
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Agronomy & Horticulture -- Faculty Publications Agronomy and Horticulture Department 

2019 

Applicability of the dual isotopes δ15N and δ18O to identify Applicability of the dual isotopes 15N and 18O to identify 

nitrate in groundwater beneath irrigated cropland nitrate in groundwater beneath irrigated cropland 

R. F. Spalding 
University of Nebraska-Lincoln, rspalding1@unl.edu 

A. J. Hirsh 
Kirkham Medical, ahirsh@kirkham.com 

M. E. Exner 
University of Nebraska-Lincoln, mspalding1@unl.edu 

N. A. Little 
Tri-Basin Natural Resources District, nlittle@tribasinnrd.org 

K. L. Kloppenborg 
Upper Elkhorn Natural Resources District, kloppenborg@uenrd.org 

Follow this and additional works at: https://digitalcommons.unl.edu/agronomyfacpub 

 Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences 

Commons, Botany Commons, Horticulture Commons, Other Plant Sciences Commons, and the Plant 

Biology Commons 

Spalding, R. F.; Hirsh, A. J.; Exner, M. E.; Little, N. A.; and Kloppenborg, K. L., "Applicability of the dual 
isotopes δ15N and δ18O to identify nitrate in groundwater beneath irrigated cropland" (2019). Agronomy 
& Horticulture -- Faculty Publications. 1266. 
https://digitalcommons.unl.edu/agronomyfacpub/1266 

This Article is brought to you for free and open access by the Agronomy and Horticulture Department at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -- 
Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/agronomyfacpub
https://digitalcommons.unl.edu/ag_agron
https://digitalcommons.unl.edu/agronomyfacpub?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1266&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1063?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1266&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1266&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/103?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1266&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/103?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1266&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/104?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1266&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/105?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1266&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/109?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1266&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1266&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1266&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/agronomyfacpub/1266?utm_source=digitalcommons.unl.edu%2Fagronomyfacpub%2F1266&utm_medium=PDF&utm_campaign=PDFCoverPages






increased production over shorter distances; thus, wells depths in the
TBNRD focus area are considerably shallower than in the UENRD.

2.2. Irrigation well characteristics and sampling

High-capacity irrigation wells usually tap several transmissive
zones. Vertically integrated samples from these wells can be excellent
indicators of nitrate levels in nonpoint-source contaminated areas
(Zlotnik et al., 1995). High nitrate concentrations were shown to occur
at all depths in the hundreds of irrigation wells in the UENRD focus area
(Exner et al., 2014). Densely-spaced, high-capacity wells likely increase
vertical mixing of groundwater (Spalding et al., 2001). Nitrate con-
centrations in the 39 sampled irrigation wells were not significantly

correlated to well depth (ρ < 0.01). While many studies have reported
higher nitrate concentrations in shallow wells, in this study the closely
spaced wells, their large drawdowns and multiple screened depths ap-
pear to pull the nitrate downward and homogenize the contamination
with depth. All 39 irrigation wells were pumping at least one hour
before samples were collected by UENRD and TBNRD personnel
midway during the 2013 and 2016 irrigation seasons. Samples for all
parameters were collected in 250-ml acid-washed, polyethylene screw-
top bottles; immediately placed on ice in coolers until they could be
frozen; and later transported on dry ice by University of Nebraska
personnel to Lincoln where they were remained frozen until prepara-
tion for analysis. NRD personnel documented their observations in-
cluding manure use and unusual field conditions. Irrigation well data

Fig. 1. Dual isotope sampling locations in the Upper Elkhorn and Tri-Basin Natural Resources Districts focus areas in Nebraska.
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including location, pumping rate, total depth (Tables 1, 2) were ob-
tained from the Nebraska Department of Natural Resources.

2.3. Analytical methods

Samples for nitrate, δ15NNO3, δ18ONO3 and δ18OH2O measurements

were shipped overnight on dry ice to the University of Waterloo's
Environmental Isotope Laboratory (EI-lab). Nitrate was measured by
ion chromatography with a detection limit of 0.2 mg N/L. The 2013
samples were prepared for δ15NNO3 and δ18ONO3 isotopic analysis by
precipitating NO3 as AgNO3 (Silva et al., 2000). δ15NNO3 values were
measured using an elemental analyzer-isotope ratio mass spectrometer

Table 1
Well attributes, N fertilizer rates, water chemistry and isotopic results for the Upper Elkhorn Natural Resources Districts focus area.

