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Abstract 
Many soil and weather variables can affect the economical optimum nitrogen (N) 
rate (EONR) for maize. We classified 54 potential factors as dynamic (change rap-
idly over time, e.g. soil water) and static (change slowly over time, e.g. soil organic 
matter) and explored their relative importance on EONR and yield prediction by 
analyzing a dataset with 51 N trials from Central-West region of Argentina. Across 
trials, the average EONR was 113 ± 83 kg N ha−1 and the average optimum yield 
was 12.3 ± 2.2 Mg ha−1, which is roughly 50% higher than the current N rates used 
and yields obtained by maize producers in that region. Dynamic factors alone ex-
plained 50% of the variability in the EONR whereas static factors explained only 20%. 
Best EONR predictions resulted by combining one static variable (soil depth) to-
gether with four dynamic variables (number of days with precipitation>20 mm, res-
idue amount, soil nitrate at planting, and heat stress around silking). The resulting 
EONR model had a mean absolute error of 39 kg N ha−1 and an adjusted R2 of 0.61. 
Interestingly, the yield of the previous crop was not an important factor explaining 
EONR variability. Regression models for yield at optimum and at zero N fertilization 
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rate as well as regression models to be used as forecasting tools at maize planting 
time were developed and discussed. The proposed regression models are driven 
by few easy to measure variables filling the gap between simple (minimum to no 
inputs) and complex EONR prediction tools such as simulation models. In view of 
increasing data availability, our proposed models can be further improved and de-
ployed across environments. 

Keywords: Optimum nitrogen rate recommendation, Corn, Decision support tools, 
Precision agriculture, Argentina, Site-specific management  

1. Introduction 

Maize production in Argentina has doubled over the last five years from 20 
to 40 million tones (AMIS, 2018). About 80% of the grain produced is ex-
ported annually, making this region important in the global maize mar-
ket (Alexandratos and Bruinsma, 2012; Andrade and Satorre, 2015). The in-
creased corn production has been mainly associated with an increase in 
farmable area rather than productivity. The Central-West region’s average 
corn yield is 7.6 Mg ha−1, which is considerably below the potential yield of 
16 Mg ha−1 (Andrade and Satorre, 2015). Poor crop management, in partic-
ular nitrogen (N) fertilization, is the major reason for the yield gap. The av-
erage N application rate to corn in this region is about 61 kg N ha−1 (Bolsa 
de Cereales, 2018), which is about half of the US Corn Belt average N rate 
(Sawyer et al., 2006). Increasing N fertilization results in increased produc-
tion costs that depending in the year, soil type, and landscape position this 
investment may or may not pay off due to the multiple factors affecting the 
economic optimum N rate (EONR, Puntel et al., 2018). 

A better understanding and predictability of the EONR variability in this 
region could result in higher yields and profits while reducing environmen-
tal impacts (Aparicio et al., 2008). However, there is little research on EONR 
in Central-West Buenos Aires compared to other regions such as the US 
Corn Belt (Scharf and Lory, 2006; Dhital and Raun, 2016). Interestingly, the 
vast majority of published studies on EONR have focused on the effects of 
individual factors such as soil properties or precipitation as opposed to the 
compound effect of multiple factors on EONR (Mamo et al., 2003; Basso 
et al., 2001, 2013; Albarenque et al., 2016). To our knowledge, in Argentina 
the most common N recommendation methods is the soil N test at 60 cm 
depth before planting (Ruiz et al., 2001) or at 6th leaf stage at 30 cm (Sainz 
Rozas et al., 2000). However, other N recommendation methods have been 
evaluated in Argentina such as the N balance approach, stalk and plant N 
test (Sainz Rozas et al., 2001), crop sensors and remote sensing technolo-
gies (Ferrari et al., 2010), and a crop simulation model (Satorre and Mercau, 
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2001). The majority of these tools does not account for spatio-temporal dy-
namics such as soil available water content at sowing (Gregoret et al., 2011; 
Coyos et al., 2018). 

In general, factors affecting EONR and yield can be broadly classified into 
dynamic variables (ones that change quickly within a growing season such as 
precipitation) and static variables (ones that change slowly and do not vary 
within a growing season such as soil organic matter, SOM). Today’s N rec-
ommendation tools are based on: 1) dynamic factors such as soil nitrate-N 
(Rozas et al., 2000; Shapiro et al., 2008), 2) static factors such as soil texture 
(Tremblay et al., 2011), 3) both static and dynamic factors via crop and soil 
modeling (Banger et al., 2017), 4) yield expectations (Stanford et al., 1973) 
and 5) multiyear- site average yield response to N curves (e.g. MRTN, Saw-
yer et al., 2006) without considering other factors. 

Regarding the static variables, some studies have reported relationships 
between yield or EONR with soil texture and/or SOM (Gregoret et al., 2006; 
Peralta et al., 2013; Puntel et al., 2017). Soil texture and SOM affect water 
holding capacity and N cycling, thus soil N supply and crop N uptake (Sog-
bedji et al., 2001). However, measuring these static variables at a fine spatial 
resolution is expensive and labor intensive. To address this issue more acces-
sible variables such as topography and apparent soil electrical conductivity 
(ECa) are used (Kitchen et al., 2003; Shaner et al., 2008). The ECa is correlated 
with soil water content (Brevik et al., 2006), soil compaction (Kravchenko and 
Bullock, 2000), and salinity (Heiniger et al., 2003) and it is a very good indi-
cator of soil texture (King et al., 2005). Topography, derived terrain parame-
ters, and ECa have been used with varying degrees of success to determine 
areas with contrasting yields (Chang et al., 2004) and differential yield re-
sponse to N (Jaynes, 2011). 

Regarding the dynamic variables, several studies have indicated the im-
portance of soil moisture, soil nitrate, rainfall and temperature on crop yields 
and EONR in rainfed regions (Andrade et al., 1993). For example, Hergert et 
al. (1995) and Kitchen et al. (2005) illustrated the importance of spatial and 
temporal dynamics of soil nitrate on EONR. Ordóñez et al. (2015) and Edreira 
and Otegui (2013) quantified heat stress effects on corn yield and N uptake. 
Soil temperature and moisture affect soil N mineralization and residue de-
composition and thus crop N availability and EONR (Andraski et al., 2000; 
Cabrera et al., 2005). Shallow groundwater dynamics have been found to 
positively affect yield in dry seasons and negatively affect yield in wet sea-
sons (Jaynes, 2012; Nosetto et al., 2009) while also affecting environmental 
N losses (Dinnes et al., 2002) and thus the EONR. 

