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The impact of intrauterine growth restriction (IUGR) on health in humans is

well-recognized. It is the second leading cause of perinatal mortality worldwide, and it is

associated with deficits in metabolism and muscle growth that increase lifelong risk for

hypertension, obesity, hyperlipidemia, and type 2 diabetes. Comparatively, the barrier

that IUGR imposes on livestock production is less recognized by the industry. Meat

animals born with low birthweight due to IUGR are beset with greater early death loss,

inefficient growth, and reduced carcass merit. These animals exhibit poor feed-to-gain

ratios, less lean mass, and greater fat deposition, which increase production costs and

decrease value. Ultimately, this reduces the amount of meat produced by each animal

and threatens the economic sustainability of livestock industries. Intrauterine growth

restriction is most commonly the result of fetal programming responses to placental

insufficiency, but the exact mechanisms by which this occurs are not well-understood.

In uncompromised pregnancies, inflammatory cytokines are produced at modest rates

by placental and fetal tissues and play an important role in fetal development. However,

unfavorable intrauterine conditions can cause cytokine activity to be excessive during

critical windows of fetal development. Our recent evidence indicates that this impacts

developmental programming of muscle growth and metabolism and contributes to the

IUGR phenotype. In this review, we outline the role of inflammatory cytokine activity in

the development of normal and IUGR phenotypes. We also highlight the contributions of

sheep and other animal models in identifying mechanisms for IUGR pathologies.

Keywords: adaptive fetal programming, developmental origins of health and disease, DOHAD, fetal growth

restriction, intrauterine growth restriction, IUGR, low birthweight, metabolic programming

INTRODUCTION

Intrauterine growth restriction (IUGR) frequently results from stress-induced placental
insufficiency, which reduces O2 and nutrients available to the fetus and consequently stunts growth
of the highly metabolic fetal muscle tissues (Yates et al., 2018; Pendleton et al., 2021). In livestock,
low birthweight due to stress-induced IUGR causes substantial economic losses for the industry due
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to greater neonatal mortality, less metabolic efficiency, and lower
carcass quality (Reynolds et al., 2010; Liu and He, 2014; Ji et al.,
2017; Yates et al., 2018). Estimates put low birthweight-related
losses at approximately 8% of the potential annual product for
US producers and up to 20% of the global annual product (Wu
et al., 2006; Flinn et al., 2020). Thrifty metabolic adaptations to
muscle, adipose, pancreatic islets, and other tissues cause IUGR-
born offspring to be disadvantaged at birth due to insufficient
energy stores and poor thermoregulation, which often results
in reduced nursing success and a failure to thrive throughout
the early neonatal period (Dwyer et al., 2016; Yates et al.,
2018). Intrauterine growth restriction-born offspring that survive
exhibit reduced feed efficiency, making it cost more to reach
proper harvest weight (Bérard et al., 2008; Yates et al., 2018; Gibbs
et al., 2020). Thrifty programming also manifests as reduced
muscle growth capacity and increased fat deposition beginning
at the juvenile age (Greenwood et al., 2000; Yates et al., 2012;
Gibbs et al., 2020), which lowers carcass yield and affects meat
quality parameters such as tenderness, muscle pH, meat color,
and cooking loss (Liu and He, 2014; Matyba et al., 2021).
Intrauterine growth restriction also afflicts human pregnancies
(Saleem et al., 2011; Nardozza et al., 2017), and global estimates
indicate that upward of 53 million infants are born IUGR each
year (Sedgh et al., 2014). These babies are at increased risk
for perinatal morbidity and mortality (Aucott et al., 2004; Alisi
et al., 2011; Alisjahbana et al., 2019) as well as for lifelong
health problems such as asthma, type 2 diabetes, cardiovascular
disease, obesity, and neurocognitive disorders that begin in early
childhood and reduce life expectancy and quality (Nardozza
et al., 2017; Darendeliler, 2019; Xing et al., 2020; Briana and
Malamitsi-Puchner, 2021).

By the late 1950s, the scientific community had recognized
that individuals with metabolic diseases often exhibited
physiological indicators of metabolic dysfunction by the time
they were neonates (Neel, 1962). However, it was the work
of Hales and Barker in the early 1990s and the subsequent
publication of their Thrifty Phenotype hypothesis that
popularized the idea of a link between fetal developmental
programming and lifelong metabolic health (Hales et al., 1991;
Hales and Barker, 1992). In the almost three decades since, a
number of studies in humans and animal models have advanced
this theory with details of how stress before birth causes tissue-
specific adaptive programming of growth and metabolism
(Morrison, 2008; Posont et al., 2017; Yates et al., 2018; Posont
and Yates, 2019; Pendleton et al., 2021). These nutrient-sparing
fetal adaptations help to increase the chances for survival in
utero but also create permanent metabolic changes that are
detrimental to long-term health of the offspring (Sharma et al.,
2016a; Kesavan and Devaskar, 2019; Posont and Yates, 2019).
Identifying the exact mechanistic facilitators of these changes
has been challenging, but one likely potential mechanism
that has recently come to light is inflammatory programming
(Posont et al., 2018, 2021; Cadaret et al., 2019). This review
highlights findings that provide insight for how fetal stress
leads to programmed changes in inflammatory pathways that
regulate growth and metabolism, with a primary focus on the
implications for meat animals.