Irrigation
Well ID

Irr. Type Irr. Area Well
Depth

Depth to
Water

Pumping Rate Avg. total N
applied

Avg. UAN-N
applied

Cl− NO3-N δ15NNO3 δ18ONO3 δ18OH2O Calc.
δ18ONO3

§§

(ha) (m) (m) (m3/h) (kg/ha/yr) (kg/ha/yr)§ (mg/L) (mg N/L) (‰) (‰) (‰) (‰)

2013 2009–13 2013
190116 CP 40 43 2 284 101 n.a. < 20 7 4.8 2.4 n.m.
35236 CP 63 44 12 227 224⁎ 40 <20 23 2.4 0.9 n.m.
43348 CP 53 50 15 284 227 49 <20 27 1.4 1.7 n.m.
63420 CP 55 59 20 227 177 n.a. < 20 22 1.7 3.7 n.m.
77916 CP 55 96 36 204 180 66(4) < 20 30 2.2 2.5 n.m.
73220 CP 54 89 29 193 224⁎ n.a. < 20 21 3.4 3.1 n.m.
45204 CP 55 31 12 204 208⁎ 225 <20 24 2.2 2.7 n.m.
170957 CP 63 33 13 272 208⁎ 470(4) 20 22 3.5 2.4 n.m.
33101 CP 65 31 14 227 232 316(2) < 20 18 3.5 1.8 n.m.

2011–15 2016
70674 CP 73 97 32 182 224⁎ 132 3.0 11 4.2 3.1 −9.7 2.6
46883 CP 88 80 29 227 224⁎ 130 7.4 28 1.9 2.0 −9.3 3.4
70746 CP 41 123 33 141 224⁎ 48 7.7 28 2.8 1.6 −9.6 2.8
47880 CP 53 65 36 193 224⁎ 119 5.2 22 2.0 2.7 −9.8 2.4
170994 CP 53 68 51 193 224⁎ 102(4) 10 26 2.1 7.8 −9.5 3.0
148661 CP 55 85 32 216 224⁎ 90 2.6 11 3.7 2.5 −9.6 2.8
57657 CP 71 53 7 204 224⁎ 0 7.9 8.9 3.2 2.0 −9.6 2.8
81074 CP 58 88 8 238 224⁎ 102(2) 6.7 18 4.6 2.8 −9.4 3.2
83495 CP 52 91 10 204 224⁎ 81(4) 6.3 19 1.5 1.8 −9.0 4.0

§ 5-yr average unless rate calculated from shorter record as indicated by number of years in parentheses.
§§ Calculated from nitrification using δ18OH2O value and δ18Oatm value of +22‰.
⁎ Estimate based on fertilization rate of ~1 lb. N/bu./ac and average 2009–2015 irrigated corn yields of 186 and 200 bu./ac (11.7 and 12.5Mg/ha, respectively)

for Holt and Antelope counties, respectively, (USDA-NASS database) for average fertilization rates of 208 and 224 kg N/ha, respectively; CP: center pivot; n.a.: not
available; n.m.: not measured.

Table 2
Well attributes, N fertilizer rates, water chemistry and isotopic results for the Tri-Basin Natural Resources Districts focus area.

Irrigation
Well ID

Irr. Type Irr. Area Well
Depth

Depth to
Water

Pumping Rate Avg. total N
applied

Avg. UAN-N
applied

Cl− NO3-N δ15NNO3 δ18ONO3 δ18OH2O Calc.
δ18ONO3

§§

(ha) (m) (m) (m3/h) (kg/ha/yr)§ (kg/ha/yr)§ (mg/L) (mg N/L) (‰) (‰) (‰) (‰)

2009–13 2009–13 2013
16168 furrow 33 23 2 272 268(4) n.r. < 20 18 4.8 3.0 n.m
100748 CP 57 20 2 204 184(3) n.a. < 20 17 3.7 3.0 n.m
1180 furrow 32 24 2 363 214(4) n.r. < 20 11 3.8 2.4 n.m
24165 CP 61 16 2 238 168(3) n.a. 21 37 6.9 1.7 n.m
95264 CP 53 17 5 204 196(2) 227(2) 30 18 5.4 1.9 n.m
51756 CP 53 16 2 227 151 87 28 53 1.8 2.0 n.m
21436 CP 65 36 3 182 231 110 28 30 5.9 3.4 n.m
69144 CP 53 18 3 204 195(4) 154(3) 26 44 0.7 2.3 n.m