Understanding which dynamic and static factors or synergic relationships 
contribute the most to spatial (between landscape positions) and tempo-
ral (between years) variability in EONR is complex and still elusive (Scharf, 
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2015). Thus far, no study has been conducted to compare the relative im-
portance of different static and dynamics factors on EONR and corn yield. 
A targeted experimental approach is needed in which several variables are 
simultaneously measured to identify the most important ones for further 
emphasis. To shed light on this important knowledge gap, we analyzed a 
dataset with 51 N response trials from Central-West Buenos Aires, Argen-
tina in which numerous static and dynamics variables were measured. Our 
specific objectives were to: 1) identify the range of yield and EONR variabil-
ity in this region, 2) quantify the relative importance of dynamic and static 
factors on yield and EONR, and 3) to synthesize gained knowledge and de-
velop a predictive N model to aid site-specific N management. 

2. Material and methods 

2.1. Experimental sites and design 

Fifty-three N rate trials were conducted at contrasting landscape positions 
and soil types, on five fields located in Nueve de Julio, Buenos Aires, Argen-
tina during five growing seasons: 2012–2013 (season 1; 10 trials), 2013–2014 
(season 2; 10 trials), 2014–2015 (season 3; 13 trials), 2015–2016 (season 4; 
11 trials), and 2016–2017 (season 5; 9 trials). Soils were coarse-loamy, ther-
mic Typic Hapludolls representing the most productive areas of the fields, 
coarse-loamy, thermic Entic Hapludolls mostly representing sandy hills with 
low productivity, and Thapto-argic Hapludolls corresponding to shallow soils 
due to the presence of a clay pan layer at varying depths. These soils are rep-
resentative of the Central-West Buenos Aires Province and other provinces 
in Argentina. In addition, the area is influenced by a fairly shallow water ta-
ble that responds rapidly to rain (Mejia et al., 2000). Due to severe flood-
ing two trials were not harvested reducing the number of N trials used in 
the analysis to 51. 

The N-trials were established in representative landscape positions with 
the goal to generate variability in elevation, ECa, soil nitrogen, soil proper-
ties, and previous crop productivity (e.g. summer soybean-corn or double 
crop spring wheat/summer soybean-corn rotations). As an example, Fig-
ure S1 illustrates the position of six N trials. Each N-trial was a small-plot 
randomized complete block design with three replications. Seven N rates 
(0, 25, 50, 100, 150, 200, and 250 kg ha−1) were applied as broadcasted 
urea between planting and third corn leaf stage (V3 stage; Abendroth et 
al., 2011). Plot size was 9m long and 2.8m wide. According to soil analy-
sis, only phosphorus and sulfur were below optimum values, thus, fertiliz-
ers were applied according to soil analysis and local recommendations to 



Puntel ,  Pagani ,  & Archontoulis  in Eur .  J.  of  Agronomy 105 (2019)        5

ensure nutrient sufficiency. All trials had a final plant population between 
65,000 and 80,000 plants ha−1 and row spacing was either 0.75m or 0.52 
m. Commercial corn hybrids with a relative maturity of 120–125 days were 
planted around September 25th±7 days. Fields were managed without till-
age. Pest, diseases, and weeds were adequately controlled to ensure op-
timal growing conditions. 

2.2. Measurements and data processing 

Grain yields were determined by collecting ears from the center two rows of 
each plot (5m length). Grain moisture was measured, and final yields were 
adjusted to 14% moisture content. Additional measurements were taken 
from each N trial to explain yield response to N including: SOM, texture, 
gravimetric water content, ECa, elevation, soil and water table depth, amount 
of residue from the previous crop, and hourly weather data. These measure-
ments and subsequent calculations were classified into static and dynamic 
explanatory variables, which are described below and summarized in Table 1. 

2.2.1. Static variables 
Static variables are relatively constant over time and measured once per trial 
(Table 1). Soil apparent electrical conductivity at 30 and 90 cm depth was 
measured on transects, approximately 20m apart using a Veris model 3100 
sensor cart system (Veris Technologies, Salina, Kansas, USA). The ECa sur-
veys were conducted before planting or after harvest. Elevation data was 
obtained by a dual frequency RTK system (Trimble 5700, USA) connected to 
the EC Veris surveyor. Both ECa and elevation data points were interpolated 
using ArcGIS (ESRI, 2018, Redlands, CA, USA) and R software (R Core Team, 
2018) using ordinary kriging in a regular 3-m grid (Figure S1). 

Landscape characteristics were determined by primary and secondary 
terrain attributes (Moore and Grayson, 1991; Wilson and Gallant, 2000). We 
used primary attributes such as elevation, relative elevation (Rel_elev), slope, 
and plan curvature (pcurv) that were derived directly from digital elevation 
models (DEM) (Figure S1, Table 1). Secondary attributes such as specific 
catchment area (SCA) were derived from a combination of primary attri-
butes. Digital terrain analysis was performed using the GRASS 7.0.5 (Geo-
graphic Resources Analysis Support System, grass.osgeo.org) and ArcGIS 
10.5 software packages. 

The r.param.scale function in GRASS was used to calculate plan curva-
ture. The digital elevation model was processed using a neighborhood of 3 
by 3 cells (equivalent to an analysis scale of 13.9 m). The slope gradient and 
a moving-window version of relative elevation (REL; Miller, 2014) were cal-
culated using custom toolbox models in ArcGIS 10.5, using custom toolbox 
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Table 1. Description of static and dynamic explanatory variables.

