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CubeSats deliver new insights 
into agricultural water use at daily 
and 3 m resolutions
Bruno Aragon1*, Matteo G. Ziliani1, Rasmus Houborg2, Trenton E. Franz3 & 
Matthew F. McCabe1

Earth observation has traditionally required a compromise in data collection. That is, one could sense 
the Earth with high spatial resolution occasionally; or with lower spatial fidelity regularly. For many 
applications, both frequency and detail are required. Precision agriculture is one such example, with 
sub-10 m spatial, and daily or sub-daily retrieval representing a key goal. Towards this objective, we 
produced the first cloud-free 3 m daily evaporation product ever retrieved from space, leveraging 
recently launched nano-satellite constellations to showcase this emerging potential. Focusing on 
three agricultural fields located in Nebraska, USA, high-resolution crop water use estimates are 
delivered via CubeSat-based evaporation modeling. Results indicate good model agreement  (r2 of 
0.86–0.89; mean absolute error between 0.06 and 0.08 mm/h) when evaluated against corrected flux 
tower data. CubeSat technologies are revolutionizing Earth observation, delivering novel insights and 
new agricultural informatics that will enhance food and water security efforts, and enable rapid and 
informed in-field decision making.

Globally, agriculture accounts for 85% of consumptive water use (i.e., water that is not returned to terrestrial 
water systems)1. Furthermore, even though approximately 80% of arable area is  rainfed2, irrigation accounts for 
72% of fresh water  withdrawals3, while delivering almost 40% of crop  production4. Due in large part to a growing 
sectoral demand, along with increasing awareness of the risks to sustainable water supplies, there has been a push 
to deliver “more crop per drop” to satisfy both future food requirements and secure freshwater  availability5,6. 
Securing hydric resources, mitigating scarcity, monitoring consumption, and enforcing water rights, all require 
accurate measurements of evaporation (E) at different spatiotemporal  scales7, with one of the most common and 
cost-effective approaches to retrieve E being the use of satellite-based  platforms8.

Over the last several decades, government and private space agencies have launched numerous satellite 
 missions9, providing unprecedented volumes of information on the Earth’s surface based on an increasing range 
of sensing  capabilities8. Indeed, one of the most important collections for Earth science has been the decades long 
Landsat missions, which is responsible in large part for the rapid development of remote sensing as a  science10. 
However, traditional satellite missions pose a significant monetary burden, with a typical launch costing on 
the order of billions of  dollars11. Using a range of these space-based platforms, there have been many studies 
that have investigated remotely sensed E, particularly at the regional-to-global  scale12–15. While such efforts are 
essential to characterize and describe large-scale processes and behavior, they have been produced at coarse 
spatial resolutions (generally between 1 and 25 km), which precludes their use in capturing smaller scale patterns 
and variability. Indeed, many of these approaches do not explicitly account for agricultural systems: at least at 
the field- and farm-scales needed for operational management and agricultural insights. Such information is 
particularly important for applications at the precision agricultural  scale16, where farm management strategies 
such as irrigation  scheduling17 and nutrient  management18 represent key control variables. A commonly used 
solution to cope with the spatiotemporal limitations of traditional satellite platforms is to use image or sensor 
fusion  approaches19. For instance, Fisher, et al.20 combined Landsat-8 together with land surface temperature 
(LST) from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) sen-
sor to retrieve E at 70 m resolution every 5 days. In a high-resolution example, Guzinski and  Nieto21 employed 
a machine-learning fusion framework to retrieve E at 10 m spatial resolution every five days, using data from 
the Sentinel-2 and Sentinel-3 satellites. A number of approaches have also explored the fusion of higher spatial 
resolution LandSat data with the enhanced temporal resolution of MODIS to develop a 30 m daily  product22,23. 
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Although these and related studies provide E at varying resolutions and scales, none have achieved the long-term 
high-spatial and high-temporal (daily) resolution retrievals needed to drive precision agricultural applications 
and  advances16,24.