2011–15 2011–15 2016
45342 CP 65 28 4 227 302(3) 112(1) 15 28 2.8 2.8 −8.3 5.4
58389 CP 65 33 6 238 254 146(3) 6.2 12 −0.2 2.9 −8.7 4.6
78175 CP 55 29 8 227 239 157(3) 12 17 4.6 2.4 −8.7 4.6
67587 CP 41 23 2 227 237(4) 187(3) 20 7.6 2.1 −1.2 −8.3 5.4
56150 CP 65 32 2 250 131 102(4) 8.6 6.5 3.4 3.1 −9.1 3.8
51869 CP 55 24 2 227 273 206(3) 12 18 2.4 3.4 −8.5 5.0
77529 CP 53 36 3 250 244 128(2) 14 22 2.3 2.3 −8.6 4.8
220269 CP 41 20 2 170 156(4) 156(4) 27 17 7.8 6.8 −8.8 4.4
196895 CP 72 17 2 272 215(3) 236(3) 16 20 2.2 2.8 −8.3 5.4
111984 CP 55 16 2 227 227(4) 210(3) 20 9.3 −0.3 −1.4 −7.9 6.2
39676 CP 55 16 2 227 214(4) 210(2) 23 11 0.8 −0.3 −7.9 6.2
75905 CP 55 27 7 227 152 98(3) 7.7 10 3.3 4.4 −9.3 3.4
77532 CP 53 23 5 227 226(3) 189(3) 9.4 9.5 3.1 2.5 −8.7 4.6

§ 5-yr average unless rate calculated from shorter record as indicated by number of years in parentheses.
§§ Calculated from nitrification using δ18OH2O value and δ18Oatm value of +22‰; CP: center pivot; n.a.: not available; n.m.: not measured; n.r.: not reported as not

a reporting requirement for furrow-irrigated fields.

R.F. Spalding et al. Journal of Contaminant Hydrology 220 (2019) 128–135

131



(EA-IRMS) (Silva et al., 2000) and δ18ONO3 values determined by ele-
mental analysis-pyrolysis (Mengis et al., 2001). The δ15NNO3 and
δ18ONO3 values in the 2016 samples were determined by chemical de-
nitrification to N2O, pre-concentration, and analysis on a GV isoprime
mass spectrometer (Ryabenko et al., 2009). The EI-lab instituted the
change in methods as the denitrification method is cheaper and faster
and utilizes less sample than the nitrate precipitation method. With
both methods δ15N and δ18O isotopic precision was±0.5‰. δ18OH2O

was measured by isotope ratio laser spectrometry (Kerstel et al., 1999).
Isotopic precision was± 1‰. The stable isotopic N and O composi-
tions, relative to atmospheric nitrogen and V-SMOW, respectively, are
represented by δ15N and δ18O, respectively, and defined as [(Rsample/
Rstandard)− 1]× 1000 where R is the ratio of the two stable isotopes
(15N/14N or 18O/16O).

Concentrations of chloride, which can cause interference in the
Silva et al. (2000) method, were screened in the 2013 samples using
Chemetrics Titrets® titration cell mercuric nitrate method with a range
of 20 to 200mg Cl/L before shipment to the EI-lab. Concentrations in
the 2016 samples were measured at the EI-lab by ion chromatography.
The detection limit was 0.2 mg/L.

2.4. Fertilizer use

Natural resources district (NRD) personnel reported fertilizer use for
each field. Recent UAN application rate data (Tables 1, 2) were ob-
tained from the annual chemigation permit issued by the local NRD and
required for each pivot-irrigation system applying chemicals. For dec-
ades most producers liberally applied UAN to their irrigated corn fields.
UAN also is applied as a side dress and/or broadcast by many produ-
cers; therefore, the reported amount of UAN is a minimum. The average
annual N fertilizer application rate for the field associated with the
sampled irrigation well in the TBNRD focus area and for some wells in
the UENRD focus area was obtained from reports the producer must file
annually for each irrigated cornfield. For fields in the UENRD focus area
that do not have a reporting requirement, an approximate N fertilizer
application rate was calculated using the county average irrigated corn
yield and the commonly accepted rule of thumb that corn (grain plus
residual) removes 1 to 1.2 lbs. N/bu./acre of irrigated corn (Maddux
and Halverson, 2008). The estimated rate likely falls short of the actual
application rates. The equivalent of 280 to 314 kg N/ha are re-
commended for yields of 14 to 15Mg/ha on the low organic matter
sandy soils (Shapiro et al., 2009).

