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Abstract

Understanding the genetic relationship between mature cow weight (MWT) and body condition score (BCS) is useful to implement selection
programs focused on cow efficiency. The objectives of this study were to estimate genetic parameters, heterosis, and breed effects for MWT
and BCS. In total, 25,035 and 24,522 overlapping records were available for MWT and BCS on 6,138 and 6,131 cows, respectively, from the
Germplasm Evaluation program, a crossbred beef population at the U.S. Meat Animal Research Center. Pedigree was available for 48,013 individ-
uals. Univariate animal models were used to estimate heritabilities for each trait by parity. Bivariate animal models were used to estimate genetic
correlations between parities within a trait and between traits within parities. Bivariate repeatability animal models were used to estimate gen-
etic correlations between traits across parities. Estimates of heritability for different parities ranged from 0.43 + 0.05 to 0.55 + 0.07 for MWT and
from 0.12 + 0.03 to 0.25 + 0.04 for BCS and were lower with the repeatability model at 0.40 + 0.02 and 0.11 = 0.01 for MWT and BCS, respect-
ively. Estimates of repeatability were high for MWT (0.67 + 0.005) and low for BCS (0.22 + 0.006). Estimates of genetic correlation for MWT
and BCS between parities were, in general, high, especially between consecutive parities. Estimates of genetic correlation between MWT and
BCS were positive and moderate, ranging from 0.32 + 0.09 to 0.68 + 0.14. The direct heterosis estimates were 21.56 + 3.53 kg (P < 0.001) for
MWT and 0.095 + 0.034 (P < 0.001) for BCS. Ordered by decreasing MWT, the breeds ranked Brahman, Charolais, Angus, Simmental, Salers,
Hereford, Santa Gertrudis, Chiangus, Brangus, Red Angus, Shorthorn, Maine-Anjou, Gelbvieh, Beefmaster, Limousin, and Braunvieh. Ordered
by decreasing BCS, the breeds ranked Brahman, Red Angus, Charolais, Angus, Hereford, Brangus, Beefmaster, Chiangus, Salers, Simmental,
Maine-Anjou, Limousin, Santa Gertrudis, Shorthorn, Gelbvieh, and Braunvieh. Estimates of breed differences for MWT were also adjusted for
BCS (AMWT), and in general, AMWT depicted smaller differences between breeds with some degree of re-ranking (r= 0.59). These results
suggest that MWT and BCS are at least moderately genetically correlated and that they would respond favorably to selection. Estimates of
breed differences and heterotic effects could be used to parameterize multibreed genetic evaluations for indicators of cow maintenance energy
requirements.

Lay Summary

The current study estimated the genetic relationship between mature cow weight (MWT) and body condition score (BCS), heterosis, and
breed effects for these traits in a crossbred beef population. In total, 25,035 and 24,522 overlapping records were available for MWT and
BCS, respectively. Pedigree was available for 48,013 individuals. Heritability and genetic correlations were estimated within a trait between
parities, between traits within parities, and between traits across parities. Estimates of heritability ranged from 0.40 + 0.02 to 0.55 + 0.07 for
MWT and from 0.11 £ 0.01 to 0.25 + 0.04 for BCS. Genetic correlations within a trait and between parities were, in general, high. Estimates
of genetic correlation between MWT and BCS were positive and moderate, ranging from 0.32 + 0.09 to 0.68 + 0.14. Heterosis effects were
21.56 + 3.53 kg for MWT and 0.095 + 0.034 for BCS. For both traits, Brahman and Braunvieh were associated with the highest and lowest breed
effects, respectively. These results suggest that MWT and BCS would respond favorably to selection and are moderately genetically correlated.
Breed differences and heterotic effects could be used to parameterize multibreed genetic evaluations for indicators of cow maintenance energy
requirements.