Acronym 	 Explanation 	 Unit 	 Observed range

Static variables (change slowly over time or do not change)
OM_20 	 Soil organic matter (0-20 cm depth) 	 % 	 2-4
P_Bray_20 	 Available Bray phosphorus (0-20 cm depth) 	 ppm 	 6-51
EC_20 	 Electrical conductivity (0-20 cm depth) 	 ds/cm 	 47-124
pH_20 	 pH (0-20 cm depth) 	 – 	 5-6
Sand_20 	 Sand content (0-20 cm depth) 	 % 	 36-84
Silt_20 	 Silt content (0-20 cm depth) 	 % 	 12-53
Clay_20 	 Clay content (0-20 cm depth) 	 % 	 3-16
ECa_30 	 Soil apparent electrical conductivity (0-30 cm depth) 	 ds/m 	 3-19
ECa_90 	 Soil apparent electrical conductivity (0-90 cm depth) 	 ds/m 	 4-28
Elev 	 Elevation as meters above the sea level 	 m 	 71-89
Rel_elv 	 Relative elevation using the middle elevation as the reference 	 % 	 −0.22-0.29 
	    (REL, Miller et al., 2014) 
planc 	 Plan curvature 	 deg 	 −0.28-40
Slope 	 Slope of the field 	 %_raise 	 0-5
SCA 	 Specific catchment area 	 pixel value 	 0-486
MO (20-60) 	 Soil organic matter content (20-60 cm depth) 	 % 	 1-3
Sand (20-60) 	 Sand content (20-60 cm depth) 	 % 	 36-84
Silt (20-60) 	 Silt content (20-60 cm depth) 	 % 	 12-48
Clay (20-60) 	 Clay content (20-60 cm depth) 	 % 	 5-20
Soil_depth 	 Soil depth 	 m 	 0.6-2

Dynamic variables (change fast over time)
Residue_amount 	 Amount of residue from previous crop at planting 	 kg/ha 	 3636-10909
Residue_CN 	 Quality of residue as Carbon to N ratio 	 – 	 30-75
Previous Yield	 Yield of the previous crop 	 kg/ha 	 2000-6000
N_20 	 Nitrate content (0-20 cm depth) 	 kg/ha 	 19329
N (0-60) 	 Nitrate content (0-60 cm depth) 	 kg/ha 	 28-116
Water table 	 Water table depth 	 cm 	 30-450
SW_20	 Soil water content (0-20 cm depth) 	 mm 	 21-72
SW (20-60) 	 Soil water content (20-60 cm depth) 	 mm 	 30-177
FC_20 	 Soil water as a % of field capacity at 20 cm 	 % 	 43-237
FC (20-60) 	 Soil water as a % of field capacity at 20 to 60 cm 	 % 	 71-265
FC_w 	 Soil water as a % of field capacity 0 to 60 cm 	 % 	 65-253
Max_20 	 Soil water as a % of saturation point at 20 cm 	 % 	 23-82
Max (20-60) 	 Soil water as a % of saturation point at 20 to 60 cm 	 % 	 35-102
Max_w 	 Soil water as a % of saturation point at 0 to 60 cm 	 % 	 34-93
SW_sum 	 Soil water content (0-60 cm depth) 	 mm 	 57-277
Events_P-S 	 Number of rain events from planting to silking 	 days 	 9-28
Amount_P-S 	 Cumulative rain from planting to silking 	 mm 	 202-528
Events_P-S_20 	 Number of days with rain > 20mm from planting to silking 	 days 	 2-13
Amount_P-S_20 	 Cumulative rain (only > 20 mm) from planting to silking 	 mm 	 98-428
Events_S 	 Number of rain events around silking (±1.5 weeks) 	 days 	 1-8
Amount_S 	 Cumulative rain around silking (±1.5 weeks) 	 mm 	 25-176
Events_S_20 	 Number of days with rain > 20mm around silking 	 days 	 0-7
Amount_S_20 	 Cumulative rain (only > 20 mm) around silking 	 mm 	 0-150
Events_H-P_E 	 Number of rain events from harvest to planting 	 days 	 6-25
Events_H-P_20 	 Number of rain events (> 20 mm) from harvest to planting 	 days 	 2-12
Amount_H-P_E 	 Cumulative rain from harvest to planting 	 mm 	 140-866
Amount_H-P_20 	 Cumulative rain events (> 20 mm) from harvest to planting 	 mm 	 98-810
Events_P-H_20 	 Number of rain events from planting to harvest 	 days 	 11-60
Events_P-H_20 	 Number of rain events (> 20 mm) from planting to harvest 	 days 	 2-18
Amount_P-H_20 	 Cumulative rain from planting to harvest 	 mm 	 296-840
Amount_P-H_20 	 Cumulative rain (only > 20 mm) from planting to harvest 	 mm 	 78-672
Temp_P-H_35 	 Number of heat days (daily temp > 35 °C) around silking 	 days 	 2-13
Temp_S_35 	 Number of heat days from planting to harvest 	 days 	 1-5
Radiation_S 	 Classification of radiation around silking *** 	 – 	 1-2
Temp_P-H_10 	 Number of cold days (< 10 °C) from planting to harvest 	 days 	 23-42
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models (available at http://www.geographer-miller.com/relief-analysis-tool-
box ). Plan curvature is perpendicular to the direction of the maximum slope. 
A positive value indicates that the surface is sidewardly convex at that cell. 
A negative value indicates the surface is sidewardly concave at that cell. A 
value of zero indicates the surface is linear (Figure S1). Profile curvature re-
lates to the convergence and divergence of water flow across a surface. 
The SCA was calculated using Spatial Analyst Hydrology Tools in ArcGIS 
10.5. The SCA is defined as the area of land upslope of a width of contour, 
divided by the contour width. This is a commonly used quantity in hydrol-
ogy to describe complex terrain for analyzing water flow on hill slopes; it 
can be a surrogate for water discharge per unit flow width. 

Soil organic matter was determined by the combustion method (Wang 
and Anderson, 1998) and texture by the pipette method (Soil Survey Staff, 
2014). Ten cores were taken per block from 0 to 20, 20–60, 60–100 cm depth 
in most of the experimental sites to determine SOM and texture. For the 
first two seasons, samples were collected from 0 to 20, 20–40, and 40–60 
cm depth (Sites 1–10). Data was combined into top (0–20 cm) and subsoil 
data (20–60 cm). Data below 60 cm was not used in the analysis. Effective 
soil depth, which stands for the depth of the pretocalcic horizon and/or clay-
pan layer, was measured manually with a 1.2-meter soil probe in each plot. 
Soil depth was as shallow as 60 cm for some of the experimental sites. Us-
ing SOM, texture data, and Saxton and Rawls (2006) pedotransfer functions, 
we calculated field capacity (FC) and saturation point (SAT) for the top and 
subsoil layers. 