3. Results

The DIM sample results are plotted with the δ15NNO3 and δ18ONO3

envelopes for potential N sources that could impact groundwater within
the focus areas (Figs. 2, 3). The δ15NNO3 values of nitrified ammonium
fertilizer leachates in groundwater typically range from −4 to +4‰
(Kendall and Aravena, 2000). The envelope overlaps the natural soil-N
envelope from +3 to +8‰ (Amberger and Schmidt, 1987). The −10
to +10‰ δ18ONO3 boundary for both potential N sources was de-
termined by Kendall and Aravena (2000) by substituting the lower and
upper ranges of soil water and atmospheric δ18O values in the formula
δ18ONO3=⅔ δ18OH2O+⅓ δ18Oatm for nitrification of ammonium in
soils (Amberger and Schmidt, 1987). All δ18ONO3 values (Figs. 2, 3) are
clearly within the −10 to +10‰ boundaries for nitrification of am-
monia. Shallow groundwater δ18OH2O values should typically reflect
the mean-weighted precipitation value (Clark and Fritz, 1997) and are
used to approximate the δ18ONO3 formed by soil nitrifiers (Aravena
et al., 1993). Average δ18OH2O values of −9.5‰ and− 8.5‰ in the
groundwater of the UENRD and the TBNRD focus areas (Tables 1, 2),
respectively, are in the middle of the range for mean-weighted pre-
cipitation values reported by Harvey and Welker (2000) for north-
central and south-central Nebraska, respectively. Using our average
measured δ18OH2O and δ18ONO3 values in the Amberger and Schmidt

(1987) formula, average δ18Oatm values in the UENRD and TBNRD
focus areas ranged from +19 to +21‰ and are within the +18 to
+22‰ range reported by Amberger and Schmidt (1987). The δ15NNO3

and δ18ONO3 nitrate fertilizer envelope boundaries are −3 to +7‰
(Spalding et al., 1982) and +18 to +22‰ (Amberger and Schmidt,
1987), respectively.

δ15NNO3 values > +10‰ in groundwater are indicators of animal
waste sources (Heaton, 1986; Clark and Fritz, 1997; Mengis et al., 2001;
Böhlke et al., 2002; Stanton and Fahlquist, 2006). The +25‰ upper
boundary encompasses the +10 to +20‰ range for animal manure
first reported by Kreitler and Jones (1975) and most confined animal
feeding operation (CAFO) lagoon liquid manure. The δ15NNH4 in 13
Nebraska CAFO lagoons ranged from +2 to +59‰ with only 10% of
the values<+10‰ during five sampling events in the same year while
the average annual values ranged from +13.7 to +21.8‰ (Mariappan
et al., 2009). Liquid hog manure in the San Pedro and Pichidegua
agricultural areas of central Chile ranged from +4.1 to +22.2‰

Fig. 2. DIM results for the Upper Elkhorn Natural Resources District focus area.
Red symbols identify a sample with an enriched δ18ONO3 value and a sample
from a well in a field where manure was observed. Both samples are discussed
in the text.

Fig. 3. DIM results for the Tri-Basin Natural Resources District focus area. Red
symbols identify wells in fields with observed cattle manure. Both samples are
discussed in the text.
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(Fernández et al., 2017). In rural Shijiazhaung, China, heavy δ15NNO3

values confirmed that irrigating with wastewater contaminated
groundwater as deep as 100m (Chen et al., 2006). δ15NNO3 values
from>+7 to ~+16‰ suggested that human and animal wastes were
major sources of groundwater nitrate contamination in the Jericho area
of the Westbank, Palestine (Khayat et al., 2006). Ammonia volatiliza-
tion is the main mechanism that enriches the light values found in fresh
cattle urine (+1.7‰) and manure (+4.8‰) and pig urine (+2.9‰)
and manure (+4.0‰) (Gormly and Spalding, 1979) to va-
lues≥+10‰ in manure and manure slurries. δ15N values > +13‰
for total reduced N in the compacted manure of feedlots indicate vo-
latilization commences soon after manure deposition (Gormly and
Spalding, 1979).