CAUSES AND PROGRESSION OF IUGR

IUGR Is the Developmental Response to
Maternofetal Stress
Clinically, IUGR [alternatively, fetal growth restriction
(Nardozza et al., 2017)] is characterized by less growth of
the fetus or fetal tissues relative to expected growth potential
(Sharma et al., 2016b; Reynolds et al., 2019). It is a pathological
condition brought on by fetal nutrient restriction or other stress,
although genetic abnormalities can increase the risk (Sharma
et al., 2017). In the field of developmental origins of health
and disease (DOHaD), IUGR is often used to describe the
broader pathological phenotype resulting from chronic fetal
stress, which typically (but not always) includes measurable
reductions in placental function and birthweight (Sharma
et al., 2016b). A number of different maternal conditions can
result in placental stunting when they coincide with critical
windows for placental growth and development (Sharma et al.,
2016b; Yates et al., 2018). In livestock, common factors include
environmental stress, illness or forage toxicity, nutritional
imbalances, young age of the dam, uterine trauma from previous
pregnancies, twin/triplet pregnancies, and side effects from
artificial insemination or embryo transfer (Greenwood and
Bell, 2003; Greenwood and Cafe, 2007). Such stressors redirect
maternal blood flow from the gravid uterus, thus reducing
nutritional support for placental hyperplasia and vasculogenesis
(Burton and Jauniaux, 2018). Placental functional capacity is
determined in large part by the successful establishment of
uteroplacental circulation via the rapid development of villous
blood vessels beginning around the end of the first trimester and
continuing throughout most of the second trimester (Regnault
et al., 2003; Burton and Jauniaux, 2018). Indeed, it is during this
critical window that the placenta is most vulnerable to insults
that may lead to reduction in its vasculature, surface area, and
transport proteins needed for maternal-fetal nutrient exchange
(Regnault et al., 2005; Burton and Jauniaux, 2018). During such
insults, placental tissues are typically characterized by unusually
high levels of inflammation, oxidative stress, and apoptotic cells
(Cotechini and Graham, 2015; Burton and Jauniaux, 2018).

The diminished maternofetal interface associated with
placental insufficiency ultimately reduces O2 transfer to the fetus,
and reductions in placental glucose and amino acid transporters
likewise reduce fetal availability of these nutrients (Brown, 2014;
Yates et al., 2018; Beede et al., 2019). Indeed, fetal hypoxemia and
hypoglycemia in heat stress-induced sheep models of placental
insufficiency can exceed 50% reductions near term (Macko et al.,
2016; Wai et al., 2018; Stremming et al., 2020), creating a clear
need for changes in metabolic processes and growth trajectories
(Lackman et al., 2001; Gagnon, 2003). The phenomenon of fetal
hypoglycemia can be partially mimicked by sustained maternal
undernutrition, which can decrease fetal growth despite little or
no impact on the size or vascularity of the placenta (Lemley et al.,
2012; Eifert et al., 2015; Edwards et al., 2020; Contreras-Correa
et al., 2021). Interestingly, diminished placental transfer of amino
acids due to downsizing of system A and L transporters does
not necessarily manifest in reduced fetal blood concentrations
(Pantham et al., 2016; Wai et al., 2018), as the IUGR fetus
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compensates by slowing its protein utilization and accretion rates
(Rozance et al., 2018; Wai et al., 2018; Stremming et al., 2020).

The hypoxemic and hypoglycemic conditions resulting from
placental insufficiency cause a robust hormone-driven stress
response by the fetus. Low blood O2 concentration detected
by O2-sensitive K+ channels on the chromaffin cells of the
adrenal medulla stimulates secretion of the catecholamines,
norepinephrine, and epinephrine (Adams and McMillen, 2000),
inducing the hallmark hypercatecholaminemia that progressively
worsens over the third trimester of pregnancy. Catecholamines
act as strong inhibitors of insulin secretion, which together with
hypoglycemia results in a chronic state of fetal hypoinsulinemia
(Chen et al., 2017; Limesand and Rozance, 2017). Fetal
hypoxemia also leads to an increase in circulating inflammatory
cytokines (Krajewski et al., 2014; Visentin et al., 2014), which will
be discussed in detail in later sections. Additional inflammatory
components such as chemokine C-C motif ligand 16 (CCL16)
and acute phase protein C-reactive protein (CRP) have also been
found to be increased in IUGR fetuses (Makikallio et al., 2012;
Visentin et al., 2014).