Key words: beef cattle, body condition score, breed effects, genetic parameters, heterosis, mature weight

Abbreviations: Al, artificial insemination; AMWT, adjusted mature cow weight; BCS, body condition score; EBV, estimated breeding values; GPE, germplasm
evaluation; h?, heritability; MWT, mature cow weight; USMARC, U.S. Meat Animal Research Center

Introduction that are associated with a substantial fraction of production

Mature cow weight (MWT) and body condition score (BCS) costs in a cowherd operatiop (MacNeil and Mott, 2000). On
are important components to be considered in breeding ob- ~ 3V€ras®, heav1e.r COWS Tequire more encrgy and thgs greater
jectives as indicators of cow efficiency and to obtain a balance feed consumption to maintain their body condition while

between greater early growth and moderate to lower MWT, co_nducting basalhactivi.ties, such as grazing, walking, rumin-
MWT is an indicator of maintenance energy requirements ating, and breathing (Bir et al., 2018). However, although not
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being directly selected on in genetic programs, MWT has been
increasing over the years (Beck et al., 2017). This change is
because MWT has a positive genetic correlation with early
growth traits (e.g., weaning weight and yearling weight),
which have been under direct selection pressure (Hickson and
Pitchford,2021). Moreover, MWT is influenced by BCS, which
is associated with muscle mass and fat deposition (Marlowe
and Morrow, 1985). Thus, cows with similar MWT may have
different maintenance energy requirements. Previous studies
have suggested adjusting MWT for BCS by including BCS as
a linear covariate in the model (Gregory et al., 1992; Arango
et al., 2002a; Nephawe et al., 2004). However, this adjust-
ment may lead to a loss of information given that MWT and
BCS are genetically correlated (Arango et al., 2002a; Silveira
et al., 2015). Therefore, understanding the genetic relation-
ship between these traits would be useful to implement op-
timal selection programs for cow efficiency. Crossbreeding
has been shown to be an efficient approach to improve prod-
uctivity in beef cattle. The use of crossbreeding has two major
advantages: heterosis or hybrid vigor, which is the superiority
of crossbred animals compared with the performance average
of the parents, and breed complementarity, which is the ad-
vantage derived from breeding cows that excel in cow prod-
uctivity traits (including small size) and are adapted to their
environment to sires that excel in terminal traits, including
high growth rate (Weaber, 2021). Nonetheless, heterosis is
not uniformly advantageous; heterosis for MWT increases
production costs assuming a proportional increase in energy
requirements. Using a crossbred beef population comprising
the Germplasm Evaluation (GPE) project from the U.S. Meat
Animal Research Center (USMARC), previous reports have
presented breed differences and heterosis across generations
for birth, weaning, yearling weights, MWT, and calving
difficulty (Schiermiester et al., 2015; Ahlberg et al., 2016;
Zimmermann et al., 2021). However, there are no recent es-
timates of breed effects and heterosis for BCS for beef cattle
in the literature and, more specifically, for the GPE project.
Assessing breed effects for traits of interest allow the com-
parison of estimated breeding values (EBV) across breeds
and provide additional information for selecting breeds for a
crossbreeding system (Weaber, 2021). Thus, the objectives of
this study were to estimate genetic parameters for MWT and
BCS and assess heterosis and breed effects for BCS and MWT
in a structured crossbred population.

Material and Methods

Animals

All methods and animal care described in this study followed
the Guide for the Care and Use of Agricultural Animals in
Agricultural Research and Teaching (FASS, 2010) and were
approved by the USMARC Animal Care and Use Committee.

Animals used in this study were from the USMARC GPE
program, as described by previous studies (Schiermiester et
al., 2015; Ahlberg et al., 2016; Zimmermann et al., 2019).
Cows were born between 1999 and 2018, with a maximum
age of 14 yr. Most cows were sired through artificial insem-
ination (AlI) by bulls sampled to be highly representative of
the following breeds: Angus, Beefmaster, Brahman, Brangus,
Braunvieh, Charolais, Chianina, Gelbvieh, Hereford,
Limousin, Maine-Anjou, Red Angus, Salers, Santa Gertrudis,
Shorthorn, and Simmental. The remaining cows were sired
through natural service by bulls raised at USMARC and
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sired by the above Al sires. The USMARC base cows were
populations of Angus, Hereford, Charolais, Simmental, Red
Angus x Simmental, MARC 1II (% Simmental, % Hereford,
Y Angus, and % Gelbvieh), and MARC 1III (% Angus, %
Hereford, % Pinzgauer, and % Red Poll) and were considered
as separate genetic groups from the Al sires to account for
differences in genetic means. Only the Al sire genetic groups
were reported as breed effects because the base cows do not
represent recent samples of their respective breeds. Genetic
group fractions were determined based on pedigree informa-
tion and fitted as covariates in the mixed models described in
the later section for the estimation of genetic group effects.