Nitrate-N concentrations in the 18 deep irrigation wells sampled in
the UENRD focus area ranged from 7.0 to 30mgN/L and averaged
20mgN/L (Table 1). The δ15NNO3 values ranged from +1.4 to +4.8‰
and averaged +2.8‰. The δ18ONO3 values ranged from +0.9 to
+7.8‰ and averaged +2.6‰. Except for one δ18ONO3 value in the
NH4 fertilizer envelope, DIM values were in a very narrow range
(Fig. 2). Fifteen DIM values were within the nitrified NH4 fertilizer
source envelope. Five of the eight values populating the soil N envelope
were in the overlap of the two envelopes. All δ18ONO3 values were
considerably lighter than the lower δ18ONO3 boundary (+18‰) for
nitrate fertilizer. None of the DIM values populated the nitrate fertilizer
or animal waste envelopes. Chloride concentrations in the 2016 sam-
ples averaged 6.3mg/L with a range from 2.6 to 10mg/L.

Nitrate-N concentrations in the 21 irrigation wells in the TBNRD
focus area also averaged 20mgN/L but had a wider concentration
range from 6.5 to 53mg N/L (Table 2). The δ15NNO3 values ranged from
−0.3 to +7.8‰ and averaged +3.2‰ while the δ18ONO3 values
ranged from −1.4 to +6.8‰ and averaged +2.4‰. As in the UENRD
focus area, 15 DIM values populated the NH4 fertilizer source envelope
(Fig. 3). Five of the 11 values in the soil N envelope were in the overlap
of the two source envelopes. δ18ONO3 values < +4.0‰ in 19 of 21
irrigation wells suggest that most of the contamination stems from the
nitrification of ammonium from fertilizer and SOM. As in the UENRD
focus area, none of the DIM values populated the nitrate fertilizer or
animal waste envelopes. Chloride concentrations in the 2016 ground-
water samples averaged 15mg/L with a range from 6.2 to 27mg/L.

4. Discussion

Nitrate is the most mobile form of N fertilizer and easily moves
downward through the soil profile with infiltrating water. Its mobility is
markedly faster than that of ammonium or urea, which must undergo
microbiological conversion to nitrate. If significantly more nitrate than
ammonium fertilizer preferentially leached through the highly vulner-
able soils of the focus areas, the δ18ONO3 values would predictably
be>+8‰ and potentially approach the nitrate fertilizer envelope.
The results (Figs. 2, 3) clearly show that preferential leaching of nitrate
fertilizer to groundwater did not occur. Enriched δ18ONO3 values were
absent in the groundwater beneath the thin, coarse-textured un-
saturated zone of the TBNRD and the much thicker, more hetero-
geneous, finer-textured unsaturated zone of the UENRD suggesting that
fertilizer nitrate is not leached past the crop-rooting zone. The absence
of identifiable nitrate fertilizer in groundwater beneath nitrate-ferti-
lized crops supports the early findings of Aravena et al. (1993).

Only one well (170994 in Table 1) in the UENRD had identifiable
UAN-nitrate (Fig. 2). The heavier +7.8‰ δ18ONO3 value together with
the relatively light +2.1‰ δ15NNO3 value may reflect direct UAN
transport either by backflow or by downward movement, possibly from
a leaking storage tank, along the unsealed well casing. If UAN directly
entered the groundwater, ~25% would be nitrate-N and 75% nitrified
ammonium-N and urea-N and the δ18ONO3 fraction would be ~+8‰ if
all the ammonium and urea were converted to nitrate in the ground-
water and UAN was the only N fertilizer applied.

Further source analysis in the investigated areas is dependent upon
the presence of denitrification, which was not expected in the highly
oxygenated groundwater and sprinkler irrigation return flows.
Enrichment of both isotopes during denitrification is reflected in a
positive δ18ONO3: δ15NNO3 slope. An enrichment slope of 0.5 has been
confirmed both by theoretical-based computations (Chen and
MacQuarrie, 2005; Seiler, 2005) and field studies (Böttcher et al., 1990;
Aravena and Robertson, 1998; Mengis et al., 1999; Devito et al., 2000;
Fukada et al., 2004; Seiler, 2005; Singleton et al., 2007). The slightly
negative slope (−0.18, ρ < 0.01) for the DIM values in the UENRD
focus area (Fig. 2) clearly is not characteristic of DI enrichment during
denitrification. Thus, fractionation via denitrification appears very
limited to non-existent in the thick, heterotrophic unsaturated zone
beneath much of the UENRD focus area, and the DIM values should be
reliable indicators of N sources.