IUGR Impairs Growth Capacity and
Metabolic Function
In most cases, the fetus can survive unfavorable conditions
created by placental insufficiency by altering the development
of several growth and metabolic processes in a way that reduces
nutrient demands (Gagnon, 2003). First, the combined endocrine
response to low fetal blood O2 content causes a redirection of
blood flow away from skeletal muscle and other less vital tissues
to maintain support for the brain, liver, adrenals, and pancreas
(Gagnon, 2003; Poudel et al., 2015). Indeed, greater vascular
resistance can reduce blood flow to muscle-dense areas such
as the hindlimb by as much as 45%, which in turn reduces
O2 delivery by up to 40% (Rozance et al., 2018). Secondly,
hypoinsulinemia reduces glucose utilization by insulin-sensitive
muscle tissues (Davis et al., 2020). Interestingly, this can lead to
transient enhancement of insulin sensitivity in the early neonatal
period as a compensatory response (Soto et al., 2003; Ong et al.,
2004). However, this wanes relatively quickly (Mericq et al.,
2005), exposing underlying impairments in insulin action (Jensen
et al., 2002).

Poor Skeletal Muscle Growth Leads to Asymmetric

Body Composition
The reappropriation of nutrients away from skeletal muscle in the
IUGR fetus causes the development more conservative muscle
growth rates that are apparent in late gestation but also persist
throughout the lifetime of the animal. Indeed, IUGR fetal sheep
and rats were found to have smaller cross-sectional areas for
all muscle fiber types (Yates et al., 2016; Cadaret et al., 2019a),
indicating that less muscle hypertrophy was occurring during
gestation. Intrinsic functional deficits in muscle stem cells called
myoblasts are a major underlying factor for impaired muscle
growth capacity (Yates et al., 2014; Soto et al., 2017; Posont
et al., 2018). In ruminants and humans, muscle hyperplasia is
completed early in the third trimester, and subsequent muscle
growth is the result of myofiber hypertrophy (Maier et al., 1992;

Wilson et al., 1992). Indeed, postnatal muscle growth results
from the accumulation of new nuclei within muscle fibers via
fusion of myoblasts, which increases capacity for fiber protein
synthesis (Allen et al., 1979; Davis and Fiorotto, 2009). Some fetal
myoblasts form quiescent populations between the sarcolemma
and the basal lamina of muscle fibers. These latent myoblast
populations are called satellite cells and can later be activated to
facilitate further muscle growth (Davis and Fiorotto, 2009; Yin
et al., 2013). Before fusing, myoblasts undergo several cycles of
proliferation followed by terminal differentiation, both of which
are rate-limiting functional steps for muscle growth (Allen et al.,
1979; Allen and Boxhorn, 1989). However, myoblasts from IUGR
fetal sheep and rats were found to exhibit reduced proliferation
and differentiation capabilities (Yates et al., 2014; Soto et al., 2017;
Posont et al., 2018; Cadaret et al., 2019a), leading to reduced
muscle mass at birth and throughout postnatal life, as illustrated
in Figure 1.

Offspring born with low birthweight due to IUGR initially
continue to exhibit slower postnatal growth. For example,
lambs born IUGR due to maternal heat stress or maternofetal
inflammation remained about 20% smaller at 30 days of age,
with comparable reductions in average daily gain (Cadaret et al.,
2019b; Yates et al., 2019; Posont et al., 2021). As IUGR-born
offspring reach the juvenile stage, many begin to exhibit postnatal
catch-up growth, whereby their bodyweights equalize with
uncompromised herdmates. Indeed, bodyweights and average
daily gain for lambs born IUGR due to maternal heat stress
were reduced by only about 12% by 60 days of age (Gibbs et al.,
2020), and IUGR-born beef cattle were about 8% lighter at 30
months of age (Greenwood et al., 2005; Greenwood and Cafe,
2007). However, this does not equate to recovery of muscle
growth, and thus body composition remains impaired; 60-day
old IUGR lambs had smaller loin eye areas, reduced muscle
protein, and greater fat-to-protein ratios (Gibbs et al., 2020), and
30-month old IUGR beef cattle had smaller carcass weight, ribeye
area, and longissimus muscle weight, resulting in less retail yield
(Greenwood and Cafe, 2007). Estimates from these cattle indicate
that each 1-kg reduction in birthweight equated to a 4.4-kg
reduction in slaughter weight (Robinson et al., 2013; Greenwood
and Bell, 2019).