2.2.2. Dynamic variables 
Variables that change rapidly over time were classified as dynamic (Table 
1). Gravimetric soil water and nitrate-N contents at 0–20 cm and 20–60 cm 
were measured at planting. Soil water content was expressed as a percent of 
FC and SAT. Nitrate-N content was determined using the phenoldisulphonic 
acid method (Davis, 1916) and expressed as kg of N per ha by layer. The to-
tal nitrate-N amount across the 0–60 cm profile was used as an explanatory 
variable in this analysis. Water table depth at each trial was manually mea-
sured (from installed wells) around planting. Hourly precipitation, radiation, 
and temperature data was obtained from nearest weather station (< 5 km) 
to the experimental sites. Precipitation was accumulated for the following 
periods: from harvest of the previous crop to planting of corn (amount_H-
P), from planting to silking (amount_P-S),±1.5 weeks around silking (criti-
cal period; amount_S), and from planting to harvest (amount_P-H). For the 
same time periods, we calculated and used as explanatory variables the 
number of rain events greater than 0mm and greater than 20mm per day 
(events_H-P, events_S, events_P-H, events_H-P_20, events_S_20, events_P-
H_20). The value of 20mm day−1 was arbitrarily chosen in this analysis to 

http://www.geographer-miller.com/relief-analysis-toolbox
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account for possible N leaching. The number of days with air temperature 
below 10 °C during the growing season, the number of days with air tem-
peratures above 35 °C around maize’s critical period (±1.5 weeks around 
silking), and over the entire growing season were counted (Temp_P-H_10, 
Temp_P-H_35, Temp_S_35, respectively). Lastly, we calculated the radiation 
sums around the critical period (Radiation_S) as a proxy of crop growth rate 
that is known to affect kernel number. 

Grain yield of the previous crop was estimated from yield monitor data 
at each experimental site. When yield maps were not available, yields of 
the previous crop at each site were estimated based on image analysis and 
yield records from the farmer. The amount of residue and its carbon (C)-
to-nitrogen ratio (C:N) was directly measured in season 4 (2015-16) in each 
block from an area of 1m2. A subsample of the residue was analyzed for C, 
N, and C:N ratio using the dry combustion method (LECO, 2008). Residue 
amount and quality for the other seasons were estimated from previously 
published grain yield and residue C:N relationships for Argentina (Melchi-
ori et al., 2014). 

2.3. Data analysis 

The relationship between yield and N rate was described from the quadratic 
and quadratic-plus-plateau models using R software (R Core Team, 2018). 
Models were deemed significant at p < 0.05 and the equations with the 
smallest sums of squares and largest R2 were selected (Table S1). The EONR 
and yield at the EONR (YEONR) was calculated from the N response equa-
tions by setting the first derivative of the fitted response curve equal to a 
historical price ratio of 10:1 N: corn grain price (US$ kg−1 N: US$ kg−1 grain) 
ratio (Cerrato and Blackmer, 1990; Bullock and Bullock, 1994; Pagani et al., 
2008). This price ratio is about half of what is used in the USA (5.6:1; Puntel 
et al., 2016). A sensitivity analysis of the effect of price ratios (5.6 and 14 vs 
10 N: corn grain price) on EONR for three experiments is shown in Figure 
S6. Although optimum N rates would be slightly different if different prices 
were used, the optimal N rate is relatively insensitive to shifts in prices (Ba-
ethgen et al., 1989; Pagani et al., 2008). Maximum yield response to N was 
calculated as the difference between YEONR and Yield_N0. 

Relationships between explanatory variables (Table 1) were explored us-
ing Pearson correlation, principal component analysis, and clustering (Fig-
ure S2). We excluded highly auto-correlated variables from subsequent re-
gression analysis. Plant population and row spacing was considered random 
in the statistical analysis. The remaining static and dynamic variables were 
used to develop regression models for EONR, YEONR, and Yield_N0. The 
efficient branch-and-bound algorithm method within the leaps R package 
was used to produce a list of sub-models for consideration, and then we fit 
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a linear model for each sub-model individually to obtain the selection cri-
teria. The best model was selected based on adjusted R2 and k-fold (leave-
one-out) cross validation error. Finally, we calculated performance indexes 
such as mean absolute difference (MAE) and root mean squares (RMSE, see 
equations in Archontoulis and Miguez, 2015). 

We developed two types of regression models (Table 2). The first one, 
hereafter referred to as the full model, made use of all available informa-
tion from harvesting of the previous crop to harvesting of the next crop. The 
second, hereafter referred to as the reduced model, made use of informa-
tion from harvesting of the previous crop to planting time of the next crop. 

To determine the relative importance of static and dynamic variables 
within the regression models we used the simple unweighted averages (lmg) 
method (Gromping, 2006). This metric decomposes R2 into absolute contri-
butions of different factors that sum to the total R2. The advantage of this 
method over simpler metrics is that the lmg is based on sequential R2, while 
accounting for the dependence on orderings using simple unweighted aver-
ages. This analysis was performed for the full and reduced model separately. 

2.3.1. Preliminary model testing 
We used an independent set with three N trials from the 2017-18 (Season 
6) growing season to test the predictive capacity of both full and reduced 
models. This season had a severely dry summer (244mm of rain from plant-
ing to harvest; with only 30mm around silking). The soils had a SOM from 
2.2 to 3.5% and a sand content from 52 to 70%. The previous season’s crop 
was a double crop of spring wheat/summer soybean. All model inputs were 
calculated as described in previous sections. 

Table 2. Mean absolute error for economic optimum nitrogen rate (EONR; units: 
kg N ha−1), yield at EONR (YEONR; Mg ha−1), and yield at nitrogen zero (Yield_N0; 
Mg ha−1) for regression model predictions using information from previous harvest 
until planting (reduced model) and using information available from previous crop 
harvest to next harvest (full model).

