down from 35◦C
(6:00 am to 6:00 pm) and 28◦C (6:00 pm to 6:00
am) by 2◦C per week until 20 to 25◦C. At all other
ages, hens were kept at 20 to 25◦C. The protocol was
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Figure 1. Cage bank design for the 3 treatments of cooled perch cages (a), air perch cages (b), and control cages with no perches (c). Two
perches were installed parallel with each other in each row of a cage bank. For the cooled perch cages, a manifold was used to supply each loop
with chilled water (10◦C). Each loop was independently controlled by a water pump. Pumps for cooled perch cages were turned on when thermal
sensors detected an air temperature exceeding 25◦C. Printed with permission from the American Society of Agricultural and Biological Engineers
(Gates et al., 2014) and Poultry Science (Hu et al., 2016).

approved by the Purdue University Animal Care and
Use Committee (PACUC#: 1302000813).

Mortality, Feed Consumption, Egg
Production, and Egg Quality

Mortality was recorded daily. The amount of feed
used per cage over a 7-d period was determined at 4-wk
intervals during the heat episodes and at 8-wk intervals
during thermoneutral conditions, i.e., at week 24, 28,

32, 36, 40, 48, 56, 64, 72, 76, and 80. Average daily feed
utilization per hen was calculated as total feed used
(g)/7 d × number of live hens (Hester et al., 2013).
Feed efficiency was calculated on per cage basis as the
ratio of weekly feed utilized per dozen eggs produced.

Eggs were collected and recorded daily. Hen-day egg
production per cage was calculated at 4-wk intervals as
the total number of eggs produced/average number of
live hens × 100%. Hen-house production per cage was
calculated at 4-wk intervals as total number of eggs
produced/number of hens housed × 100% (Bell, 2002).
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Figure 2. An example of temperatures recorded for 24 h during a heat episode (6:00 am to 6:00 pm) for the water in both the supply and
return loop of a cooled perch, the room, and within air perch and cooled perch cages.

The numbers of cracked and dirty eggs (eggs with blood
and or feces) were counted per cage and expressed as a
percentage.

For eggshell quality, 10 intact hard-shelled eggs were
collected from each cage during 2 consecutive days (120
eggs/treatment) during the same week when feed us-
age was determined. Each egg was weighed individually
and measured for breaking force (ORKA Technology
LLC, Bountiful, UT). A higher number for breaking
force indicates a lower risk of shell breakage during egg
handling and transportation (Hamilton et al., 1979).
The proportions of eggshell and eggshell thickness were
determined as described by Klingensmith and Hester
(1985).

BW and Physical Condition

Hen BW was determined at the ages of 17 (transfer
from pullet to laying cages), 35 (end of the first heat
episode), 72 (1 wk prior to the second heat episode),
and 80 wk (end of the second heat episode). Plumage
condition and foot health were measured when the hens
were 80-wk-old. Hen feather score was determined at
5 different regions of the body (breast, back, wings,
vent, and tail areas) using a 4-point scoring system.
A score of 1 represented the worst condition (severe
feather damage and loss) and 4 represented the best
plumage (Tauson et al., 2005). Feather score for each
hen was averaged for an overall score.

Both foot pads and all toes were examined and scored
for hyperkeratosis using a scoring system of 1 to 4
(Tauson, 1984a). A score of 4 represented healthy foot
pads and toes with no lesions, whereas a score of 1
indicated deep and large epithelial lesions. The 8 nail
lengths of each hen were measured using a flexible mea-
suring tape. Numbers of broken claws for both feet were
recorded. All foot condition data were averaged per hen
for statistical analysis.

Statistical Analysis

Data from the randomized design were subjected
to an ANOVA using the MIXED method of SAS
(SAS Institute, 2013). Repeated measures were used
for performance traits. The bank of cages was the
experimental unit. Each of the 3 decks of a bank was
a subsample. Each of the 2 cages within a deck was a
sub-subsample. Fixed effects were treatment and age
of the hens. Error terms included hens within cages,
cages within a deck, and decks within a bank. The
statistic model used in this study was Yijklm = μ + Ai
+ Bj + (AB)ij + Rijklm + (BR)ijklm + εijklm, ε i.i.d ∼ (0,
σ2), where i and j referred to fixed effectors, treatment,
and age of the hens; k, l, and m represented random
effectors: bank, deck, and cage, respectively. Pooling of
error terms occurred when P > 0.25. A 1-way ANOVA
was used for the remaining data not measured over
the age of the chicken. If data lacked homogenous
variances, BOXCOX was used for transformation, and
the data were re-analyzed (Box and Cox, 1964). Egg
production data were arcsine square root transformed.
Because statistical trends were similar for both trans-
formed and untransformed data, the untransformed
results were presented. The Tukey–Kramer test was
used to partition differences among the means due to
a significant treatment effect (Steel et al., 1997). The
SLICE option was used for the 2-way interaction of
treatment and age (Winer et al., 1991). Significant
statistical differences were reported when P ≤ 0.05.

RESULTS

Validation of the Thermal Perch System

The cooled perch successfully provided a resource for
cooling hens as indicated by lower water supply and re-
turn temperatures as compared to room and cage am-
bient temperatures (Figure 2a). During a typical heat
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Table 1. The effect of cooled perches on hen-day and hen-house
egg production as well as the proportion of cracked and dirty
eggs of caged laying hens from 17 to 80 wk of age.