An alternative approach to single-mission driven Earth observation is one based instead on many nano-
satellites (referred to herein as CubeSats) that are launched in constellations, which can act in unison to collect 
high-resolution data across the globe at near-daily  scales25. CubeSats leverage sensor and electronics miniaturi-
zation, improvements in power supply and consumption, availability of off-the-shelf components, and reus-
able launch vehicles that offer launch costs that are a fraction of traditional satellite  missions26,27. On the other 
hand, CubeSat sensors may lack the quality and rigorous calibration of more traditional research-grade sensors 
and incur cross-sensor discrepancies when acting as a constellation: although harmonization strategies have 
been developed to overcome these  constraints28,29. Recently, Houborg and  McCabe30 demonstrated the utility of 
CubeSats for precision agriculture, employing Planet imagery to produce 3 m resolution normalized difference 
vegetation index (NDVI) maps. Building on this work, McCabe, et al.31 showcased the potential of using CubeSat 
data for producing high-resolution vegetation and terrestrial evaporation, while Aragon, et al.17 demonstrated 
CubeSat capability using a Priestley-Taylor based evaporation model to predict E over irrigated farmland in Saudi 
Arabia. Although previous studies have highlighted the spatial resolution advantages of CubeSats, none have 
provided E at the temporal scales required to accurately capture and track in-field crop water use  dynamics32 
(i.e., daily) until now.

Here we present the first daily CubeSat-based retrievals of E at 3 m resolution, using a year-long record of 
Planet (www. planet. com) cloud-free surface reflectances to estimate crop water use over three agricultural sites 
in Nebraska, USA during the 2019 growing season. Our results detect heterogeneous plant growth and capture 
the day-to-day variability in E, providing new agro-informatic metrics to drive in-field management  decisions33 
and timely responses to changing crop  conditions34. CubeSats overcome the spatiotemporal constraints inher-
ent in traditional Earth observation, providing the information required to deliver the promise of precision 
 agriculture34, and drive advances in crop  modeling35, forecasting, and yield  prediction36. Apart from showcasing 
paradigm changing advances in Earth observation, our work demonstrates the game-changing potential that 
CubeSats offer to a variety of fields, particularly those where space and time constraints have limited process 
insights and advances.

Methods
Meteorological and evaluation data. The study region is characterized by cold winters, hot summers, 
and overall humid  conditions37 and has an extensive history of agronomic data collections and  analysis38. Mete-
orological data used for model forcing, together with surface heat flux data that were used for evaluation, were 
sourced from eddy covariance (EC) towers installed at three different field sites (US-Ne1, US-Ne2, and US-Ne3) 
that are part of the University of Nebraska-Lincoln (UNL) Eastern Nebraska Research and Extension Center 
(ENREC) (Fig. 1). The flux towers collect data from both irrigated and rain fed crops (see Table 1), and con-
tribute to the AmeriFlux network of eddy covariance stations (https:// ameri flux. lbl. gov/). The meteorological 
data were recorded from the EC tower weather stations and provided hourly measurements of air temperature 
(Ta, in °C) and relative humidity (RH, as a range between 0 and 100%). Needed hourly net radiation (Rn) and 
latent heat flux (LE), sensible heat flux (H) and soil heat flux (G) were all measured in W/m2. EC towers are 
considered the gold standard for flux  evaluation39,40, even though they commonly underestimate heat flux val-
ues and require an energy closure  correction38,41. As there is no consensus on the most effective energy closure 
correction  procedure42, we evaluate the modeled latent heat flux using the residual corrected LE fluxes (i.e., 

Figure 1.  Location of the three field sites forming part of the University of Nebraska-Lincoln (UNL) Eastern 
Nebraska Research and Extension Center (ENREC) (see https:// exten sion. unl. edu/ state wide/ enre/). The 
blue lines represent the approximate boundary of each field, while green circles indicate the location of eddy 
covariance towers in each field.

http://www.planet.com
https://ameriflux.lbl.gov/
https://extension.unl.edu/statewide/enre/
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LE = Rn − G −H ), which assumes that the H flux was measured correctly. Ten months of data were processed, 
with only daytime values used and records outside the crop growing season omitted for the evaluation process. 
Both meteorological and flux data were provided at hourly time steps for all days in 2019. Missing records, which 
affected around 1.4% of the EC data, were filled using simple linear interpolation. Latent heat fluxes that were 
negative during the day (representing approximately 2.5% of the records) were replaced by interpolated values 
on the assumption that condensation during daytime hours is  unlikely43.