                                                                    kg ha-1

Season 	 In-season prediction (reduced model) 	 At planting prediction (full model)

	 EONR 	 YEONR 	 Yield_N0 	 EONR 	 YEONR 	 Yield_N0

1 	 49 	 1.3 	 0.7 	 52 	 1.2 	 1.2
2	 45 	 1.6 	 1.3 	 56 	 1.7 	 1.3
3 	 40 	 1.4 	 1.1 	 37 	 1.7 	 1.6
4 	 32 	 1.1 	 0.9 	 42 	 1.4 	 1.3
5 	 24 	 2 	 1.3 	 35 	 1.8 	 1.4
All seasons 	 43 	 1.2 	 1.3 	 39 	 1.1 	 1.0
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3. Results 

3.1. Spatial and temporal variability of the explanatory variables 

Season 1 was the wettest (23% above regional average precipitation) and 
Season 2 was the driest (7% below average precipitation; Figure S3). During 
the critical period of silking, the number of precipitation events (> 0 mm) 
was the highest in Season 5 and the lowest in Season 2. 

Soils had on average 80 kg N ha−1 at planting time in the dry season (Sea-
son 2), this was 60% more than the average at the wet Seasons, 1, 4 and 5 
(Fig. 1). Soil nitrate-N varied the most during the extremely wet and dry sea-
sons (Fig. 1). Season 2 also had the highest variation in soil water content 
expressed as a percent of field capacity between landscape positions (Fig. 
1). The depth to the water table varied from 30 to 300 cm across seasons 
and treatments (Fig. 1). Season 5 had the highest number of days with tem-
peratures below 10 °C and Season 2 had the greatest number of days with 
temperatures above 35 °C (45 and 13 days, respectively; data not shown). 

The range of values observed for the static values are reported in Table 
1. Some static variables were correlated with one another. We found that 
the estimated terrain parameters correlated well with soil texture, SOM, and 
ECa_90 (Figure S4). Soils with high slopes were characterized by low SOM 
and high sand content whereas high SCA (specific catchment area) was as-
sociated with areas of low sand content. As ECa_90 increased, SOM, and 
SCA increased (Figure S4). 

3.2. Temporal and spatial variability of EONR and yields 

Across the 51 N-trials, the EONR varied from 0 to 260 kg N ha−1 with a mean 
of 113 ± 81 kg N ha−1 (Fig. 2). The EONR values were above the 51 trial mean 
in 90% of the cases in Season 1, and only 13% of the cases in Season 5 (Fig. 
2). The Yield_N0 was below the 51 trial mean value (9.5 Mg ha−1) in all cases 
in Season 1 and above the mean value in 87% of the cases in Season 5 (Fig. 
2). The mean YEONR was 12.2 Mg ha−1 and its distribution across the 51 tri-
als was skewed to the right. In 3 of the 5 seasons, the spatial variation of 
EONR and YEONR was higher than their temporal variation (CV of 72% ver-
sus 27%, respectively, Fig. 2). The variability in Yield_N0 was higher across 
years (27%) than within fields (21%). The YEONR varied less compared to 
EONR and Yield_N0 (Fig. 2). 

3.3. Correlations between EONR, yield and explanatory variables 

During the wettest season (Season 1), highly productive areas (fine texture) 
had an average EONR of 213 kg N ha−1, whereas low productive areas with 
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the sandiest soils (sand content>65%) also had high EONR (˜ 195 kg N ha−1, 
Fig. 1 and 2). Field areas with high sand content (> 65%) and low SOM (< 
2.5%) resulted in high temporal variability in yield and EONR (Fig. 2). We 
found no relationship between EONR and YEONR (Fig. 3). However, the dif-
ference between YEONR and Yield_N0 that is the yield response to N was 
highly correlated with the optimal N rate (RAdj

2 = 0.91; Fig. 3). In very wet sea-
sons, the yield response to N was double that of the dry seasons. The dif-
ferences in yield response to N were 3- fold higher in fine than coarse tex-
tured soils in dry and normal seasons. In general, the EONR, YEONR, and 
Yield_N0 tended to increase as SOM increased and sand content decreased 
(Figure S5). The EONR and Yield_N0 was significantly correlated with pre-
cipitation from planting to silking (R2 from 0.20 to 0.57), but the magnitude 
of the response was associated with soil texture and SOM (data not shown). 

Fig. 1. N-nitrate content from 0 to 60 cm depth, water as percent of field capacity 
from 20 to 60 cm soil depth (FC), soil water from 0 to 60 cm depth (SW_sum), soil 
organic matter at 20 cm depth (OM_20), water table depth at planting, and sand 
content at 20 cm depth (Sand_20).  
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Fig. 2. Observed economic optimum nitrogen rate (EONR), yield at EONR (YEONR), 
and yield at nitrogen zero (Yield_N0, right panels) and frequency distribution (right 
panels). Horizontal dashed lines represent the overall mean value. The coefficient 
of variation (CV%) for each season is provided.  

Fig. 3. Economic optimum N rate (EONR) as a function of yield at EONR (YEONR), 
yield at N zero (Yield_N0), and the difference between YEONR and Yield_N0.  
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3.4. Relative importance of factors and model development 

The variability in EONR and Yield_N0 was best explained by dynamic factors 
while the variability in YEONR was best described by static variables (see RAdj

2 
values in Fig. 4). Prediction accuracy substantially increased when we com-
bined dynamic and static variables (RAdj

2>0.60, Fig. 4). 
From a total of 54 static and dynamic variables examined in this study 

(Table 1), four dynamic variables (precipitation, heat stress, nitrate- N at 
planting, residue amount) and one static variable (soil depth) were consid-
ered in the EONR full model based on their importance (Table 3). The re-
sulting model explained 61% of the variability in EONR with a MAE of 39 kg 
N ha−1 (Fig. 2). The number of precipitation events (> 20 mm) from plant-
ing to silking was found to be the most important variable and heat stress 

Fig. 4. Diagram of regression models for the economic optimum nitrogen rate (a), 
yield at the EONR (b), and Yield at N0 (c) using static variables, dynamic variables, 
and a combination of both. Predicted versus observed values for the full models 
are shown. Diagonal dashed lines are 1:1. The relative importance of static and dy-
namic variables included in the final model as shown. All acronyms are explained in 
Table 1. Adjusted coefficient of determination (R2), mean absolute error (MAE), and 
root mean square (RMSE) are shown.  
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the least important variable in the full EONR model (see variance analysis 
in Fig. 4). For YEONR and Yield_N0 the best single were the residue amount 
and the number of rain events (> 20 mm) from planting to harvest, respec-
tively (Fig. 4; Table 3). 