Treatment

Hen-day egg
production1

(%)
Hen-house egg

production1 (%)
Cracked

eggs1 (%)
Dirty

eggs1 (%)

Cooled perch 77.6a 76.1a 1.47 0.27

Air perch 74.9b 73.7b 1.95 0.25
Control 72.6c 69.0c 1.91 0.42
n2 384 384 384 384

SEM 0.5 0.6 0.34 0.11
P-value

Ptreatment <0.0001 <0.0001 0.55 0.47
Page <0.0001 <0.0001 <0.0001 0.001
Ptreatment∗age <0.0001 <0.0001 0.17 0.61

a–cLeast squares means within a column for the 3 treatments lacking
a common superscript differ (P < 0.05).

1Values within a column represent the least squares means averaged
over 16 mo of egg production (17 to 80 wk of age).

2Average number of observations per least squares mean.

episode, the ambient temperatures of cages containing
air perch and cooled perch were parallel to room tem-
perature. Temperatures went up when the heater was
turned on (6:00 am to 6:00 pm) and went down when
the heater was off (6:00 pm to 6:00 am). Due to the con-
ductive transfer of hen body heat to the chilled water,
the water temperature in the return loop was higher
than the supply loop of the cooled perch. The tem-
peratures of the chilled water within the cooled perch,
regardless of supply or return loop, were lower than
ambient air (Figure 2).

Egg Production and Eggshell Quality

Both hen-day and hen-house egg productions were
increased by cooled perch installation. Among treat-
ments, cooled perch hens had the highest overall hen-
day and hen-house egg production than both air perch
and control hens. The air perch hens had higher egg pro-
duction than control hens (P < 0.0001, Table 1). The
beneficial effect of cooled perch was even more distinct
toward the end of the laying cycle from 57 to 80 wk
of age (Ptreatment×age < 0.0001, Figure 3a). The pro-
portions of cracked and dirty eggs were similar among
treatments (Table 1). Hens laid a greater proportion of
cracked eggs toward the end of the laying cycle (Page
< 0.0001, data not presented). The proportion of dirty
eggs fluctuated with age showing no obvious trend (Page
= 0.001, data not presented).

The cooled perch hens laid heavier eggs (P < 0.0001)
with greater eggshell breaking force (P < 0.0001) than
both air perch and control hens, whereas there were
no differences between the latter 2 groups (Table 2).
The greater egg weight (Ptreatment×age < 0.0001, Fig-
ure 4a) and eggshell breaking force (Ptreatment×age =
0.01, Figure 4b) were mostly during the 2 summers
(24 to 36 and 76 to 80 wk of age), especially when the
cyclic heat episodes were applied. Hens laid heavier eggs

(P < 0.0001, Figure 4a) with lower breaking force (P
< 0.0001, Figure 4b) as they aged.

The treatment effects on the proportion of shell and
eggshell thickness were revealed mostly during the 2
summer heat episodes (Figure 5). Compared with air
perch and sometimes the control hens, cooled perch
hens had higher proportions of eggshell at 24 wk of
age during the first heat episode and at 76 and 80 wk
of age during the second heat episode (Figure 5a) and
higher eggshell thickness at 24 and 28 wk of age during
the first heat episode and 76 and 80 wk of age during
the second heat episode (Figure 5b). However, the other
ages during the time heat was applied and the majority
of the ages under thermoneutral condition showed no
differences in the proportions of eggshell and eggshell
thickness among treatments.

Mortality, Feed Usage and Efficiency, and
BW

Cumulative mortality from 17 to 80 wk of age was
lower for cooled perch as compared to control but not
air perch hens (P = 0.02, Table 3). Hens with access
to cooled perch had higher overall feed utilization than
the other 2 treatments. The treatment by age interac-
tion was due to greater feed utilization for the cooled
perch hens during the 2 heat episodes. At other ages
(an exception occurred at 64 wk of age) when hens were
not exposed to daily cyclic heat and in their thermoneu-
tral zone, feed utilization was similar among treatments
(Ptreatment∗age = 0.04, Figure 6). Feed efficiency was not
affected by treatment (P = 0.23) but became worse as
hens aged (P < 0.0001, Table 3). Hen BW in response
to provision of cooled perch was inconsistent with age
(Ptreatment∗age = 0.03, Table 3). As compared to control
hens, the cooled perch hens had higher BW at 35 wk
of age, which was at the end of the first heat episode,
and at 72 wk of age which was the onset on the second
heat episode. No differences due to treatment occurred
at the other ages of 17 and 80 wk (Figure 7).

Physical Measurements

Overall feather score, hyperkeratosis score, and nail
length were unaffected by treatment (Table 4). Breast
feather scores were worse (P = 0.002), but tail feather
scores were improved (P = 0.05, Figure 8) in both perch
groups as compared to control hens. The other plumage
areas of wing, back, and vent were not affected by treat-
ment. Hens with access to cooled perch had fewer bro-
ken toe nails than air perch hens. The number of nails
broken in control hens was intermediate between the
other 2 treatments (P = 0.04, Table 4).

DISCUSSION

Water-chilled perches ameliorate the negative effects
of cyclic heat on egg production, mortality, BW, egg
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Figure 3. Monthly hen-day (a) and hen-house egg production (b) from 17 to 80 wk of age (� = control, � = cooled perch, � = air perch).
a–cWithin a month, least squares means ± SEM with no common letter are significantly different (treatment × age interaction, P < 0.0001).

weight, and shell quality traits without influencing the
percentage of dirty and cracked eggs, overall plumage
condition, and foot health of caged laying hens. Pro-
vision of water-chilled perches likely assists hens in
conducting body heat to the perch through their feet
or other body parts when the ambient temperature is
above the upper critical boundary of the thermoneu-
tral zone. Furthermore, compared to air perch and con-
trol hens, cooled perch hens exhibited fewer HS-induced
behaviors, such as panting and wing spreading, under
both acute heat (Hu et al., 2016) and daily cyclic heat
during summer (Makagon et al., 2015). Less effort is
needed by cooled perch hens to maintain thermal home-
ostasis through other methods such as limiting energy

intake from feed and increasing evaporative heat loss
through panting, and thus production is improved.