Breed heterozygosity was calculated as one minus the
sum of the products of breed fractions of the sire and dam.
For estimation of heterosis, Al sires and commercial cows
of the same breed were considered the same breed. Red
Angus was assumed to be the same as Angus as described
by Schiermiester et al. (2015), and composite breeds were
characterized according to their nominal breed composition.
For estimation of heterosis, composite breeds were assumed
to consist of founder breeds as follows: MARC II (% Angus,
Y% Hereford, ¥4 Simmental, and % Gelbvieh), MARC III (%
Angus, % Hereford, % Red Poll, and % Pinzgauer), Brangus
(% Brahman and % Angus), Santa Gertrudis (¥ Brahman and
% Shorthorn), Beefmaster (Y2 Brahman, % Hereford, and %
Shorthorn), Chiangus (*/; Chianina and */; Angus), and Red
Angus x Simmental (%2 Red Angus and % Simmental).

Data

Complete details of data collection and management are re-
ported by Zimmermann et al. (2019). In brief, cows were
exposed to breeding annually, and MWT and BCS records
used in the current study were collected at palpation to deter-
mine pregnancy status following breeding. Cows from cycle
VII (Cushman et al., 2007) used for this project were born in
spring calving seasons between 1999 and 2008. Cows from
the continuous sampling phase of GPE were born in spring and
fall calving seasons between 2007 and 2018. BCS was deter-
mined based on a subjective classification scale of nine points
(1 being severely emaciated and 9 extremely obese) based on
the Guidelines for Uniform Beef Improvement Programs (BIF,
USDA, 1996). Data were edited such that nonpregnant cows
were removed and parities greater than 8 (~9 yr of age) were
removed. In total, 25,035 and 24,522 overlapping records
were available for MWT and BCS on 6,138 and 6,131 cows,
respectively. The distributions and summary statistics of the
data can be seen in Figure 1. Pedigree from the GPE project
was available for 48,013 individuals from 7 generations.

Statistical analyses

Heritability (h?) was estimated from univariate models for
MWT and BCS for each parity separately or by using a re-
peatability model. Bivariate models were fitted to obtain the
genetic correlations between parities within a trait, between
traits within parities, and between traits using a repeatability
model. Fixed effects included contemporary group (combin-
ation of birth year and season; 7 = 31), and heterosis, age in
days, and breed composition fitted as covariates. Random
effects included residuals and additive direct genetic effects
with (co)variance proportional to the numerator relation-
ship matrix. For the repeatability models, the fixed effect of
parity (1-8) and random effect of permanent environment
were added to the model to account for repeated records.
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Analyses were performed in ASReml version 4 (Gilmour et
al., 2015).

Adjustment of MWT for BCS

Breed effects for mature weight are reported both unadjusted
(MWT) and adjusted for BCS (AMWT). This adjustment was
performed using the genetic regression of MWT on BCS, that
is, the genetic covariance between these traits divided by the
genetic variance of BCS. The product of the breed effect esti-
mates for BCS and the genetic regression was subtracted from
the breed effect estimate for MWT to yield the breed effect
estimate for AMWT. This removed genetic variance due to
BCS from MWT such that AMWT is genetically independent
of BCS.