We also re-ran the same analysis with a reduced amount of data (from 
previous crop harvest to planting of the new crop) and developed three ad-
ditional models that can be used for forecasting purposes at planting time. 
The models and parameter values are listed in Table 3. In the reduced mod-
els, information on soil water and soil nitrate-N at  planting time became 
highly important in the EONR and Yield_N0 prediction (Fig. 5 and Table 3). 
Residue amount and Rel_elev were the most important variables for the re-
duced YEONR model (Fig. 5). 

The prediction accuracy of the reduced models was similar for the EONR, 
YEONR, and Yield_N0 (RAdj

2>0.55, Fig. 5). On average, the full EONR model 

Table 3. Full and reduced regression models for the economic optimum nitrogen rate (EONR; 
units: kg N ha−1), yield at EONR (YEONR; Mg ha−1), and yield at nitrogen zero (Yield_N0; Mg 
ha−1). Acronyms explanation and units are provided in Table 2. An Excel version of these mod-
els is provided as supplementary materials.

Type 	 Model

Full	 EONR = 355 – 163*Soil depth + 22.4*Events_P-S_20
(uses data from harvesting of the  	    – 10.3*Events_P-H_20 – 1.9*N(0-60)  
previous crop to harvesting of 	    + 17.1*Temp_S_35 + 0.0196*Residue_amount 
the next crop)
	 YEONR = 18.1 – 11.6*Rel_elev – 0.18*Events_P-H_20  
	    – 0.008*SCA + 0.013*Amount_S – 3.8*Soil_depth  
	    + 0.0058*Residue_amount

	 Yield_N0 = 4.96 – 0.253*Events_P-H_20 + 0.05*N(0-60)  
	    – 12.56*Rel_elev – 0.008*SCA  
	    – 0.56*Temp_S_35 + 0.2*Temp_P-H_10

Reduced	 EONR = 390 – 145*planc – 1.96*N(0-60) – 0.83*FC(20-60)
(uses data from harvesting of the previous  	    + 11.1*Events_H-P_20 – 120*Soil_depth  
crop to planting time of the next crop)	    + 0.017*Residue_amount

	 YEONR = 13.8 – 11*Rel_elev – 0.01*SCA  
	    + 0.003*Amount_H-P + 0.016*SW_sum  
	    + 0.0005*Residue_amount – 3.7*Soil_depth

	 Yield_N0 = 1.1 –13.7*Rel_elev – 0.010*SCA  
	    + 0.05*N(0-60) + 0.006*Water table + 0.010*FC(20-60)  
	    + 0.024*SW_sum
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outperformed the reduced models’ prediction accuracy by 16% (Table 2). 
The full model predicted EONR with a higher MAE in extreme wet and dry 
Seasons 1 and 2 (MAE ˜ 43 kg N ha−1). Seasons 1 and 4 had the highest ac-
curacy for Yield_N0 and Season 5 had the highest accuracy for EONR (MAE 
˜ 29 kg N ha−1, Table 2). The reduced model performed the best for EONR 
and Yield_N0 for the dry Season 2 (MAE 49 kg N ha−1) and EONR predic-
tion error was the same as the full model in the wet Season 1(Table 2). Pre-
liminary testing of the EONR models using Season 6 resulted on an aver-
age MAE of 52 kg N ha−1. The most accurate EONR predictions were found 
in landscape position with topsoil sand content<65% and SOM > 2.5% (ab-
solute difference between observed and predicted values was on average 
17 kg N ha−1). The least accurate EONR predictions were for a sandy hill site 
with OM < 2%. Regarding YEONR prediction, the MAE ranged from 1 to 1.9 
Mg ha−1 in most cases (Figure S7). 

Fig. 5. Relative importance of the static and dynamic variables included in the re-
duced models. Left panels shows variable included in the EONR model, middle in 
the YEONR model, and right in the Yield_N0 model.  
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4. Discussion 

4.1. The economic optimum N rate in Argentina 

Findings from this 51 N trial study suggest that there is potential for yield 
increases in Argentina by improving N management. In 70% of our N tri-
als, the EONR was higher than the regional average N application rate cur-
rently used in Argentina (Bolsa de Cereales, 2018) and the average YEONR 
was 4 Mg ha−1 higher than the regional average corn yield (Andrade and 
Satorre, 2015; Fig. 2). However, increasing N fertilization rate adds a signif-
icant economic risk that most producers in this region were not willing to 
accept because of the year-to-year variability in EONR (Puntel et al., 2017). 
Here we not only quantified the variability in EONR (Fig. 2)—a critical infor-
mation that was previously missing for this region—but more importantly, 
we developed predictive models that account for weather and soil variabil-
ity to aid producer’s N decision-making. 

4.2. Implications of the developed models 

The developed models are field specific and fill the gap between very sim-
ple EONR prediction tools (one input) and more complex N tools such as 
simulations models that require several input parameters (Basso and Liu, 
2018). In a recent review by Morris et al. (2018) on N recommendation tools, 
it was noticeable that all current approaches used are either too simple or 
too complex. Our models integrate key static and dynamic variables, reflect-
ing existing knowledge on factors affecting EONR (e.g. precipitation distri-
bution), and has tremendous potential in view of increasing data availability 
in agriculture. While complex simulation models have already proven to be 
well-suited to support N decisions in specific fields (Basso et al., 2011) their 
utilization is still low because of challenges related to site-specific model 
calibration, large number of input requirements, and social difficulties in de-
livering model-based results to stakeholders (Salo et al., 2016; Banger et al., 
2017; He et al., 2017). Our tool uses fewer inputs than a simulation model 
and is easier to deploy across a broad geographic area. Compared to sim-
ple N recommendation tools such as the yield goal approach, soil nitrate-N 
test, or use of the long-term average EONR, our model accounts for spatial 
and temporal variability and thus is well suited for application in precision 
agriculture. 