Mortality, Feed Usage and Efficiency, and
BW

The control hens had higher cumulative mortality
than cooled perch hens with intermediate mortality for
air perch hens. The higher death of control chickens
is perhaps an indicator of these hens’ inability to ac-
climate to elevated temperatures. When temperature
is consistently higher or suddenly climb above the up-
per limit of the thermoneutral zone, osmolality and
protein structure are disturbed resulting in multiple
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Table 2. The effect of cooled perches on weight and shell traits
of eggs from caged laying hens.

Treatment

Egg
weight1

(g)
Breaking
force1 (N)

Proportion of
eggshell1 (%)

Eggshell
thickness1

(mm)

Cooled perch 61.1a 36.3a 8.69 0.34

Air perch 60.0b 34.9b 8.66 0.33

Control 59.6b 35.0b 8.71 0.33

n2 1320 1320 1320 1320
SEM 0.1 0.3 0.06 0.002
P-value

Ptreatment <0.0001 <0.0001 0.82 0.44
Page <0.0001 <0.0001 <0.0001 <0.0001
Ptreatment∗age <0.0001 0.01 0.03 0.01

a,bLeast squares means within a column for the 3 treatments lacking
a common superscript differ (P < 0.05).

1Values within a column represent the least squares means of 10 eggs
from each of the 3 treatments averaged over 11 ages of 24, 28, 32, 36, 40,
48, 56, 64, 72, 76, and 80 wk.

2Average number of observations per least squares mean.

organ failure, including heart, kidney, liver, etc. (Jar-
dine, 2007; Hansen, 2009). In 2011, 50,000 chickens
died at a farm after the power went off for less than
an hour when the ambient temperature exceeded 37◦C
(Hegeman, 2011). The immune system is compromised
with high-temperature exposure (Mashaly et al., 2004).
Both humoral and cell-mediated immunity of birds were
depressed under HS (Ogle et al., 1997; Zulkifli et al.,
2000a), which make the birds more prone to infectious
diseases that can lead to higher mortality. In the present
study, the mortality observed in controls was most likely
due to organ failures rather than disease as necropsy of
dead birds showed only 1 case of Escherichia coli in-
fection. Similar to our study, elevated mortality was re-
ported in broiler chickens and laying hens housed under
an ambient temperature of 35◦C compared to a ther-
moneutral environment (Deaton et al., 1978; Mashaly
et al., 2004). Installation of cooled perch should greatly
facilitate hen survival under conditions of elevated tem-
peratures.

Elevated temperatures depress appetite causing poul-
try to lose weight (Tanor et al., 1984; Zulkifli et al.,
2000b; Sahin et al., 2002; Mashaly et al., 2004; Çiftçi
et al., 2005). For temperatures that range from 5 to
35◦C, a 1.5% decrease in feed intake per 1◦C increase
was observed in laying hens under chronic or cyclic tem-
perature regimens, with baseline control at 20 to 21◦C
(National Research Council, 1981). Our results on feed
usage showed that these negative effects of HS were
ameliorated by providing hens with access to cooled
perch. Likewise, broiler chickens responded favorably
to water-chilled perches when exposed to high environ-
mental temperature (Muiruri and Harrison, 1991; Reilly
et al., 1991; Estevez et al., 2002; Zhao et al., 2013).
Specifically, broilers subjected to HS of 32 to 35◦C with
access to cooled perch had increased BW, feed utiliza-
tion, and improved feed efficiency. In the present study,
BW was higher in cooled perch hens than control af-

ter the first heat exposure (35 wk of age) and 1 wk
before the second heat period (72 wk of age), but no
differences were found at the beginning of the laying
phase (17 wk of age), which was expected because heat
episodes had not been initiated, and at the end of the
second heat episode (80 wk of age). It is unknown why
differences in BW dissipated among treatments at the
end of the study as 80-wk-old cooled perch hens uti-
lized more feed than air perch and control hens (Fig-
ure 6) and, therefore, they should have weighed more.
The increased feed utilization is an indicator of better
thermoregulation of hens with access to cooled perch
as hens have greater ability to match heat production
with heat loss to the environment without suppressing
energy intake (Lin et al., 2006; Slimen et al., 2016).

Feed efficiency was not improved as a result of pro-
viding cooled perch to laying hens unlike other studies
with broiler chickens (Reilly et al., 1991; Estevez et al.,
2002; Zhao et al., 2013). Hens with cooled perch did pro-
duce more eggs (Table 1), but at the same time, they
used more feed than the other 2 treatments (Table 3).