Results

Genetic parameters for MWT and BCS

Univariate estimates (Table 1) of h? for MWT ranged
from 0.43 = 0.05 (Parity 6) to 0.55 = 0.07 (Parity 8) and
were greater than for BCS, which ranged from 0.13 = 0.07
(Parity 8) to 0.25 = 0.04 (Parity 5). Estimates of h? based
on repeatability models were slightly lower for both
traits: 0.40 = 0.02 and 0.11 £ 0.01 for MWT and BCS,

respectively. Estimates of repeatability were high for MWT
(0.67 £ 0.005) and low for BCS (0.22 = 0.006), similar to
those obtained from the bivariate repeatability model (0.69
and 0.22, respectively).

Estimates of genetic correlation (Table 2) for MWT between
parities were, in general, high (>0.81), particularly between
consecutive parities. For BCS, the estimates of genetic correl-
ation were lower than for MWT, ranging from 0.35 = 0.11
(between parities 1 and 5) to 0.98 + 0.19 (between parities
4 and 7). Estimates of genetic correlation between MWT
and BCS (Table 3) were positive and moderate, ranging from
0.32 = 0.09 (Parity 3) to 0.68 = 0.14 (Parity 8). From the re-
peatability model, the estimate of genetic correlation of MWT
with BCS was 0.43 = 0.04. The estimates of permanent en-
vironmental and residual correlations were 0.85 = 0.03 and
0.50 = 0.005, respectively. The permanent environmental
variances were 2,627.8 = 165.0 kg? and 0.07 + 0.007 and re-
sidual variances were 3,023.1 =+ 27.9 kg? and 0.53 = 0.005 for
MWT and BCS, respectively.

Heterosis and breed effects

The direct heterosis estimates were 0.095 + 0.034 (P < 0.001)
for BCS and 21.56 = 3.53 kg (P <0.001) for MWT. Breed ef-
fects based on the bivariate repeatability model for 16 breeds
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Figure 1. Histograms and statistical summary (minimum, min; mean; and maximum, max) for MWT (kg) and BCS (1-9) by parity.

Table 1. Genetic parameters estimates (standard errors in parentheses) for MWT (kg) and BCS (1-9) by parity and using univariate parity-specific and

repeatability models

Mature cow weight, kg

Body condition score

Heritability Genetic variance Residual variance Heritability Genetic variance Residual variance
Parity 1 0.47 (0.03) 1,463.12 (97.02) 1,637.43 (74.19) 0.15 (0.02) 0.08 (0.01) 0.43 (0.01)
Parity 2 0.48 (0.03) 1,812.41 (124.99) 1,961.58 (95.59) 0.14 (0.03) 0.08 (0.01) 0.49 (0.02)
Parity 3 0.52 (0.03) 2,102.72 (147.83) 1,938.95 (110.86) 0.12 (0.03) 0.07 (0.01) 0.51 (0.02)
Parity 4 0.44 (0.04) 1,911.58 (185.23) 2,436.03 (155.48) 0.13 (0.04) 0.08 (0.02) 0.52 (0.02)
Parity 5 0.50 (0.04) 2,100.66 (199.57) 2,075.97 (160.21) 0.25 (0.04) 0.14 (0.03) 0.42 (0.02)
Parity 6 0.43 (0.05) 1,779.08 (230.64) 2,366.08 (198.38) 0.31 (0.05) 0.17 (0.03) 0.39 (0.03)
Parity 7 0.50 (0.06) 1,891.63 (255.33) 1,920.22 (214.59) 0.16 (0.05) 0.09 (0.03) 0.49 (0.03)
Parity 8 0.55(0.07) 2,191.19 (339.07) 1,827.02 (284.55) 0.13 (0.07) 0.07 (0.04) 0.49 (0.04)
Repeatability! 0.40 (0.02) 1,230.95 (83.79) 1,472.22 (15.13) 0.11 (0.01) 0.07 (0.01) 0.52 (<0.01)

'Estimates of permanent environment variance were 1,191.94 (74.82) and 0.075 (0.0068) for MWT and BCS, respectively. Estimates of repeatability were
0.68 and 0.22 for MWT and BCS, respectively.