This study expands earlier efforts to predict corn’s EONR using more than 
one explanatory variable in Argentina (Gregoret et al., 2011; Coyos et al., 
2018) and in the USA (Qin et al., 2018). Gregoret et al. (2011) considered to-
tal soil N and available water, Coyos et al. (2018) soil N, planting time, and 
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soil type, while Qin et al. (2018) considered soil water holding capacity and 
minimum groundwater table depth. Our model has six explanatory variables 
for EONR, which resulted from statistical analysis of their importance (Fig. 
4). In agreement with Gregoret et al. (2006), precipitation was one of the 
most important variables in our model. Importantly, our analysis revealed 
other important factors such as soil depth or residue amount (Table 3) have 
been ignored in previous N tools. Thus, beyond predictability of EONR, this 
study also offers guidance on future research investment and data collec-
tion from N trials. 

Compared to complex simulation models (Liu et al., 2013; Puntel et al., 
2016; Sela et al., 2017; Yang et al., 2014), the prediction error of the full EONR 
model is similar (MAE ˜ 30–40 kg N ha−1). The reduced EONR model that was 
designed for N forecasting at planting time, had 16% less predictive accu-
racy than the full model but this was expected given the fewer inputs are 
utilized. Preliminary testing showed that both full and reduced models gave 
reasonable results (Figure S7), but further testing is needed across multi-
ple environments to increase confidence. Here we developed the concept 
and provided a list of important parameters to be measured in future trials. 
As new data becomes available the proposed models could be further im-
proved and expanded. The developed models/framework have future po-
tential as they can provide farmers with flexibility to adjust their N rates for 
their specific fields given local weather conditions, soil properties, and man-
agement that differ from field to field. 

In the future, some labor-intensive input parameters that are currently 
part of our models could be further simplified (Table 2). For example, the 
amount of residue (kg/ha) can be replaced by categorical classes such as 
very low, low, normal, high and very high amounts. We tested this con-
cept (data not shown) and we found that the EONR prediction accuracy re-
mained at similar levels compared to models listed in Table 2. Similarly, the 
initial soil moisture at planting could be replaced by classes. This approach 
may enhance deployment of the models across environments but more 
work is needed to develop and test it. Lastly, other variables such as plant 
density (Carlone and Russell, 1987) or genotype (Gambin et al., 2016) that 
are known to influence EONR could be incorporated into the models. Grain 
and fertilizer prices could also be added towards developing a more flexi-
ble N decision tool. 

During model development we faced several challenges that should be 
considered in future studies. We found that the relative importance of static 
variables selected for inclusion in the models changed based on which dy-
namic variables were considered. This is evident by the fact that different 
variables were found to be important and thus included in the full and re-
duced models. For example, when we removed data on soil texture and 
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precipitation distribution, we found that ECa and terrain parameters became 
more important in the models (data not shown). Lastly, some of the factors 
accounted for in our models could influence yield in a non-linear manner, 
while in our models we considered the relationships to be linear. 

4.3. Analysis of factors affecting the EONR and yields 

Our study provides for the first time a comparative analysis of static and dy-
namic factors influencing EONR, YEONR and Yield_N0 that was missing from 
the literature. From a list of 54 factors, statistical analysis identified 14 to be 
the most important variables for EONR, YEONR and Yield_N0 predictions 
in this region (Figs. 4 and 5). It is interesting to note that yield of the previ-
ous crop, currently used to develop management zones and N recommen-
dations (Kersebaum et al., 2002), was not an important factor. In contrast, 
we found residue amount to explain significant portions of the YEONR and 
EONR variability (Figs. 4 and 5). Therefore future research should focus more 
on determining residue amount and decomposition dynamics rather than on 
precisely estimating past crop yields to inform future N recommendations. 

Our results suggest that variable N rate recommendations based on pre-
vious yields and static variables such as texture and SOM could fail when 
weather conditions are wet or extremely wet, which agrees with other stud-
ies such as Cerrato and Blackmer, 1991) and Vanotti and Bundy, 1994a,b. 
For example, the yield response to N was almost double in wet compared 
to dry seasons (Fig. 3), this is in agreement with previous studies (Kyveryga 
et al., 2009). The yield response to N was 3-fold higher in fine than coarse 
textured soils in dry and normal seasons, similar to Shahandeh et al. (2011). 
These examples strengthen the need for having a N recommendation tool 
that combines temporal and spatial variability. 

In this study, seasons 4 and 5 had high yields (˜12 Mg ha−1) with relatively 
low EONR (˜70 kg N ha−1; Fig. 3) and thus it is important to understand the 
cause. Analysis of different factors indicated that the reason was the distri-
bution of precipitation within these two seasons: high frequency of small rain 
events and low frequency of extreme rain events (> 20 mm) where N losses 
are likely to occur (Davis et al., 2000; Rimski-Korsakov et al., 2004). The high 
frequency of small rain events in Season 4 and 5 resulted in higher Yield_
N0, and reduced the yield response to N, therefore, decreasing the EONR 
(Fig. 3; Sogbedji et al., 2001). 

Among different ways of analyzing precipitation data, we found that 
the number of days with precipitation greater than 20mm from planting 
to silking, and from planting to harvest to be very good predictors of the 
EONR and Yield_N0 variability in the full model (Fig. 4). Although there is 
a similarity between these two variables (same variable name but different 
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time-periods), our statistical analysis revealed no significant auto-correlation. 
In the reduced model, precipitation events prior to planting, and soil mois-
ture relative to field capacity at planting, were the most important variables. 

Water table depth was a significant factor in the reduced Yield_N0 model 
(Fig. 5) but not in the other models. Presumably this is because of its re-
lation to precipitation and landscape position (Gleeson et al., 2011). With 
the difficulty in measuring water tables, use of elevation position may be a 
good alternative because of the correlation between these variables (Fig. 4; 
Nosetto et al., 2009). Interestingly, relative elevation (Table 1) was one of the 
most important explanatory variables in both YEONR and Yield_N0 mod-
els. Other static factors such as SCA, pcurv, and slope are relevant in regres-
sion models, mainly because of their control on water availability (Van Itter-
sum et al., 2002), N dynamics, and thus yield (Kaspar et al., 2004; Kravchenko 
and Bullock, 2000). 