Egg Production

Reproductive diminishment is a well-known phe-
nomenon in both mammals and birds exposed to high
environmental temperature (Hansen, 2009; Sahin et al.,
2018). Providing cooled perch reduced the negative ef-
fects of HS on overall egg production (Table 1), espe-
cially near end of lay (Figure 3). In addition, the air
perch hens had higher production performance than
control hens when exposed to 2 cyclic heat episodes.
Previous studies dealing with perch effects on egg pro-
duction were conducted on hens under thermoneu-
tral conditions, and they reported no beneficial ef-
fect of perch availability on egg laying (Tauson, 1984b;
Duncan et al., 1992; Abrahamsson and Tauson, 1993;
Hester et al., 2013; Hester, 2014). In the current study,
access to perches, whether cooled or not, was most likely
an effective way for hens to increase space availabil-
ity when standing on the perch, thereby increasing air-
flow rate to the hens and avoiding heat accumulation
and transfer among cage mates (Pettit-Riley and Es-
tevez, 2001). However, under conditions of daily cyclic
heat, egg production of hens with cooled perch bene-
fited greatly from thermal cooling offering an enhanced
advantage over air perch hens. Heat stress in laying
hens inhibits nutrient intake, digestibility, and intesti-
nal absorption due to heat-induced intestinal damage,
which limits the availability of circulating nutrients in
the blood that are essential for egg formation (Jeurissen
et al., 2002; Etches et al., 2008). In addition, the nu-
trient deprivation under elevated temperatures is most
likely associated with redistribution of blood inside the
body. Under HS, blood flow is redistributed mostly to
the peripheral tissues in order to dissipate more heat
to the environment, which results in reduced blood
flow and motility in the gastrointestinal tract, thus
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Figure 4. The weight (a) and breaking force (b) of eggs from White Leghorns submitted to 1 of 3 treatments (� = control, � = cooled perch,
� = air perch) between 24 and 80 wk of age. a–cWithin an age, least squares means ± SEM with no common letter are significantly different
(treatment × age interaction, P < 0.0001 and P = 0.01 for weight and breaking force, respectively). Means represent 120 eggs collected from 12
cages/treatment per age.

affecting intestinal function (Wolfenson et al., 1981;
Mitchell and Carlisle, 1992). Diminished egg laying un-
der HS could also be partially influenced by depres-
sion of reproductive hormones (Rozenboim et al., 2004,
2007). The higher reproductive performance of hens
with access to cooled perch indicates that this cooling
system has the potential to ameliorate the negative ef-
fect of HS by conductively transferring heat from hens
to the cooled water.

The cooled perch mitigated the negative effects of HS
on egg production without increasing the incidence of
unmarketable eggs as the percentages of cracked and

dirty eggs did not differ among the 3 treatments. Pre-
vious studies have reported an increased incidence of
cracked eggs when perches were placed in cages com-
pared to conventional cages, as birds may lay eggs
while standing on the perch (Tauson, 1984b; Glatz and
Barnett, 1996; De Reu et al., 2009). The low perch
height (8.9 cm) used in the current study minimized
the chance of shell breakage when eggs were laid by
perching hens, agreeing with the results from a previous
study with the same perch height (Hester et al., 2013).
Tuyttens et al. (2013) suggested that a lower perch
could be an effective remedy for the high prevalence
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Figure 5. The proportion of shell (a) and shell thickness (b) of eggs collected from White Leghorns submitted to 1 of 3 treatments (� =
control, � = cooled perch, � = air perch) between 24 and 80 wk of age. a,bWithin an age, least squares means ± SEM with no common letter are
significantly different (treatment × age interaction, P = 0.03 and 0.01 for % shell and thickness, respectively). Means represent 120 eggs collected
from 12 cages/treatment per age.

of broken eggs in furnished cages with elevated perches
and at the same time meet the hen’s behavioral needs.
Under thermoneutral conditions, laying hens with ac-
cess to perches as compared to conventionally cage hens
without perches showed an increase in the proportion
of dirty eggs (Nakaue et al., 1984; Hester et al., 2013).
Other studies reported no perch effect on the incidence
of dirty eggs (Tauson, 1984b; Appleby et al., 1992).
The installation of perches in cages causes chickens to
spend less time walking on the bottom of the cage floor
which can interfere with eggs rolling to the collection
area due to less vibration (Hester, 2014). Heavy perch
use can also cause manure accumulation directly under
the perch leading to dirty eggs (Nakaue et al., 1984).

Egg Weight and Shell Qualityquality

Egg traits, including egg weight and shell breaking
force, were improved with the presence of cooled perch
compared to the other 2 treatments. Eggs from hens
exposed to elevated temperatures, either constant or
cyclic, weighed less than eggs from hens housed within
their thermoneutral zone (Kirunda et al., 2001; Mashaly
et al., 2004). The increased weight of eggs laid by hens
with access to cooled perch is likely related to increased
protein and amino acid consumption due to higher
feed utilization. Increased egg size and weight occur
in broiler breeder hens (Joseph et al., 2000) and lay-
ing hens (Summers and Leeson, 1994; Keshavarz and
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Table 3. The effect of cooled perches on hen mortality, feed
usage and efficiency, and BW.

Treatment

Cumulative
hen mortality

(%)

Feed
utilization1

(g/hen/d)

Feed efficiency1

(kg of
feed/dozen eggs)

Hen BW
(kg)2

Cooled perch 2.78b 103.02a 1.57 1.44

Air perch 3.70a,b 98.28b 1.58 1.40

Control 10.19a 100.56b 1.84 1.40
n3 24 264 264 96
SEM 1.93 0.82 0.12 0.02
P-value

Ptreatment 0.02 0.0002 0.23 0.27
Page – <0.0001 <0.0001 <0.0001
Ptreatment∗age – 0.04 0.19 0.03

a,bLeast squares means within a column for the 3 treatments lacking
a common superscript differ (P < 0.05).

1Values within a column represent the least squares means averaged
over 11 ages of 24, 28, 32, 36, 40, 48, 56, 64, 72, 76, and 80 wk.

2Values within a column represent the least squares means averaged
over 4 ages of 17, 35, 72, and 80 wk.

3Average number of observations per least squares mean.

Figure 6. Feed utilization of White Leghorns submitted to 1 of 3
treatments (� = control, � = cooled perch, � = air perch) between
24 and 80 wk of age. a,bWithin an age, least squares means ± SEM
with no common letter are significantly different (treatment × age
interaction, P = 0.04).