All three study sites grew maize (Zea mays L.) during the 2019 growing season and had fertilizer applied 
before each planting cycle, which usually occurs between late April and early May. Sites US-Ne1 and US-Ne2 
were supplemented with water through a center-pivot irrigation system, while US-Ne3 relied solely on rainfall. 
Approximately one week before planting, nitrogen fertilizer was applied at the rate of 175 kg N  ha−1 at US-Ne1, 
and 157 kg N  ha−1 for US-Ne2 and US-Ne3, by coulter injection of liquid urea ammonium nitrate. In addition 
to this pre-plant application, a further 45 kg N  ha−1 was applied at the irrigated sites at the beginning of July to 
improve maize N use  efficiency44. Irrigation starts in mid-June and continues until early September, depending 
on weather, field conditions, and crop  status40. A summary of each site is provided in Table 1.

Planet CubeSat imagery. CubeSat data used in this study are sourced from Planet (www. planet. com), 
which operates a constellation of nano-satellites that achieve near-daily land coverage at 3 m spatial resolution. 
Each satellite is in a 3U  configuration28 and is equipped with a multispectral camera that provides blue, green, 
red, and near-infrared (BGRN) reflectance bands. The Planet CubeSat constellation has inter-satellite differences 
that require correction for research  purposes30. The CubeSat Spatio-Temporal Enhancement Method (CESTEM) 
was used to correct the CubeSat data and produce radiometrically calibrated surface reflectance  datasets28. CES-
TEM is based on a machine-learning approach that performs multivariate regressions between high-quality 
reference imagery and the CubeSat bands using the Cubist 2.07 framework (RuleQuest; www. ruleq uest. com)45. 
The implementation of CESTEM employed here uses the HLS surface reflectance data  set46 as the reference 
imagery. The HLS combines Landsat 8 and Sentinel-2 (A/B) imagery into a single harmonized data set that is 
Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance (NBAR) at 30 m spatial resolution, 
and with the retrieval frequency of the combined satellite overpasses. Daily NBAR data from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) Aqua and Terra satellites also feeds into CESTEM for calibration 
and gap-filling purposes to produce a daily cloud-free 3 m product from January 1 to October 31, 2019. The first 
step of the CESTEM methodology is to construct Planet Scope (PS) image stacks by intersecting available images 
to form a single mosaic. The mosaic process gives priority to PS images captured by newer CubeSats and to 
image strips captured by a single satellite to reduce cross-sensor inconsistencies. Next, the generated mosaics are 
calibrated against MODIS and resampled to a 30 m resolution after which an iterative cloud masking process is 
performed. The cloud-masked mosaics are then radiometrically harmonized using HLS reference data acquired 
over a ‘temporal calibration window’ around the capture time of the mosaic. In case there is no-coincident 
HLS-PS pair, HLS pixels are sampled from past/future day coincident pairs to produce a reference image that 
serves as the calibration reference (with preference given to HLS-PS pixels from closer to the date of interest and 
weighted as a function of surface reflectance change). Cubist is then used to produce regression relationships 
between Planet and the HLS reference. These Cubist regressions are then used to calibrate the original PS image. 
Finally, the harmonized PS-HLS imagery is gap-filled using a combination of cloud-free PS-HLS and MODIS 
pixels acquired both before and after (if possible) the given date, resulting in a cloud-free daily PS image that is 
HLS consistent. Further details on the original CESTEM methodology can be found in Houborg and  McCabe28.

Deriving an ultra-high resolution daily evaporation product. To produce the high spatiotempo-
ral resolution maps of evaporation, the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL)  model47 is used in 
combination with Planet-CubeSat derived 3 m daily cloud-free NDVI data. PT-JPL has been evaluated across 

Table 1.  Description of each study site, including the location, crop type, total rainfall, irrigation and fertilizer 
applications. These data are based on management logs taken during the course of the growing season.