Neither soil nitrate-N at planting nor the YEONR were good single pre-
dictors of the EONR (Fig. 3 to 6), this is in line with literature from rain-
fed regions (Lory and Scharf, 2003; Sawyer et al., 2006; Vanotti and Bundy, 
1994a,b). In contrast, when soil nitrate information was combined with other 
static and dynamic factors, it proved to be a very important factor in the 
full Yield_N0 model and in the reduced EONR model (Figs. 4 and 5). This 
further justifies our previous statement for the need to combined different 
approaches/data inputs towards improving predictability of EONR (Kay et 
al., 2006f). 

Finally, we found a significant relationship between the difference of 
YEONR and Yield_N0 and the EONR (RAdj

2 = 0.92; Fig. 3). This relationship is 
interesting because it offers an alternative way to estimate EONR using in-
formation on optimum and minimum yield. In a previous study (Puntel et 
al., 2016, 2018), we found that the APSIM crop model predicted optimum 
and minimum yields more accurately than EONR. This relationship may help 
in the way we currently calculate EONR via crop models. Furthermore, use 
of this relationship will decrease the number of crop model simulations re-
quired to calculate the EONR (from 5 to 30 simulations to only two; Pun-
tel et al., 2016). 

5. Conclusions 

Our approach provides a new avenue to integrating and analyzing various 
datasets towards development of data-driven recommendations to grow-
ers. These multifaceted datatypes are likely to become readily available in 
the near future through advances in technology. The new N models devel-
oped and presented in this study fill the gap between simple and complex 
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N tools. The prediction accuracy was satisfactory but further testing across 
environments is needed to increase confidence. Beyond predictability, this 
study also offers guidance on which variables to be measured in future N 
trials based on their importance.      
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Figure S1. Elevation, apparent electrical conductivity at 90 cm depth (ECa), plan curvature, and slope 

maps. Purple flags show an example of the location of some trials.  

 

 

 

 

 



 

Figure S2. Pearson’s correlation matrices for static and dynamic variables (top panel) and clustering 

analysis for the combination of static and dynamic variables. 

 

 



  

Figure S3. Daily precipitation in Central West Buenos Aires, Argentina (top panel) and cumulative precipitation 

for selected periods (bottom panel). Symbols used in the top panel, P, S, and H indicate planting, silking, and 

harvest time, respectively. In the bottom panel, numbers above the columns indicate number of precipitation 

events 

 

 



Figure S4. Correlation matrix between percent sand and soil organic matter at 20 cm (Sand_20 and OM_20), 

apparent electrical conductivity at 90 cm depth (ECa_90), and topographical derived parameters. Specific catchment 

area (SCA, pixel); percent of slope; relative elevation (Rel_elev, meters); plan curvature (degrees). Density plots of 

the variables are shown in the diagonal. 



Figure S5.  Correlation matrix between  the economic optimum nitrogen rate (EONR), yield at EONR (YEONR), yield 

at nitrogen zero (Yield_N0), difference between YEONR and Yield_N0 (CropResponse), percent sand and soil organic 

matter at 20 cm (Sand_20 and OM_20), soil nitrate (N_0_60, kg N ha-1), and apparent electrical conductivity at 90 cm 

depth (ECa_90). Density plots of the variables are shown in the diagonal. 



 

Figure S6. Sensitivity analysis of nitrogen price/grain price ratio on the economic optimum nitrogen rate 

(EONR). The value (ratio) of 10 was used in this study. 

 

 

 

Figure S7. Predicted versus observed economic optimum N rate (EONR), yield at EONR (YEONR), and 

yield at non fertilizer (Yield_N0) for the validation data set using full model (circles) and reduced model 

(triangles). Diagonal dashed line shows 1:1 relationship. MAE is the mean absolute error. 

 

 

 

 

 

 



 

 

 

Table S1. Coefficient of determination (R2) for the fitting of 51 yield response to nitrogen trials. 

Trial ID R2 Model 

1 0.61 Quadratic-plateu 

2 0.67 Quadratic-plateu 

3 0.87 Quadratic-plateu 

4 0.86 Quadratic-plateu 

5 0.91 Quadratic-plateu 

6 0.87 Quadratic-plateu 

7 0.90 Quadratic-plateu 

8 0.85 Quadratic-plateu 

9 0.91 Quadratic-plateu 

10 0.78 Quadratic-plateu 

11 0.60 Quadratic-plateu 

12 0.87 Quadratic-plateu 

13 0.61 Quadratic-plateu 

14 NA NA 

15 NA NA 

16 0.86 Quadratic-plateu 

17 0.55 Quadratic-plateu 

18 0.70 Quadratic-plateu 

19 NA NA 

20 0.78 Quadratic-plateu 

21 NA NA 

22 0.61 Quadratic-plateu 

23 0.44 Quadratic-plateu 

24 0.50 Quadratic-plateu 

25 0.69 Quadratic 

26 0.76 Quadratic-plateu 

27 0.83 Quadratic-plateu 

28 0.73 Quadratic-plateu 

29 NA NA 

30 NA NA 

31 0.48 Quadratic-plateu 

32 0.50 Quadratic-plateu 

33 0.94 Quadratic-plateu 

34 0.52 Quadratic-plateu 

35 0.83 Quadratic-plateu 

36 0.65 Quadratic 

37 NA NA 

38 0.85 Quadratic-plateu 

39 0.75 Quadratic-plateu 

40 0.69 Quadratic-plateu 

41 0.55 Quadratic-plateu 

42 0.85 Quadratic-plateu 

43 0.89 Quadratic-plateu 

44 0.65 Quadratic-plateu 



45 0.69 Quadratic-plateu 

46 0.93 Quadratic-plateu 

47 NA NA 

48 NA NA 

49 0.87 Quadratic-plateu 

50 0.78 Quadratic-plateu 

51 NA NA 

* In case of non-responsive trials R2 is N/A. 
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