Nakajima, 1995) fed increased CP levels in the pre-lay
and early lay diets. Higher breaking force numbers of
eggs from cooled perch hens suggest that these eggs
are less likely to crack or break during handling and
transportation (Hamilton et al., 1979), leading to more
marketable eggs and economic profits for producers.
The increase in egg weight (Figure 4a) and the decline
in egg breaking force as hens age (Figure 4b) are in
agreement with previous studies (Minvielle et al., 1994;
Rodriguez-Navarro et al., 2002; Mitrovic et al., 2010;
Tumova et al., 2017).

In addition to shell breaking force, proportions of
shell and eggshell thickness are indicators of shell qual-
ity. These shell traits are all positively correlated to
each other with low numbers indicating a greater prob-
ability for shells to crack (Ar et al., 1979; Sun et al.,
2012). Similar to our results on shell breaking force,

Figure 7. The BW of White Leghorns submitted to 1 of 3 treat-
ments (� = control, � = cooled perch, � = air perch) at 17, 35, 72, and
80 wk of age. a,bWithin an age, least squares means ± SEM with no
common letter are significantly different (treatment × age interaction,
P = 0.03). Means represent 2 hens weighed from each cage for a total
of 12 cages/age.

Table 4. The effect of cooled perches on feather score and foot
health at 80 wk of age.

Treatment
Mean feather

score1
Hyperkeratosis

score2

Mean nail
length
(cm)

Number
of broken
toenails

Cooled perch 2.02 3.82 2.46 0.96b

Air perch 2.46 3.91 2.16 1.58a

Control 1.95 3.83 1.80 1.13a,b

n3 24 24 24 24
SEM 0.27 0.24 0.23 0.18
P-value 0.36 0.96 0.13 0.04

a,bLeast squares means within a column for the 3 treatments lacking
a common superscript differ (P < 0.05).

1Scores for feather condition ranged from 1 to 4, with 4 representing
no damage to the feathers and 1 representing severe damage.

2Scores for hyperkeratosis ranged from 1 to 4 with 4 representing
normal feet and 1 representing severe hyperkeratosis.

3Average number of observations per least squares mean.

these shell traits were mostly improved in cooled perch
hens as compared to air perch and control hens dur-
ing the 2 summer cyclic heat episodes with little to no
differences in these shell traits when hens were kept in
their thermoneutral zone. Lowered calcium consump-
tion critically affects shell quality (Scott et al., 1971;
Creger et al., 1976). Under conditions of homeostasis,
calcium used for eggshell formation mostly come from
the diet (Taylor, 1970; Keshavarz and Nakajima, 1993;
Roberts, 2004). Under normal temperatures when hens
are in their thermoneutral zone, they will overconsume
feed if they are provided with a low calcium diet in
order to have enough calcium for eggshell formation
(Roland et al., 1985; Clunies et al., 1992). During HS,
appetite is depressed to minimize metabolic heat pro-
duction causing inadequate calcium intake leading to
poor shell quality. In addition, continuous panting that
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Figure 8. The effect of cooled perch as compared to air perch and
controls on the feather scores of the wing, back, breast, vent, and tail of
caged White Leghorn hens at 80 wk of age. Scores for feather condition
ranged from 1 to 4, with 4 representing non-damaged feather and 1
indicative of severe damage. Values represent the least squares means
± SEM. Within a region of the hen’s body, scores lacking a common
letter (a, b) differ (P ≤ 0.05).

could lead to hyperventilation under extreme HS con-
ditions causes respiratory alkalosis. Arterial blood pH
increases during alkalosis, decreasing the availability of
circulating bicarbonate and calcium ions, 2 major com-
ponents of eggshell (Balnave and Muheereza, 1997; Nys,
1999). These changes further decrease eggshell quality
(Odom et al., 1986; Koelkebeck and Odom, 1994; Ruzal
et al., 2011). Reduced panting in the cooled perch as
compared to air perch and control hens was observed
in our first study dealing with cooled perch (Hu et al.,
2016) and was confirmed in our current study (Mak-
agon et al., 2015). Broiler chickens also show reduced
panting when given access to cooled perch (Zhao et al.,
2012). A reduction in panting that avoids deep breath-
ing, and subsequently respiratory alkalosis, could also
contribute to improved shells of eggs from cooled perch
hens.

The lack of an effect of cooled perch on shell breaking
force at 32 wk of age, the proportion of shell at 28 and
32 wk of age, and shell thickness at 32 wk of age dur-
ing the first summer cyclic heat episode is perplexing
as hens used more feed at these ages which would be
indicative of greater calcium intake.

The higher proportion of shell post HS in eggs from
control hens at 36 wk of age and air perch hens at 64 wk
of age can be explained in part by small egg size or lower
rate of lay. Compared to large eggs, hens laying lighter
eggs place the same amount of shell around the yolk
and albumen contents leading to thicker shells. Lower
egg production creates less demand for calcium. Thus,
the proportion of shell based on egg weight could in-
crease (Mazzuco and Hester, 2005) under circumstances
of lower egg weight and production. In addition, heat
habituation and acclimation might be achieved after re-

peated or chronic HS. Adjustments in systematic func-
tioning in response to HS could help the hens to develop
a new homeostasis which may improve thermotolerance
and their ability to lay eggs with better shell quality
(Yahav et al., 2009).