Ameriflux ID US-Ne1 US-Ne2 US-Ne3

Latitude, Longitude 41.1653, − 96.4766 41.164, − 96.4701 41.179, − 96.439

Crop type Continuous maize Rotation maize-soybean Rotation maize-soybean

Sowing dates April 19, 2019 April 23, 2019 April 24, 2019

Harvesting dates November 5, 2019 November 7, 2019 November 7, 2019

Fertilizer (kg of N as urea/ha) 175 on April 16, 2019 157 on April 15, 2019 157 on April 15, 2019

Fertigation (kg of N as urea/ha) 45 on July 1, 2019 45 on July 2, 2019 N/A

Irrigation Type Automatic with 90% efficiency Rainfed

Irrigation Events (mm)

6.35 on June 13, 2019
6.35 on July 1, 2019
30.48 on July 8, 2019
30.48 on July 15, 2019
0.4 on July 24, 2019
31.75 on July 29, 2019
31.75 on August 9, 2019

30.48 on July 2, 2019
30.48 on July 8, 2019
30.48 on July 15, 2019
30.48 on July 29, 2019

N/A

Total Rainfall (mm) (within growing season) 910.97 (764.92) 896.87 (752.86) 803.60 (655.90)

http://www.planet.com
http://www.rulequest.com
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a wide range of scales and  biomes13,48,49 and forms the modeling basis for producing land surface fluxes as part 
of NASA’s ECOSTRESS  mission20. PT-JPL uses a small number of input parameters and partitions potential 
evaporation into three actual evaporation components (representing the soil (LEs), canopy (LEc), and intercep-
tion (LEi) latent heat fluxes) using a set of biophysical constraints accounting for green canopy fraction fg , plant 
moisture fM , ambient temperature fT , surface wetness fwet , and soil moisture fSM . The total latent heat flux is 
given by the sum of the three components i.e. LE = LEs + LEc + LEi . Further details on the model can be found 
in Fisher, et al.47. We forced PT-JPL at hourly time intervals using CubeSat derived NDVI at 3 m resolution 
(assuming that NDVI stays constant throughout the day) together with meteorological information from each 
of the EC towers (only during the daytime). Spatially varying soil heat flux ( G ) was incorporated following the 
approach of Santanello and  Friedl50. Instantaneous heat fluxes were evaluated against measured E at the field 
scale by extracting and averaging all the pixels contained within site boundaries. Flux estimates were converted 
to mm/h using:

where � is the latent heat of vaporization (approx. 2,260 kJ/kg). Values were then aggregated to mm/day to present 
the results in a water accounting context.

The performance of the retrieved E fluxes was evaluated using the coefficient of determination  (r2) as a means 
to quantify the amount of the variability explained by the model, the mean bias (bias) that represents the over 
or under-estimation of the modelled fluxes, and the mean absolute error (MAE) as a measure of the average 
magnitude of the error disregarding direction. In contrast to the commonly used root mean squared error, the 
MAE gives equal weights to individual differences:

Results
Monitoring heterogeneous field responses with CubeSat data. Figure 2 presents a 7-day sequence 
of CubeSat-derived E retrievals for each of three studied fields, using both spatial maps and histograms to capture 
any underlying field-scale variability. The collection period corresponds to September 9–15, 2019 (day-of-year, 
DOY: 252-258), which is towards the end of the growing season. During this time, E presents a decreasing trend 
and a corresponding drop in NDVI (see Fig. 3). As can be seen from Fig. 2, the irrigated US-Ne1 and US-Ne2 
sites show low variability in E, evidenced by the narrow distributions of their respective histograms (Fig. 2b,d), 
and presenting a maximum standard deviation of 0.06 and 0.07 mm/day, respectively. Even though both pivots 
are highly homogenous, small patches with different E can still be identified (Fig. 2a,c), which become more 
discernable towards the end of the week. For the rainfed US-Ne3 field, the spatial maps and the histograms 
(Fig. 2e,f) show higher variability (maximum standard deviation of 0.2 mm/day), reflecting the impact of no 
supplementary irrigation in this particular field. The higher variability areas on the spatial maps show lower E 
than their surroundings (Fig. 2e), which is also reflected in the wider histogram distributions (Fig. 2f).