Fractionation via denitrification would be even less likely in the
sandy soils, relatively thin unsaturated zone and highly oxygenated
groundwater that characterize the TBNRD focus area. In a DIM in-
vestigation at Hastings, Nebraska ~40 km southeast of the TBNRD
focus area, denitrification was not evident in oxygenated groundwater
samples beneath thick, fine-textured, irrigated soils (Spalding et al.,
2018). The slope (m=0.45) for the DI enrichment in the 21 TBNRD
focus area samples (Fig. 3) suggests denitrification. The data (Fig. 4,
ρ < 0.01), however, do not show the decrease in nitrate concentration
that occurs as the δ15NNO3 enrichment proceeds during denitrification.
The conflicting interpretations likely reflect statistical bias introduced
in the DI vector from the single enriched sample that is an outlier in
both location and surface hydrology. The slope (m=0.29) of the DI
vector without the outlier (well 220269, Table 2) DI values does not
support denitrification; thus, the TBNRD focus area isotopic results do
not appear compromised by fractionation via denitrification.

Denitrification, known to occur in riparian groundwater im-
mediately adjacent to streams and rivers (Cey et al., 1999; Devito et al.,
2000) and in areas contaminated by labile organic matter usually from
sewage and animal wastes (Spalding et al., 1993; Aravena and
Robertson, 1998), is a possible source of enrichment in well 220269
(Table 2). The well is by far the closest (< 0.4 km) of the 21 wells to the
Platte River (Fig. 1) and it is adjacent to a drainage ditch filled with
standing water throughout the growing season. Manure from cattle
wintered on corn stubble and the well's elevated chloride concentration
(27mg/L) suggest the infiltration of animal waste (Ritter and
Churnside, 1990; Karr et al., 2001; Showers et al., 2008). The DIM
values (δ15NNO3=+7.8‰; δ18ONO3=+6.8‰) could be enriched by

Fig. 4. δ15NNO3 values versus nitrate-N concentrations in groundwater samples
in the TBNRD focus area.
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several factors or a combination of them. They include capture of Platte
River riparian zone groundwater during pumping; infiltration of par-
tially denitrified ditch water; infiltration of manure-nitrate; and in-
filtration of enriched δ18OH2O from evaporate in the ditch.

Although soil nitrogen is depicted as a major source of groundwater
nitrate in the biplots of both focus areas (Figs. 2, 3), mineralized soil
contributions in these areas are considerably less than those from N
fertilizer. Most of the labile natural soil-N from these sandy soils (< 1%
SOM) probably was released a few years after the virgin sod was
broken. Higher organic matter fine-textured soils (silt loams) in central
Nebraska north of the Platte River released most of their labile soil N
from SOM within the first years of cultivation (Reinhorn and
Avnimelech, 1974; Gormly and Spalding, 1979). N fertilization of these
soils has increased the aqueous extractable nitrate three-fold and after
60 years of irrigation and cultivation, mineralization of SOM from these
silt loams was determined an insignificant source of nitrate in
groundwater (Gormly and Spalding, 1979). With considerably less
natural SOM and half a century of irrigated corn production in the focus
areas, mineralization of SOM residue during the growing season
equates to ~22 kg N/% SOM/ha (Maddux and Halverson, 2008) and is
much less than the ~225 kg N/ha/yr applied as fertilizer. In a DIM
investigation at Hastings, several DI results were in the soil-N envelope.
The flat linear increase in δ15NNO3 values into the animal waste en-
velope together with the N-fertilizer signatures in very shallow bore-
hole groundwater beneath irrigated cropland suggested that soil-de-
rived nitrate leachates did not significantly impact the groundwater
(Spalding et al., 2018). The much thinner (< 2m versus 20m), coarser
and lower organic matter irrigated soils in the TBNRD and UENRD
focus areas are not likely contributors of soil-derived N.