Physical Condition

Feather condition, when averaged across all of the
examined feather tracts, was not affected by provision
of perches (Table 4), similar to results reported by
Barnett et al. (1997) in hens not exposed to HS. In
contrast, hens maintained in their thermoneutral zone
had poorer overall feather scores due to the presence of
metal (Hester et al., 2013) or wooden (Tauson, 1984b)
perches. Caged hens with perches had worse feather
scores for the neck, breast, wings, and tail as compared
to these same feather tracts of hens in conventional
cages without perches (Tauson 1984b). Hester et al.
(2013) observed poorer breast and tail feather scores
but better back feather scores in hens with perch ac-
cess as compared to those hens with no perches under
thermoneutraily. The poorer scores for breast feathers
of hens with access to either cooled perch or air perch in
the current study were most likely due to the rubbing of
the hen’s breast when sitting on the metal perches. The
reason for better tail feather scores of hens with access
to perches, in particular the air perch as compared to
control, is less clear as tail feathers of cooled perch hens
were intermediate in response. The better tail feather
scores of air perch as compared to control hens could
be due to the reduction of HS-induced aggressive be-
havior. Clauer (2009) identified excessive heat as one of
the factors causing cannibalism in laying hens, and the
tail area is a favorite location for cannibalism (cloaca)
and feather pecking (Gunnarsson, 1999)

Foot health for all hens in this study was excellent
because the average hyperkeratosis score of 3.85 (1 to
4 scale) was near to perfect resulting in no treatment
effect. Broiler chickens raised on littered floor and given
access to cooled perch had better foot condition in-
cluding improved burn scores for the hock and footpad
as compared to control without perches (Zhao et al.,
2012). Floor housing with wet litter leads to a higher
incidence of foot damage in both broilers (Dunlop et al.,
2016) and laying hens (Wang et al., 1998). Although
water condensation was observed on the surface of the
cooled perch due to the large temperature gap between
perch (10◦C) and ambient temperature (35◦C), foot
health was not affected by the wet roosting surface in
the current study.

The presence of metal perches serves as an abrasive
to trim toenails of caged hens (Hester et al., 2013), but
different results have also been reported with no effect
of perch installation on claw length (Tauson, 1984b;
Appleby et al., 1992), which is similar to the current
finding. It is important to keep toe nails trimmed as
long claws, which are especially prevalent in aging hens,
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can break off more easily leading to bleeding and open
wounds that could cause pain and infection (Lay et al.,
2011). Generally, in perch equipped cages, hens jumping
on and off the perches have a higher risk of breaking
toenails (Hester et al., 2013). Interestingly, we found
more broken toenails in the air perch hens than cooled
perch hens but not control. During daily cyclic heat,
hens with cooled perch may have spent longer periods
of time remaining on the perches to stay cool, whereas
the air perch hens were more restless. The air perch
hens may have jumped on and off the perches, continu-
ously switching to different locations in the cage in their
attempt to find a cooler area during heat exposure. Fur-
ther behavior data, however, are needed to prove this
hypothesis.

CONCLUSIONS

Thermally chilled perches facilitated hen thermoreg-
ulation during daily cyclic heat episodes of 35◦C.
The presence of cooled perch in cages improved egg
production, egg weight, shell traits, and livability of
laying hens during exposure to elevated temperatures.
The provision of cooled perch did not compromise
overall plumage conditions and foot health. Our results
indicate that the cooled perch could be an effective
alternative cooling method for caged laying hens to
ameliorate the deleterious effects of high ambient tem-
perature, thus improving the production performance
of hens during hot weather.
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Minvielle, F., P. Mérat, J. L. Monvoisin, G. Coquerelle, and A.
Bordas. 1994. Increase of egg weight with age in normal and
dwarf, purebred and crossbred laying hens. Genet. Sel. Evol.
26:453–462.

Mitchell, M. A., and A. J. Carlisle. 1992. The effects of chronic ex-
posure to elevated environmental temperature on intestinal mor-
phology and nutrient absorption in the domestic fowl (Gallus do-
mesticus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol.
101:137–142.

Mitrovic, S., T. Pandurevic, V. Milic, V. Djekic, and V. Djermanovic.
2010. Weight and egg quality correlation relationship on different
age laying hens. J. Food. Agric. Environ. 8:580–583.

Muiruri, H. K., and P. C. Harrison. 1991. Effect of roost temperature
on performance of chickens in hot ambient environments. Poult.
Sci. 70:2253–2258.

Nakaue, H. S., M. P. Goeger, and G. H. Arscott. 1984. Effect of feed
trough heights and perches on the performance of dwarf Single
Comb White Leghorn layers housed in cages. Poult. Sci. 63:447–
449.

National Research Council. 1981. Effect of environment on nutrient
requirements of domestic animals. Washington, DC.

Nys, Y. 1999. Nutritional factors affecting eggshell quality. Czech J.
Anim. Sci. 44:135–143.

Odom, T. W., P. C. Harrison, and W. G. Bottje. 1986. Effects of
thermal-induced respiratory alkalosis on blood ionized calcium
levels in the domestic hen. Poult. Sci. 65:570–573.

Ogle, C. K., J. F. Valente, X. Guo, B. G. Li, J. D. Ogle, and
J. W. Alexander. 1997. Thermal injury induces the development
of inflammatory macrophages from nonadherent bone marrow
cells. Inflammation. 21:569–582.

Okelo, R. O., L. E. Carr, P. C. Harrison, L. W. Douglass, V. E.
Byrd, C. W. Wabeck, P. D. Schreuders, F. W. Wheaton, and
N. G. Zimmermann. 2003. Effectiveness of a novel method to
reduce heat stress in broilers: a cool roost system. Trans. ASAE.
46:1675–1683.

Olsson, I. A. S., and L. J. Keeling. 2000. Night-time roosting in
laying hens and the effect of thwarting access to perches. Appl.
Anim. Behav. Sci. 68:243–256.