A particular advantage of the CubeSat-driven simulations is that the data capture the development of the E 
fluxes throughout the course of the 2019 growing season on a day-to-day basis. Figure 3 shows the time-series of 
each field, produced based on the extracted field averaged E values (in mm equivalent). To highlight any changes 
in E development over time, a Savitzky-Golay smoothing  filter51 was applied to each E time-series to remove 
temporal noise, while retaining the overall shape and  trend52. In all cases, the CubeSat-based E follows similar 
dynamics to the measured E, with both being governed by the changing phenology of the crop (represented here 
by the time series of NDVI) and site meteorology. Given that NDVI remained stable during the season peak in 
July (around DOY 203), it can be inferred that E was controlled by the atmospheric evaporative demand and the 
available energy. Importantly, the CubeSat information enabled the discrimination of high-frequency day-to-day 
changes in E that would otherwise be missed if more traditional satellite platforms were used (i.e., Landsat-8). As 
Fig. 3 demonstrates, both the estimated and measured E have daily variations around the smoothed line, which 
could influence the total E amounts and lead to errors on irrigation scheduling when compared to coarser tem-
poral resolution products. Indeed, the daily cloud-free product reveals a degree of variability in daily E between 
the scheduled Landsat-8 overpasses (represented by the dashed lines in Fig. 3). These changes in daily E likely 
reflect variability in available energy, which is driven principally by cloud cover diminishing the amount of solar 
radiation able to reach the crops. Even though the CubeSat derived NDVI did not present the same daily changes, 
the model was able to reproduce this variability as it was forced with on-site net radiation (Rn) measurements, 
which capture the influence of cloud cover.

To supplement the daily level E dynamics presented above, Fig. 4 compares the cumulative precipitation (mm) 
with the cumulative E (mm) for each field during the growing season. The cumulative CubeSat E estimated for 
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Figure 2.  Spatial maps and related histograms of daily CubeSat-based E for the period September 9–15, 2019: 
approximately two months prior to harvest. Panels (a,b) correspond to US-Ne1, (c,d) to US-Ne2, and (e,f) to 
US-Ne3.
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the irrigated fields was lower than the precipitation amounts (Fig. 4a,c) which might indicate the lack of water 
stress conditions (assuming negligible runoff and infiltration to deeper soil layers), even if no irrigation was 
present to supplement the field. The CubeSat E underestimated the cumulative water depths compared to the 
cumulative E measured by the on-site tower by 18.98%, 12.51%, and 11.29% for US-Ne1, US-Ne2, and US-Ne3, 
respectively. It should be noted that this underestimation was accumulated throughout the season and that the 
tower E cannot show the spatial variability present in the CubeSat product. Importantly, these percentage errors 
are within the uncertainty levels of tower  measurements42. Moreover, the estimated crop water use does not 
account for additional losses, such as percolation to deeper soil layers. The rain events for US-Ne1 and US-Ne2 
are characterized by the same shape and magnitude (black bars in Fig. 4a,c), which is expected given their close 
proximity. Interestingly, the cumulative spatial variability for both fields (Fig. 4b,d) highlights areas of the field 
with lower E that cannot be appreciated in the spatial maps (panels a and c of Fig. 2). This field variability could 
point towards areas that were under-developed during early growth stages that subsequently improved as the 
season progressed. Since the irrigated fields received an additional water supply of 137.6 mm (US-Ne1) and 
123.2 mm (US-Ne2), respectively from irrigation (see Table 1), the field variability may also reflect the under-
lying soil composition of the fields. Differences in nutrient amount and soil matrix structure have also been 
linked to crop yields at these  sites53. On the other hand, the cumulative CubeSat E of the rainfed US-Ne3 site was 
higher than the cumulative precipitation amounts for the period August 19 until September 21 (35 days), which 

Figure 3.  Time series of daily E for the CubeSat-based and closure-corrected EC measured fluxes, together 
with field-scale averaged NDVI for (a) US-Ne1, (b) US-Ne2, and (c) US-Ne3. The solid lines for the residual 
corrected and CubeSat E are smoothed versions of the original time-series. The shaded areas represent the 
length of the growing season (typically May–October), while the dashed lines represent the scheduled Landsat-8 
overpasses.
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overlap with the sequence shown in the spatial maps of Fig. 2f. Given the rainfed conditions of US-Ne3, part of 
the spatial variability of the field could be linked to a change in soil moisture dynamics, leading to water  stress54. 
On the other hand, the cumulative tower E was larger than cumulative precipitation for all sites. Interestingly, 
US-Ne3 had fewer precipitation events during the growing season than the other fields (Table 1), equivalent to a 
difference of 109 (US-Ne1) and 96 mm (US-Ne2) respectively, highlighting that even crops grown within a few 
kilometers of each other can experience quite different meteorological conditions.