Since natural soil N is not a significant N source and denitrification
is not blurring the isotopic identity of the sources, the heavier δ15NNO3

values outside the ammonium fertilizer envelope (Figs. 2, 3) likely re-
flect a mixture of ammonium fertilizer and a heavier N source. Small
contributions of nitrified manure leachate with δ15NNO3 values from
~+10 to +25‰ could easily explain enrichments of<+2‰. Po-
tential sources of small amounts of manure N include the winter grazing
of cattle on crop stubble and, in the TBNRD focus area, the application
of manure to some fields. Leachate from nitrified ammonium in manure
is a logical suspect in the δ15NNO3-enriched sample (+4.8‰) (Fig. 2)
from well 190116 where the producer reported wintering cattle on the
field's corn stubble. Manure leachate is suspected in two other wells
with slightly enriched (+4.2 and+4.8‰) δ15NNO3 values in the
UENRD focus area. Producers and/or NRD personnel reported animal
waste on the fields adjacent to four of the five irrigation wells with
slightly enriched (+4.6 to +6.9‰) δ15NNO3 values (Fig. 3) in the
TBNRD focus area. Cattle were winter-grazed and manure appears to
have been applied to the field adjacent to well 24165 (Table 2). Both
the enriched δ15NNO3 value of +6.9‰ and elevated chloride con-
centration (21mg/L) can be indicative of animal waste. The same
producer used similar practices adjacent to well 78,175 with a δ15NNO3

value of +4.6‰. Cattle also were wintered and manure occasionally
spread on the fields adjacent to wells 21,436 and 16,168 which had
δ15NNO3 values of +5.9 and+4.8‰, respectively. Thus, a mixture of
ammonium fertilizer and manure-derived nitrate likely is responsible
for the slightly enriched δ15NNO3 values within the soil-N envelope
(Figs. 2, 3). This is consistent with the results described in Spalding
et al. (2018) that clearly showed that both nitrified ammonium lea-
chates from commercial fertilizer and feedlot-associated animal waste
applied to irrigated cropland were drawn into the capture zones of
several downgradient municipal wells in Hastings, Nebraska.

While manure appears as a minor source of nitrate contamination in
both areas, nitrification of ammonium fertilizer is the dominant source
of most nitrate in the groundwater of both focus areas. The irrigation
practices and N loading; sandy soils and sandy unsaturated zones; and
oxic saturated zones in the investigated areas are similar to those found
in western Kansas and Oklahoma (McMahon, 2001) and in much of the

area underlain by the central High Plains Aquifer (McMahon et al.,
2003) where nitrified ammonium fertilizer is the dominant source of
groundwater contamination.

5. Conclusions

Our results suggest that the DIM provides a better appreciation of
the complexities of the N cycle in the soil rooting zone beneath fields
that have received heavy UAN applications for many years. Hypotheses
for the absence of isotopically identifiable nitrate in the groundwater
are crop removal and/or chemical alteration in the biologically active
irrigated root zone. Possibly, timely UAN application results in rapid
uptake of the nitrate fraction within the root zone. If correct, this in-
terpretation has major implications for best management practices.
More nitrate “spoon feeding” through irrigation systems and less urea
and ammonium fertilization could be warranted. The DIM results sug-
gest that application of nitrate using UAN is, for the most part, a ben-
eficial nitrogen management practice. In seasonally warm, bacterially
active soil, however, nitrate could be immobilized; reduced to organic-
N; mineralized to ammonium; and, in aerobic soils, nitrified (re-
mobilized) back to nitrate (Mengis et al., 2001). In this process, the
original atmospheric O2 would be replaced by soil water and atmo-
spheric O2 and the oxygen isotope fingerprint in the nitrate would be
lost as the oxygen isotopes in the subsequently mineralized nitrate
would be isotopically indistinguishable from those in nitrified ammo-
nium fertilizer. Both hypotheses demonstrate that in most agricultural
settings application of the DIM to identify nitrate fertilizer in ground-
water is questionable. Although sandy soils have low organic matter
and high leaching potential, improved water management through
sprinkler irrigation systems could increase nitrate fertilizer retention in
the root zone and allow uptake and/or immobilization to occur. Studies
using isotopically-labeled NO3 on sandy soils during summer are
needed to clarify whether nitrate immobilization and remobilization
mask nitrate source identification.

The DIM results indicate that denitrification is not a significant
isotope fractionation mechanism in most of the groundwater samples
and suggest that reliance on denitrification to reduce nitrate loading to
aquifers in irrigated agricultural settings with thick, coarse and/or fine-
textured soils could be wishful thinking. The elimination of deni-
trification and the lack of residual natural soil-N leachates allowed
identification of cattle manure as a minor source of δ15NNO3 enrichment
in a few samples. The DIM clearly showed that nitrified ammonium
fertilizers are the primary source of nitrate in the groundwater beneath
both focus areas.
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