Nutrient-Sparing Adaptations Reduce Muscle

Glucose Metabolism
In concert with more conservative muscle growth, the IUGR
fetus undergoes a glucose-sparing shift in muscle metabolism
characterized by reduced oxidation and greater glycolytic lactate
production. When IUGR fetal sheep were made hyperglycemic
or hyperinsulinemic near term, whole-body glucose oxidation
was decreased even though whole-body glucose utilization
remained unchanged (Limesand et al., 2007; Brown et al., 2015).
Subsequent sheep studies confirmed that the reduction in glucose
oxidation rates were muscle-specific and persisted after birth
(Cadaret et al., 2019b; Yates et al., 2019; Gibbs et al., 2021; Posont
et al., 2021). Four-fold greater circulating lactate concentrations
together with greater hepatic expression of gluconeogenic genes
in IUGR fetal sheep (Brown et al., 2015) indicate that lactate
produced in greater amounts by IUGR skeletal muscle supports
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FIGURE 1 | Functional steps of myoblasts (muscle stem cells) and their facilitation of hypertrophic growth in normal and IUGR skeletal muscle.

hepatic glucose production. This process, called the Cori cycle,
benefits the nutrient-restricted IUGR fetus by engaging an
otherwise inactive source for glucose (Thorn et al., 2009;
Davis et al., 2021). However, it is important to note that
the reduction in glucose oxidation arises from a programmed
change in mitochondrial functional capacity that does not appear
to be reversible. Although pyruvate dehydrogenase functional
activity was increased in IUGR fetal sheep muscle (Pendleton
et al., 2019), mitochondrial O2 consumption and electron
transport chain Complex I activity were impaired (Pendleton
et al., 2020). Gene expression for isocitrate dehydrogenase,
mitochondrial pyruvate carrier, and other integral components of
mitochondrial oxidative metabolism were also reduced in IUGR
muscle, whereas gene expression for lactate dehydrogenase B
(converts pyruvate to lactate) was increased 2.5-fold (Pendleton
et al., 2020). It is worth noting that reduced glucose oxidation
rates do not appear to be offset by compensatory amino acid
oxidation (Pendleton et al., 2021). In fact, oxidation rates for
the representative amino acid, leucine, were slightly reduced in
IUGR fetal sheep (Brown et al., 2012; Wai et al., 2018). Moreover,
impaired glucose oxidation coincided with reduced proportions
of oxidative myofibers in hindlimb muscles of IUGR fetal sheep
(Yates et al., 2016).

Insulin Signaling Is Impaired in IUGR Skeletal Muscle
Growth and metabolic deficits in IUGR skeletal muscle are
at least partially a product of disruptions in insulin signaling
through Akt-mediated pathways. Insulin is a primary promotor

of muscle growth, as it enhances protein synthesis (Davis
and Fiorotto, 2009) and is a well-established stimulator of
proliferation and differentiation in adult myoblasts (Allen et al.,
1985; Sumitani et al., 2002). More recent studies found that
hyperinsulinemia also increases myoblast function in fetal sheep
(Brown et al., 2016b; Soto et al., 2017). Additionally, skeletal
muscle is the primary tissue for insulin-mediated glucose
uptake from the blood (Baron et al., 1988; Brown, 2014). This
is facilitated when circulating insulin binds to receptors on
the muscle fiber surface and initiates rapid mobilization of
sequestered glucose transporter 4 (Glut4) to the cell membrane,
where it facilitates glucose diffusion into the cell (Kubota et al.,
2011). In addition to its effects on glucose uptake, insulin
stimulation increased skeletal muscle glucose oxidation rates 1.5-
to 4-fold in fetal sheep (Brown et al., 2015; Cadaret et al., 2019)
and 2- to 8-fold in growing lambs (Barnes et al., 2019; Cadaret
et al., 2019b; Swanson et al., 2020; Posont et al., 2021). However,
several studies have indicated that insulin/Akt signaling is
impaired in IUGR muscle. Insulin activates Akt by serine463

phosphorylation, but the proportion of phosphorylated Akt was
reduced in flexor digitorum superficialis muscle from IUGR fetal
and neonatal sheep (Cadaret et al., 2019; Posont et al., 2021). This
deficit was observed at both low and high insulin concentrations
and did not coincide with any reduction in insulin receptor
content (Thorn et al., 2009; Yates et al., 2019). Intrauterine growth
restriction skeletal muscle also exhibited reduced content of
the insulin-sensitive glucose transporter, Glut4, before and after
birth (Limesand et al., 2007; Yates et al., 2019), likely due to
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TABLE 1 | Summary of the major effects that key inflammatory cytokines elicit in tissues affecting growth and efficiency in meat animals.