Journal of Animal Science, 2022, Vol. 100, No. 2

Table 2. Genetic correlations’ (standard errors in parentheses) between parities within traits of MWT (upper diagonal) and BCS (lower diagonal)

Parity 1 Parity 2 Parity 3 Parity 4 Parity 5 Parity 6 Parity 7 Parity 8

Parity 1 0.99 (0.01) 0.97 (0.01) 0.97 (0.02) 0.82(0.03) 0.88 (0.03) 0.88 (0.03) 0.81 (0.04)
Parity 2 0.90 (0.08) 0.99 (0.01) 0.99 (0.01) 0.87(0.02) 0.89 (0.03) 0.92 (0.03) 0.88 (0.04)
Parity 3 0.89 (0.10) 0.82 (0.09) 0.99 (0.01) 0.89 (0.02) 0.95 (0.02) 0.94 (0.02) 0.89 (0.03)
Parity 4 0.68 (0.13) 0.89 (0.13) 0.77 (0.11) 0.99 (0.02) 0.94 (0.03) 0.99 (0.03) 0.92 (0.04)
Parity 5 0.35(0.11) 0.64 (0.13) 0.66 (0.12) 0.91 (0.11) 0.93(0.02) 0.89 (0.03) 0.85 (0.04)
Parity 6 0.34 (0.11) 0.40 (0.13) 0.66 (0.13) 0.71 (0.15) 0.60 (0.11) 0.99 (0.02) 0.95 (0.03)
Parity 7 0.50 (0.15) 0.66 (0.17) 0.87(0.17) 0.98 (0.19) 0.70 (0.16) 0.96 (0.16) 0.99 (0.02)
Parity 8 0.48 (0.19) 0.51 (0.25) 0.70 (0.24) 0.85(0.25) 0.96 (0.34) 0.89 (0.16) 0.96 (0.28)

'Estimated from bivariate analyses of pairs of parities within trait.

Table 3. Genetic correlations' (standard errors in parentheses) between
MWT and BCS for each parity and using a repeatability model

Genetic correlation

Parity 1 0.56 (0.07)
Parity 2 0.45 (0.08)
Parity 3 0.32 (0.09)
Parity 4 0.59 (0.14)
Parity S 0.41 (0.10)
Parity 6 0.47 (0.11)
Parity 7 0.44 (0.15)
Parity 8 0.68 (0.14)
Repeatability 0.43 (0.04)

!Estimated from bivariate analyses of MWT and BCS within parity or with
the repeatability model.

evaluated in the GPE program at the USMARC for BCS are
expressed as deviations from Angus (Table 4). Currently, EBV
for BCS are not published by U.S. beef breed organizations
and few such organizations report EBV for MWT. Therefore,
the breed effects reported herein are not corrected for any
inherent differences between the bulls sampled and used via
Al and their respective breed mean genetic values. Breed ef-
fects using a different model for MWT have been recently re-
ported by Zimmermann et al. (2021). The Pearson correlation
between their solutions and those reported herein was 0.92.
Brahman, Charolais, and Angus were associated with greater
MWT and BCS. Brangus, Chiangus, Hereford, Salers, and
Simmental had similar intermediate estimates for MWT and
BCS. Braunvieh, Gelbvieh, and Limousin had similar lower
estimates for MWT and BCS. After adjusting MWT such that
AMWT is genetically independent of BCS, Santa Gertrudis
and Shorthorn were associated with greater AMWT, followed
by Simmental and Charolais. Red Angus, Beefmaster, and
Braunvieh had the lowest estimates.