Olsson, I. A. S., and L. J. Keeling. 2002. The push-door for measuring
motivation in hens: laying hens are motivated to perch at night.
Anim. Welf. 11:11–19.

Panda, A. K., and G. Cherian. 2014. Role of vitamin E in counter-
acting oxidative stress in poultry. J. Poult. Sci. 51:109–117.

Pettit-Riley, R., and I. Estevez. 2001. Effects of density on perching
behavior of broiler chickens. Appl. Anim. Behav. Sci. 71:127–140.

Quinteiro, W. M., A. Ribeiro, V. Ferraz-de-Paula, M. L. Pinheiro,
M. Sakai, L. R. M. Sa, A. J. P. Ferreira, and J. Palermo-
Neto. 2010. Heat stress impairs performance parameters, induces

https://www.huffingtonpost.com/2011/07/13/heat-wave-poultry_n_896812.html
https://www.huffingtonpost.com/2011/07/13/heat-wave-poultry_n_896812.html
http://www.hyline.com/UserDocs/Pages/36_COM_ENG.pdf
http://www.hyline.com/UserDocs/Pages/36_COM_ENG.pdf


2718 HU ET AL.

intestinal injury, and decreases macrophage activity in broiler
chickens. Poult. Sci. 89:1905–1914.

Reilly, W. M., K. W. Koelkebeck, and P. C. Harrison. 1991. Perfor-
mance evaluation of heat-stressed commercial broilers provided
water-cooled floor perches. Poult. Sci. 70:1699–1703.

Roberts, J. R. 2004. Factors affecting egg internal quality and egg
shell quality in laying hens. Jpn. Poult. Sci. 41:161–177.

Rodriguez-Navarro, A., O. Kalin, Y. Nys, and J. M. Garcia-Ruiz.
2002. Influence of the microstructure on the shell strength of eggs
laid by hens of different ages. Br. Poult. Sci. 43:395–403.

Roland, D. A., M. Farmer, and D. Marple. 1985. Calcium and its
relationship to excess feed consumption, body weight, egg size, fat
deposition, shell quality, and fatty liver hemorrhagic syndrome.
Poult. Sci. 64:2341–2350.

Rozenboim, I., N. Mobarky, R. Heiblum, Y. Chaiseha, S. W. Kang,
I. Biran, A. Rosenstrauch, D. Sklan, and M. E. El Halawani. 2004.
The role of prolactin in reproductive failure associated with heat
stress in the domestic turkey. Biol. Reprod. 71:1208–1213.

Rozenboim, I., E. Tako, O. Gal-Garber, J. A. Proudman, and Z. Uni.
2007. The effect of heat stress on ovarian function of laying hens.
Poult. Sci. 86:1760–1765.

Russo, S., J. Sillmann, and A. Sterl. 2017. Humid heat waves at
different warming levels. Sci. Rep. 7:7477.

Ruzal, M., D. Shinder, I. Malka, and S. Yahav. 2011. Ventilation
plays an important role in hens’ egg production at high ambient
temperature. Poult. Sci. 90:856–862.

Sahin, N., A. Hayirli, C. Orhan, M. Tuzcu, J. R. Komorowski, and
K. Sahin. 2018. Effects of the supplemental chromium form on
performance and metabolic profile in laying hens exposed to heat
stress. Poult. Sci. 97:1298–1305.

Sahin, K., N. Sahin, M. Onderci, F. Gursu, and G. Cikim. 2002.
Optimal dietary concentration of chromium for alleviating the
effect of heat stress on growth, carcass qualities, and some serum
metabolites of broiler chickens. Biol. Trace Elem. Res. 89:53–64.

SAS Institute. 2013. SAS User’s Guide: Statistics Version 9.4. SAS
Inst. Inc., Cary, NC.

Scott, M. L., S. J. Hull, and P. A. Mullenhoff. 1971. The calcium
requirements of laying hens and effects of dietary oyster shell
upon egg shell quality. Poult. Sci. 50:1055–1063.

Slimen, I. B., T. Najar, A. Ghram, and M. Abdrrabba. 2016. Heat
stress effects on livestock: molecular, cellular and metabolic as-
pects, a review. J. Anim. Physiol. Anim. Nutr. 100:401–412.

Steel, R. G. D., J. H. Torrie, and D. J. Dickey. 1997. Principles
and Procedures of Statistics: A Biometrical Approach. 3rd ed.
McGraw Hill Book Co., New York, NY.

Strong, R. A., P. Y. Hester, S. D. Eicher, J. Hu, and H. W. Cheng.
2015. The effect of cooled perches on immunological parameters
of caged White Leghorn hens during the hot summer months.
PLoS One 10:e0141215.

Summers, J. D., and S. Leeson. 1994. Laying hen performance as
influenced by protein intake to sixteen weeks of age and body
weight at point of lay. Poult. Sci. 73:495–501.

Sun, C. J., S. R. Chen, G. Y. Xu, X. M. Liu, and N. Yang. 2012.
Global variation and uniformity of eggshell thickness for chicken
eggs. Poult. Sci. 91:2718–2721.

Tanor, M. A., S. Leeson, and J. D. Summers. 1984. Effect of heat
stress and diet composition on performance of White Leghorn
hens. Poult. Sci. 63:304–310.

Tauson, R. 1984a. Plumage condition in SCWL laying hens kept
in conventional cages of different designs. Acta. Agric. Scand.
34:221–230.

Tauson, R. 1984b. Effects of a perch in conventional cages for laying
hens. Acta Agric. Scand. 34:193–209.