Cytokine Tissue

Skeletal muscle Pancreatic islets Other

TNFα ↓MyoD (Li and Reid, 2001; Alvarez et al., 2020)

↓Myoblast differentiation (Alvarez et al., 2020)

↓Myosin, actin, and sarcoplasmic proteins (Alvarez

et al., 2020)

↑Protein catabolism (Cheema et al., 2000; Popa

et al., 2007)

↑Glycolysis (Boscá and Corredor, 1984; Rhoades

et al., 2005; Remels et al., 2015)

↓Glucose oxidation in β cells (Oleson et al.,

2015)

↓Glucose-stimulated insulin secretion

(Oleson et al., 2015)

↓Insulin sensitivity (Youd et al., 2000; Li and

Reid, 2001)

↑Lipolysis in fat deposits (Cheema

et al., 2000; Popa et al., 2007)

IL-6 ↓Muscle hypertrophy (Haddad et al., 2005; Bodell

et al., 2009)

↓Myoblast differentiation (Haddad et al., 2005;

Posont et al., 2018)

↑Muscle atrophy (Haddad et al., 2005; Bodell et al.,

2009)

Altered islet structure (Campbell et al., 1994)

↑Fibrosis (Campbell et al., 1994)

Impaired insulin signaling (Bruce and Dyck,

2004; Wolsk et al., 2010; Knudsen et al.,

2017)

↓GH and IGF-1 secretion and

sensitivity, multiple tissues (Haddad

et al., 2005; Bodell et al., 2009)

IL-1β ↑Protein catabolism (Nawabi et al., 1990; Dinarello,

2000; Li et al., 2009)

↓Myofiber width (Li et al., 2009)

↓Actin content (Li et al., 2009)

↑β cell apoptosis (Harms et al., 2015;

Oleson et al., 2015)

↓Glucose-stimulated insulin secretion

(Harms et al., 2015; Oleson et al., 2015)

Collagen degradation, multiple

tissues (Nawabi et al., 1990;

Dinarello, 2000; Li et al., 2009)

epigenetic mechanisms such as DNA methylation at the Glut4
promoter region or histone modifications (Raychaudhuri et al.,
2008; Wang et al., 2016). Like insulin, the influence of IGF-
1 is also diminished in the IUGR fetus, as circulating IGF-1
concentrations and skeletal muscle signaling components are
reduced (Thorn et al., 2009; Rozance et al., 2018).

Pancreatic Islet Dysfunction Contributes to Metabolic

Deficits
Stress conditions resulting from placental insufficiency induce
programming in other tissues that further compounds muscle-
centric dysfunction. Chief among these affected tissues are
pancreatic islets, which are diminished in both development
and functionality (Boehmer et al., 2017). Near term, IUGR
fetal sheep islets are reduced in size by 40% (Rozance et al.,
2015; Brown et al., 2016a), and β cell mass is reduced by 60%
due to a 40–60% reduction in mitosis (Limesand et al., 2005;
Brown et al., 2016a). In addition to being smaller, these β cell
populations are less productive, as IUGR fetal islets contain
only about 20% the amount of insulin found in normal fetal
islets (Limesand et al., 2006). Deficits in islet microanatomy
are preceded by insufficient islet vascular formation, which is
observable shortly after the start of the third trimester (Rozance
et al., 2015). Islet under-development may be due in part to
less profound HGF paracrine activity originating from islet
endothelial cells (Rozance et al., 2015; Brown et al., 2016a),
which appears necessary for β cell development and performance
(Dai et al., 2005; Johansson et al., 2009). Like muscle, IUGR
fetal islets are also less capable of glucose oxidation, which is
the impetus for glucose-stimulated insulin secretion (Limesand
et al., 2006). These programmed deficits persist in offspring, as
islets from IUGR-born lambs maintained substantially reduced
insulin content and glucose stimulus-secretion coupling (Yates
et al., 2019), leading to impairments in glucose-stimulated insulin

secretion that are comparable to the fetus (Cadaret et al., 2019b;
Yates et al., 2019). Interestingly, α cell mass is reduced in IUGR
fetal islets, but not to the same magnitude observed for β

cells. Moreover, their capacity to appropriately secrete glucagon
appears to be unaffected (Limesand et al., 2005).

THE ROLE OF INFLAMMATORY
CYTOKINES IN IUGR OUTCOMES

Cytokines Regulate Muscle Growth and
Metabolism
Cytokines are a broad class of peptide chemical messengers
produced by a wide array of cell and tissue types, often in
response to the presence of pathogens, toxins, free radicals,
and stress (Tracey and Cerami, 1993; Reid and Li, 2001).
Among their other immune functions, inflammatory cytokines
modify metabolic activity in muscle and other tissues in
order to reappropriate O2, glucose, and protein (Li and Reid,
2001; Cadaret et al., 2017). They are also potent regulators
of muscle growth via their complex impact on myoblast
function and insulin sensitivity (Otis et al., 2014; Posont
et al., 2018). This makes the broad cytokine milieu integral to
metabolic homeostasis and, in turn, general metabolic health, as
summarized in Table 1.