Discussion

One of the main costs in a cowherd operation is feed ex-
penses, mainly used for maintenance requirements of a mature
cow (MacNeil and Mott, 2000; Ramsey et al., 2005). Thus,
selecting cows with lower energy maintenance will increase
herd profitability. Collecting data directly related to energy
requirements such as individual feed intake and calorimetry

Table 4. Breed solutions' (standard errors in parentheses) from
repeatability models for BCS (1-9), MWT (kg) and AMWT (kg)

Breeds MWT AMWT? BCS

Angus 0 0 0

Red Angus -21.7 (9.3) -24.4 (8.2) 0.04 (0.08)
Beefmaster -34.5 (11.7) -25.8(10.3) -0.13 (0.10)
Brahman 5(13.6) 4.2 (12.0) 0.08 (0.12)
Brangus -20.4 (11.2) -12.4 (9.9) -0.12 (0.10)
Braunvieh -88.3 (13.3) -51.5 (11.8) -0.55 (0.11)
Charolais 5(9.2) 6.5 (8.1) 0.004 (0.08)
Chiangus -15.0 (12.0) -3.6 (10.6) -0.17 (0.10)
Gelbvieh -32.3 (9.3) 3.2 (8.2) -0.53 (0.08)
Hereford -13.8 (8.7) -6.5(7.6) -0.11 (0.07)
Limousin -34.6 (9.2) -7.9(8.1) -0.40 (0.07)
Maine-Anjou -28.4 (11.8) -9.0 (10.4) -0.29 (0.10)
Salers -9.1(12.7) 4.3 (11.2) -0.20 (0.10)
Santa Gertrudis -15.0 (12.5) 12.4 (11.1) -0.41 (0.10)
Shorthorn -22.6 (11.2) 10.9 (9.9) -0.50 (0.09)
Simmental -7.7 (8.9) 7.0 (7.8) -0.22 (0.07)

'Using Angus as reference; from bivariate model with mature weight.
*Calculated as: genetic _covariance nwr, BCS
Breed solution for MWT-Breed solution for BCSx

genetu_ varmn(_egc;
. The genetic regression to adjust MWT was 147.4.

data is expensive, time-consuming, and not practical in ex-
tensive production settings. Instead, having an indicator trait
such as MWT would be more feasible. Maintenance energy
requirements based on MWT are more properly estimated
when body condition is considered because individuals with
similar MWT, but different muscle mass and fat deposition
will most likely have different requirements. Given MWT and
BCS are genetically correlated, including BCS as a covariate
to adjust MWT will reduce the additive genetic variation as-
sociated with MWT and result in a trait with a different in-
terpretation than MWT. Therefore, in this study, we estimated
the genetic relationship between MWT and BCS to investi-
gate the possibility of joint genetic evaluation to enable selec-
tion for reduced maintenance energy of cows.

Genetic parameters for MWT and BCS

The estimate of h?> was high (>0.40) for MWT and mod-
erate for BCS (<0.31) in all models analyzed. This indicates
that both traits would respond to selection, although greater
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response would be expected for MWT. These estimates are
in agreement with previous reports. Zimmermann et al.
(2021), using a subset of the animals in the present ana-
lysis, reported a h? of 0.56 = 0.03 for MWT at 6 yr of age
predicted from growth curves. Other studies using animals
from different ages and cycles of the GPE project have re-
ported similar estimates of h* for MWT, ranging from 0.22 to
0.61 (MacNeil et al., 1984; Jenkins et al., 1991). Arango et
al. (2002a), using animals from cycles I to IV ranging in age
from 2 to 6 yr, reported a h? of 0.49 + 0.04 and 0.16 = 0.02
for MWT and BCS, respectively. Nephawe et al. (2004), using
animals from cycles I to IV older than 4 yr of age, reported
a h? of 0.52 +0.04 and 0.16 = 0.02 for MWT (not adjusted
for BCS) and BCS, respectively. Both studies (Arango et al.,
2002a; Nephawe et al., 2004) also reported greater estimates
of h? for MWT when BCS was fitted as covariate (i.e., ad-
justed MWT), of 0.57 +0.04 and 0.54 = 0.04, respectively.
When fitting BCS as a covariate, the authors observed a de-
crease in the permanent environment and phenotypic vari-
ances. Skeletal growth is nearly completed at 3 yr of age, and
further increases in MWT are due primarily to muscle and
fat deposition (Guilbert and Gregory, 1952) suggesting that
indeed BCS contributes to phenotypic variation in MWT at
advanced ages.