Tauson, R., J. Kjaer, G. A. Maria, R. Cepero, and K. E. Holm. 2005.
Applied scoring of integument and health in laying hens. Anim.
Sci. Pap. Rep. 23:153–159.

Taylor, T. G. 1970. How an eggshell is made. Sci. Am. 222:88–95.
Timmons, M. B., and R. S. Gates. 1988. Predictive model of lay-

ing hen performance to air temperature and evaporative cooling.
Trans. ASABE 31:1496–1502.

Tumova, L., L. Uhlirova, R. Tuma, D. Chodova, and L. Machal.
2017. Age related changes in laying pattern and egg weight
of different laying hen genotypes. Anim. Reprod. Sci. 183:21–
26.

Tuyttens, F. A. M., E. Struelens, and B. Ampe. 2013. Remedies for
a high incidence of broken eggs in furnished cages: effectiveness of
increasing nest attractiveness and lowering perch height. Poult.
Sci. 92:19–25.

United Egg Producers. 2017. Animal Husbandry Guide-
lines for U.S. Egg Laying-Flocks. United Egg Producers,
Johns Creek, GA. Accessed May 2018. https://uepcertified.
com/wp-content/uploads/2017/11/2017-UEP-Animal-Welfare-
Complete-Guidelines-11.01.17-FINAL.pdf.

Wang, G., C. Ekstrand, and J. Svedberg. 1998. Wet litter and
perches as risk factors for the development of foot pad dermatitis
in floor-housed hens. Br. Poult. Sci. 39:191–197.

Winer, B. J., D. R. Brown, and K. M. Michels. 1991. Statistical Prin-
ciples in Experimental Design. 3rd ed. McGraw-Hill, Inc. New
York. NY.

Wolfenson, D., Y. F. Frei, N. Snapir, and A. Berman. 1981. Heat-
stress effects on capillary blood-flow and its redistribution in the
laying hen. Physiol. Biochem. Zool. 390:86–93.

Xiong, Y., R. S. Gates, J. Hu, K. S. O. Rocha, M. M. Makagon,
P. Y. Hester, and H. W. Cheng. 2015. Performance assessment of
cooled perch system for heat stress trials in egg laying production:
Year 1. ASABE Papers: 152183776. New Orleans, LA.

Yahav, S., S. Goldfeld, I. Plavnik, and S. Hurwitz. 1995.
Physiological-responses of chickens and turkeys to relative-
humidity during exposure to high ambient-temperature. J.
Therm. Biol. 20:245–253.

Yahav, S., D. Shinder, M. Ruzal, M. Giloh, and Y. Piestun. 2009.
Controlling body temperature–the opportunities for highly pro-
ductive domestic fowl. in Pages 65–98 Body Temperature Regu-
lation. A. B. Cisneros, and B. L. Gions, eds. Nova Science, Haup-
pauge, NY.

Yoshida, N., M. Fujita, M. Nakahara, T. Kuwahara, S. I. Kawakami,
and T. Bungo. 2011. Effect of high environmental temperature on
egg production, serum lipoproteins and follicle steroid hormones
in laying hens. J. Poult. Sci. 48:207–211.

Zhao, J. P., H. C. Jiao, Y. B. Jiang, Z. G. Song, X. J. Wang, and
H. Lin. 2012. Cool perch availability improves the performance
and welfare status of broiler chickens in hot weather. Poult. Sci.
91:1775–1784.

Zhao, J. P., H. C. Jiao, Y. B. Jiang, Z. G. Song, X. J. Wang, and
H. Lin. 2013. Cool perches improve the growth performance and
welfare status of broiler chickens reared at different stocking den-
sities and high temperatures. Poult. Sci. 92:1962–1971.

Zulkifli, I., N. Abdulllah, N. M. Azrin, and Y. W. Ho. 2000a. Growth
performance and immune response of two commercial broiler
strains fed diets containing Lactobacillus cultures and oxyte-
tracycline under heat stress conditions. Br. Poult. Sci. 41:593–
597.

Zulkifli, I., M. T. Che Norma, D. A. Israf, and A. R. Omar. 2000b.
The effect of early age feed restriction on subsequent response
to high environmental temperatures in female broiler chickens.
Poult. Sci. 79:1401–1407.

https://uepcertified.com/wp-content/uploads/2017/11/2017-UEP-Animal-Welfare-Complete-Guidelines-11.01.17-FINAL.pdf
https://uepcertified.com/wp-content/uploads/2017/11/2017-UEP-Animal-Welfare-Complete-Guidelines-11.01.17-FINAL.pdf
https://uepcertified.com/wp-content/uploads/2017/11/2017-UEP-Animal-Welfare-Complete-Guidelines-11.01.17-FINAL.pdf

	Effect of cooled perches on performance, plumage condition, and foot health of caged White Leghorn hens exposed to cyclic heat
	Authors

	Effect of cooled perches on performance, plumage condition, and foot health of caged White Leghorn hens exposed to cyclic heat
	INTRODUCTION
	MATERIALS AND METHODS
	Chickens, Management, and Cyclic Heat
	Mortality, Feed Consumption, Egg Production, and Egg Quality
	BW and Physical Condition
	Statistical Analysis

	RESULTS
	Validation of the Thermal Perch System
	Egg Production and Eggshell Quality
	Mortality, Feed Usage and Efficiency, and BW
	Physical Measurements

	DISCUSSION
	Mortality, Feed Usage and Efficiency, and BW
	Egg Production
	Egg Weight and Shell Qualityquality
	Physical Condition

	CONCLUSIONS
	ACKNOWLEDGMENTS
	Conflict of interest statement
	REFERENCES