Tumor necrosis factor α (TNFα) is perhaps the most
comprehensively studied inflammatory cytokine. It is produced
in greatest quantities by circulating monocytes and their intra-
tissue counterparts, macrophages, but is also produced by
glycolytic skeletal muscle fibers and fat cells (Tracey and Cerami,
1993; Li and Reid, 2001; Plomgaard et al., 2005; Dyck et al.,
2006). Basal circulating TNFα concentrations are typically low
but increase rapidly and profoundly when stimulated (Tracey
and Cerami, 1993; Li and Reid, 2001). Pathological metabolic
states such as excessive fat deposition, insulin resistance,
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and hyperglycemia are associated with substantially greater
production and secretion of TNFα (Saghizadeh et al., 1996; Lo
et al., 2007), as is pathological muscle atrophy (Li and Reid,
2001). Most cell types express one or both of two surface
TNFα receptor isoforms (TNFR1, TNFR2), and TNFR1 is
predominant for muscle (Popa et al., 2007). Once activated by
TNFα, the intracellular domain of TNFR1 binds and activates
the downstream TNFR1-associated death domain (TRADD)
proteins (Popa et al., 2007), which in turn activate Fas-associated
protein with death domain (FADD) pathways and TRAF2/NFκB
pathways (Popa et al., 2007). In skeletal muscle, these pathways
are most associated with protein catabolism, lipolysis, and
metabolic suppression (Cheema et al., 2000; Li and Reid, 2001;
Popa et al., 2007). They also decrease synthesis of the myofibril
components myosin and actin as well as sarcoplasmic proteins
(Cheema et al., 2000; Li and Reid, 2001; Lang et al., 2002).
In differentiating myoblasts, TNFα inhibits MyoD expression,
which impedes their progression, and inmature fibers it increases
protein catabolism, which reduces the content of myosin and
other integral proteins for muscle function (Li and Reid, 2001).
Both of these outcomes appear to bemediated by canonical NFκB
pathways (Li and Reid, 2001; Remels et al., 2015). In mature
skeletal muscle, TNFα-activated NFκB pathways increase the
proportion of glucose undergoing glycolytic lactate production
by increasing activity of HIF-1α, which is concurrent with
reduced glycogen synthesis (Boscá and Corredor, 1984; Rhoades
et al., 2005; Remels et al., 2015). The effects of TNFα on glucose
oxidation rates are more complex, as the cytokine appears to be
stimulatory during acute exposure but inhibitory when exposure
is sustained (Gao et al., 2012; Cadaret et al., 2017, 2019). In
addition to direct effects on muscle growth and metabolism,
TNFα also impairs insulin sensitivity. In rats, TNFα diminished
the effects of insulin on skeletal muscle glucose uptake by 50%
(Youd et al., 2000; Li and Reid, 2001), perhaps by increasing
the content of diacylglyceride, a potent activator of the insulin
antagonist protein kinase C (Bruce and Dyck, 2004; Dyck et al.,
2006). In pancreatic islet cells, TNFα exposure was shown to
reduce glucose metabolism in β cells and, in turn, glucose-
stimulated insulin secretion (Oleson et al., 2015).

The interleukin IL-6 is produced by leukocytes and muscle
cells, often in response to rising TNFα concentrations (Tracey
and Cerami, 1993; Haddad et al., 2005). Consequently, circulating
IL-6 concentrations follow similar patterns as TNFα during
sub-acute and chronic inflammatory conditions (Wolsk et al.,
2010). When bound, the soluble IL-6 receptor (IL6R) forms
a heterodimer with the downstream messenger gp130 (Wang
et al., 2013), which primarily activates the JAK/STAT3 pathway
but can also activate PI3K/Akt/mTOR and Ras/Raf/MEK/ERK
pathways (Wang et al., 2013; Johnson et al., 2018). Elevated
IL-6 activity limits hypertrophic muscle growth by interfering
with growth hormone and IGF-I activity and also increases
muscle protein catabolism, thus contributing to muscle atrophy
(Haddad et al., 2005; Bodell et al., 2009). Although it may
increase myoblast proliferation at some concentrations, IL-6
also reduces the progression of differentiation in primary fetal
sheep myoblasts (Haddad et al., 2005; Posont et al., 2018).
The predominant aspects of metabolic regulation by IL-6 are

similar to those of TNFα. First, the nature of its effects
on skeletal muscle appear dependent on the magnitude and
duration of exposure, as sustained exposure is substantially more
detrimental. Additionally, IL-6 is associated with pathological
metabolic states, presumably due to its propensity to decrease
skeletal muscle carbohydrate metabolism in favor of fatty acid
oxidation and to disrupt insulin signaling (Bruce and Dyck,
2004; Wolsk et al., 2010; Knudsen et al., 2017). Finally, IL-6 is
detrimental to pancreatic islet function, as overexpression of IL-
6 in β cells resulted in alterations to islet structure, increased
fibrosis, and decreased insulin production (Campbell et al., 1994).