Similarly, estimates of repeatability were high for MWT
(0.68) and moderate for BCS (0.22), indicating that MWT
records from one parity are indicative of performance in sub-
sequent parities. Conversely, for BCS, it may be advantageous
to have multiple records. Arango et al. (2002a) and Nephawe
et al. (2004) reported similar estimates of repeatability of
0.65-0.72 and 0.30-0.35 for MWT and BCS, respectively,
using animals from the GPE project from cycles I to IV.

The high estimates of genetic correlation for MWT be-
tween parities indicate that this trait can be considered the
same across parities. These results are also in accordance with
previous reports of genetic correlations between ages and sea-
sons. Arango et al. (2002a) reported estimates close to unity
for genetic correlations between ages for MWT. Also correl-
ating across ages, Rumph et al. (2000) reported genetic correl-
ations greater than 0.86 between MWT at different ages (2-8
yr) in Hereford cows. For BCS, the genetic correlations were
slightly lower when the parity differences increased similar to
what was observed by Arango et al. (2002a) among ages. Mao
et al. (2004), analyzing BCS across different parities, reported
a similar pattern of high genetic correlation in consecutive
parities with a small decrease between parities further apart.
In general, the decrease in genetic correlation in the current
study was greatest between earlier parities (1-2) and later
parities (5-8). This may be due to more energy being directed
to milk production in later parities compared with earlier
parities when the animal may be still growing. Overall, there
was a slight increase in the average BCS from parities 1 to 3
(average BCS of 6) to parities 4 to 8 (average BCS of 7). Mao
et al. (2004) reported greater genetic variance estimates for
BCS for parities 3 and greater compared with parities 1 and 2,
while average BCS did not change between parities. These re-
sults indicate that genetic factors influencing BCS may change
due to changes in repartition of energy for growth, mainten-
ance, and production across different parities.

Increasing MWT is associated with increased feed costs at-
tributed to cow energy requirements (Snelling et al., 2019).
Previous studies have shown a positive genetic relationship
between early growth traits (weaning weight and yearling

weight) and MWT, likely contributing to an increase in
MWT overtime (Schoeman, 1996). However, cows with
similar MWT but different BCS may have different main-
tenance energy requirements due to differences in fat depos-
ition. Estimates of genetic correlation between MWT and
BCS were moderate and positive (0.43) and within the range
reported in the literature, from 0.20 to 0.76 (Brinks et al.,
1964; Marlowe and Morrow, 1985; Arango et al., 2002a),
suggesting that although they are genetically correlated, it is
possible to place direct selection pressure on these two traits
in opposite directions.

Heterosis and breed effects

The significant positive effects of heterosis for MWT and BCS
indicate that the use of crossbred animals contributes to an in-
crease in MWT and BCS. The estimate of heterosis for MWT
obtained from the current study (21.56 kg) was greater than
that reported by Zimmermann et al. (2021) of 15.3 kg, but
similar to previous reports ranging from 22 to 28 kg among
Hereford, Angus, Brahman, and Shorthorn cross (Gregory et
al., 1966; Stewart and Martin, 1981). Previous studies have
reported that heterosis effects on MWT are partially due to
heterosis effects on BCS and that adjusting MWT for BCS
has resulted in a reduction of the heterosis effect on MWT by
23% (Gregory et al., 1992; Arango et al., 2002a).

Breed-of-sire effects for BCS, MWT, and AMWT of GPE
cycles I-IV were reported by Arango et al. (2002a, 2002b,
2004), and Arango and Van Vleck (2002). Current estimates
of breed differences are very different from the estimates
resulting from sires sampled between 1969 and 1985. One
reason for differences is that the current estimates are pre-
sented as breed differences while the earlier estimates were
reported as breed-of-sire differences, which, by definition,
are half of breed differences. Reporting breed-of-sire differ-
ences was an artifact of the experimental design used earlier
in the GPE project. This difference is important to recognize
but does not affect the breed rankings. The more important
reason is the vast difference in selection pressure for growth
and composition applied to the various breeds over the last
several decades, resulted in different correlated responses in
mature size and BCS. Additionally, a few breeds have devel-
oped estimated progeny differences that allow putting direct
downward selection pressure on MWT to attenuate the cor-
related response, while most breeds have not.