Additional inflammatory cytokines appear to have roles
in muscle regulation but have been less extensively studied.
For example, IL-1β is involved in collagen degradation,
muscle protein catabolism, and branched-chain amino acid
metabolism (Nawabi et al., 1990; Dinarello, 2000; Li et al., 2009).
Consequently, it is associated with reduced myofiber width,
myofibril construction, and actin content (Li et al., 2009). In
islets, IL-1β promotes β cell apoptosis, which impairs glucose-
stimulated insulin secretion (Harms et al., 2015; Oleson et al.,
2015). IL-18, IL-8, and TWEAK appear to have similar roles in
regulating muscle growth and metabolism.

Inflammatory Tone Is Increased in the
IUGR Fetus
Studies in a multitude of mammalian species show that
IUGR fetuses exhibit greater circulating leukocyte and cytokine
concentrations, which correlate closely with hypoxemia (Romero
et al., 2007; Guo et al., 2010; Cadaret et al., 2019; Oh et al.,
2019). Increased TNFα, IL-6, and IL-18 were observed in cord
blood of IUGR infants at delivery and in blood serum at 24 h
after delivery (Krajewski et al., 2014; Visentin et al., 2014). In
fact, high concentrations of inflammatory cytokines in cord
blood are considered reliable clinical markers for diagnosing
fetal inflammatory response syndrome (FIRS) (Kemp, 2014). In
IUGR fetal sheep, greater circulating TNFα in the mid-third
trimester coincided with increased monocytes, granulocytes, and
total white blood cells (Cadaret et al., 2019). Similarly, IUGR
fetal rodents exhibited elevated blood concentrations of TNFα,
IL-6, and IFNγ, as well as greater leukocyte activity (Hudalla
et al., 2018; Cadaret et al., 2019a). In addition to circulating
concentrations, cytokine expression is elevated in IUGR tissues
including lungs, brain, skeletal muscle, and white blood cells
(Kemp, 2014; Cadaret et al., 2019a), but not necessarily in
pancreatic islets (Kelly et al., 2017).

IUGR Tissues Develop Enhanced
Inflammatory Sensitivity
Some rodent models of IUGR indicate that greater circulating
cytokine concentrations are maintained into adulthood. Indeed,
IUGR-born rat and mice offspring exhibited greater circulating
TNFα, IL-6, and IL-1β from birth to adulthood (Desai et al.,
2009; Riddle et al., 2014; Chisaka et al., 2016; Oliveira et al.,
2017). However, recent findings indicate that enhanced cytokine
signaling pathways in muscle and other tissues maintain
increased inflammatory tone even when elevated circulating
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cytokines subside after birth (Cadaret et al., 2019a; Posont et al.,
2021). We have postulated that this enhanced responsiveness
to cytokines contributes to the persistent dysregulation of
muscle growth and metabolic function observed in IUGR-born
offspring (Yates et al., 2018; Posont and Yates, 2019). At term,
skeletal muscle from IUGR rat pups exhibited greater gene
expression for TNFR1, IL6R, and Fn14 (TWEAK receptor)
(Cadaret et al., 2019a). Moreover, muscle from IUGR-born mice
and rats exhibited greater TNFα and IL-6 gene expression at
2 and 12 months after birth (Sutton et al., 2010; Tarry-Adkins
et al., 2016). In sheep, proliferation and differentiation rates
of primary IUGR fetal myoblast were reduced when exposed
to basal or high TNFα or IL-6 concentrations (Posont et al.,
2018). Additional data from these samples indicate increased
gene expression for TNFR1 and IL6R in IUGR myoblasts and
semitendinosus muscle, as well as reduced muscle IκBα protein
content and increased c-Fos protein content (Posont, 2019).
As neonates, IUGR-born lambs exhibited increased TNFR1
protein content in semitendinosusmuscle and greater circulating
concentrations of monocytes, granulocytes, and platelets (Posont
et al., 2021). Transcriptomics were subsequently performed in
muscle samples from these lambs, which indicate that gene
expression for numerous components of TNFα, IL-6, IL-1β, and
IL-12 pathways were upregulated (Yates et al., 2018; Cadaret,
2019), as summarized in Figure 2. This paralleled similar
transcriptomics findings in skeletal muscle from IUGR fetal
sheep (Cadaret et al., 2019; Posont and Yates, 2019). Interestingly,
IUGR-born lambs also exhibited greater muscle IκBα protein
content and a 50% reduction in circulating TNFα, perhaps as
a compensatory mechanism for enhanced cytokine sensitivity
(Posont et al., 2021). Although additional studies are needed
to fully understand the magnitude and nature of inflammatory
programming in IUGR skeletal muscle, it is clear that such
enhanced activity would help to explain the deficits in myoblast
function, muscle growth, body composition, insulin action, and
metabolic efficiency described in earlier sections.

Targeting Inflammatory Adaptations May
Improve IUGR Outcomes
Inflammatory programming is likely one of several underlying
mechanisms for IUGR-associated pathologies, but its ability to
be targeted makes it of particular interest. In fact, several studies
have provided fundamental evidence that treating IUGR fetuses
and IUGR-born offspring with anti-inflammatory nutrients or
pharmaceuticals can help to mitigate or improve growth and
metabolic deficits. Inmice, maternal supplementation of the anti-
inflammatory nutraceutical folic acid reduced the frequency and
severity of IUGR resulting from maternal inflammation (Zhao
et al., 2013). The mice receiving folic acid also exhibited a less
severe increase in amniotic concentrations of IL-6 and other
cytokines. Although not assessed in muscle, the enhancement
of cytokine signaling pathways observed in IUGR placental
tissues was mitigated by folic acid (Zhao et al., 2013). In sheep,
direct daily infusion of the anti-inflammatory nutraceutical
eicosapentaenoic acid (EPA) into the bloodstream of IUGR
fetuses during the mid-third trimester of gestation for 5 days

resulted in less severe fetal hypoxemia, hypoglycemia, and
hyperlactatemia (Beer et al., 2021). In addition, the greater lactate
production observed for IUGR fetuses during hyperglycemia was
improved substantially, perhaps indicating a less severemetabolic
shift to glycolytic lactate production by muscle (Lacey et al.,
2021). This coincided with an improvement in fetal growth and
body symmetry. EPA infusion also improved whole hindlimb
mass as well as loin and flexor digitorum superficialis muscle
mass in the IUGR fetuses, which is indicative of improvedmuscle
growth during late gestation (Lacey et al., 2021). It is worth noting
that growth was not recovered for all muscles, which may have
been due to the natural differences in insulin sensitivity and
metabolic phenotypes among muscle groups (Kirchofer et al.,
2002). After IUGR fetuses had been infused with EPA for 5 days,
they exhibited improved basal and glucose-stimulated insulin
secretion, indicating partial rescue of pancreatic islet function
(Lacey et al., 2021). These fetuses also exhibited improvements
in blood pH, HCO3, Na

+, and Ca++ concentrations, which
indicate improved fetal health and well-being (Lacey et al.,
2021). In addition to nutrient compounds, maternal delivery
of anti-inflammatory pharmaceuticals may also represent an
effective intervention strategy. A recent clinical study showed
that high doses of the non-steroidal anti-inflammatory drug
(NSAID) aspirin taken by pregnant women during critical
windows of fetal development reduced the frequency of IUGR
(Roberge et al., 2017). Of course, the benefits of such drugs
must be considered in combination with potential side effects
for fetal development. Inflammatory programming can also be
targeted in offspring, which is of particular interest in livestock.
Dietary supplementation of the anti-inflammatory nutraceutical
curcumin to IUGR-born neonatal pigs and mice mitigated the
elevated concentrations of blood TNFα, IL-6, and IL-1β, which
improved insulin sensitivity, lipid homeostasis, and neonatal
growth (Niu et al., 2019a,b,c).

IMPLICATIONS

The link between maternofetal stress, IUGR-induced low
birthweight, and postnatal deficits in metabolic efficiency and
growth potential are well-established in livestock, but scientific
advancements regarding the molecular mechanisms underlying
this link have been lacking. However, recent studies provide
evidence that systemic fetal inflammation and developmental
programming that enhances tissue sensitivity to inflammatory
cytokines are contributing factors to growth and metabolic
deficits, particularly those that are muscle centric. Although
inflammatory programming is likely one of many underlying
mechanisms, it is of particular interest to the livestock industry
because it is both identifiable and treatable. Indeed, there are
a number of currently marketed nutritional supplements and
pharmaceuticals with anti-inflammatory properties, which could
provide producers a number of options for mitigation and
treatment strategies. Food animals born with low birthweight
due to stress-induced IUGR are persistently one of the greatest
barriers to US and global livestock production. Moreover,
the emergence of climate change will likely increase the
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FIGURE 2 | Postulated programming of enhanced sensitivity to inflammatory cytokines based on transcriptomics analyses of IUGR semitendinosus muscle from

IUGR fetal sheep during late gestation and IUGR-born neonatal lambs at 1 month of age.

incidence of environmental stress on pregnant animals, creating
a greater challenge for sustainable livestock production. As
the global population continues to increase, recovering growth,
efficiency, and meat production in low birthweight animals
through practical management strategies represents one of
the most realistic options for increasing meat production
without greater land and water resource inputs. Although more
work is warranted, early evidence indicates that treatment of
enhanced inflammatory tone in IUGR-born animals may be an
effective approach.
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