Brahman cows were associated with greater MWT and
BCS. This high breed effect is likely influenced by two factors:
most of the Brahman cows were spring calving, and palpation
in September (fall) was the time of year in which the previous
seasonal effects were most favorable for Brahman compared
with Bos taurus breeds; it is likely that Brahmans evaluated in
March (spring) would have ranked lower. Additionally, there
were no purebred Brahmans in the population; much of the
Brahman breed effect came from F, cows expressing 100%
breed heterozygosity, but the adjustment to remove heterosis
from the breed effect was based on a pooled estimate of heter-
osis that is probably less than the heterosis between Brahman
and B. taurus. This may have slightly inflated the Brahman
estimate for MWT and BCS.

The largest differences in the breed effects were between
Brahman and Braunvieh for both traits, of 97.8 kg and
0.63, respectively, with some breeds having very similar es-
timates. Given the similarity of breed effects within MWT
and BCS, breeds could be generally classified into three major



groups: Brahman, Charolais, and Angus with greater MWT
and BCS; Brangus, Chiangus, Salers, and Maine-Anjou with
intermediate; and Limousin, Gelbvieh, and Braunvieh with
lower MWT and BCS. Simmental was associated with greater
MWT but lower BCS. This could be due to the historical
dual-purpose nature of this breed associated with late ma-
turity which leads to an increased growth of leaner carcasses.
Recently, Zimmermann et al. (2021) reported breed effects
for predicted MWT at 6 yr of age. Given EBV for MWT are
not widely available in the U.S. beef industry, the authors ad-
justed the breed effects for MWT based on EBV for yearling
weight to account for the difference between the Al sires used
and the average genetic value of their respective breed. The
Pearson correlation between their estimates (both unadjusted
and adjusted for differences in sire genetic merit) and es-
timates for MWT from the current study was high (0.92).
Brahman, Charolais, Angus, and Hereford were among the
top five breeds associated with greater MWT, and Shorthorn,
Gelbvieh, and Braunvieh were among the bottom five breeds
in all ranks.

In general, adjusting AMWT reduced the differences among
breeds illustrating that breed differences in MWT are in part
due to inherent differences in BCS. Arango et al. (2002b) re-
ported minimal re-ranking among groups of breeds between
unadjusted MWT and MWT adjusted for BCS by fitting BCS
as a linear covariate. In the current study, the Spearman cor-
relation between MWT and AMWT breed solutions was
0.59. Although moderate, breeds certainly re-rank due to
the relatively large differences between some breeds for BCS.
Estimates of AMWT are neither more nor less useful than es-
timates of MWT; they simply require different interpretation.
Looking at estimates of MWT, AMWT, and BCS together
and properly considering the differences in interpretation
may produce deeper understanding of breed differences than
looking at only two of the traits. Nonetheless, an economic-
ally optimized and properly weighted selection index that in-
cludes MWT and BCS with other traits should yield identical
results to an economically optimized and properly weighted
selection index that includes AMWT and BCS with the same
other traits. Regardless of the choice of “trait” (MWT or
AMWT), it is imperative that breed differences and genetic
parameters for MWT and BCS are available to correctly form
comprehensive selection indexes.

Conclusion

Estimates of heritability for both MWT and BCS suggest that
both traits would respond favorably to selection. The mod-
erate genetic correlation between them suggests that although
selection for one could lead to a correlated increase in the
other, it would be possible to place direct selection pressure
on both traits to move them in divergent directions. Genetic
correlations between parities suggest that although MWT
could be considered the same trait across age, differences exist
between parities for BCS. Similarly, estimates of repeatability
were higher for MWT than for BCS and thus the collection of
BCS records across ages would enhance the accuracy of gen-
etic predictions for BCS more than for MWT. Heterotic effects
were significant for both traits, and this knowledge coupled
with breed differences would prove useful for implementing a
multibreed genetic evaluation for improved cow maintenance
energy requirements.
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