Apart from providing crop water use insights, the high-resolution CubeSat-based retrievals facilitate the iden-
tification of underperforming areas, evidenced by low E values (and correspondingly low NDVI values). Given 
that areas with lower evaporation rates than their surroundings can be indicative of potential yield  losses55, such 
information may be useful for prescribing remedial action in a timely manner. From a management perspective, 
the higher variability observed in US-Ne3 is likely the result of being rain-fed and serves as a useful contrast to 
the irrigated  fields56. Being able to identify the within-field spatiotemporal variations in E provides a means for 
both farmers and water managers to allocate resources more effectively, driving precision agricultural improve-
ments and optimizing end-of-season  yields57,58.

Performance of CubeSat-based evaporation retrievals. While high spatiotemporal CubeSat retriev-
als are useful for identifying within field and daily variability, it is essential that crop water use estimates also have 
sufficient  accuracy32 if they are to be of use for irrigation scheduling and other farm management activities. The 
gold-standard approach to evaluate E fluxes is by comparison against eddy covariance E flux  measurements40. 
Figure 5 shows the evaluation of the E fluxes against hourly eddy covariance values from each study site during 
the growing season (from sowing to harvest, see Table 1). Across all sites, a strong correlation  (r2 of 0.86, 0.9, 
and 0.86 for US-Ne1, US-Ne2, and US-Ne3, respectively) was observed between the measured and CubeSat-
estimated fluxes. All sites presented negative bias values (normalized to the range of the measured values in 
parenthesis) of − 0.06 (5.51%), − 0.03 (2.76%), and − 0.03 (3.11%) mm/h for US-Ne1, US-Ne2, and US-Ne3, 
respectively. The consistent negative bias can be attributed to the particular E estimation model used herein, 
which has been shown to underestimate measured field E in a number of  studies12,17. The main reason for the 

Figure 4.  Cumulative plots of E and precipitation, together with spatial maps of cumulative E for the 2019 
growing season (approximately DOY 109–311, see Table 1). The black bars represent the daily precipitation 
measured at each site. Panels (a,b) correspond to US-Ne1, (c,d) to US-Ne2, and (e,f) to US-Ne3.
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underestimation is that the model is sensitive to relative  humidity59. More specifically, the modelling scheme 
assumes that the surface and atmospheric humidity are in equilibrium conditions, which is only the case for fully 
developed convective  conditions60. A similar bias was reported in a recent study using the US-Ne1 and US-Ne2 
 sites39. It is also relevant to note that the majority of the fluxes were clustered around the lower end of the E range 
(i.e., from 0 to 0.25 mm/h), which was caused by an over-representation of the morning and afternoon fluxes 
in the satellite overpasses. Regardless, the relatively low bias, low mean absolute error, and the high correlation 
values (Fig. 5a–c) provide confidence in the accuracy of the estimated E fluxes to drive precision agriculture 
insights and decisions making.

Discussion
Our study presents the first daily, cloud-free, 3 m resolution CubeSat-based crop water use product ever retrieved 
from space, and showcases its potential for advancing and delivering novel informatics that are of use to appli-
cations in precision agriculture. From these results, it is clear that CubeSat data provide an unprecedented 
opportunity to drive decision making in agricultural contexts, particularly when farmers are being urged to 
increase resource efficiency and to produce “more crop per drop”61,62. At the same time, those responsible for 
water resource allocation and management require information to fulfill their operational mandate: an area of 
particular relevance to state and federal governments that are responsible for water distribution systems and 
 supplies63. Results illustrate the utility of high spatiotemporal resolution CubeSat imagery to deliver insights not 
just into water use, but also its temporal variability and spatial distribution.

In addition to the potential economic and productivity gains for farmers, a high spatiotemporal crop water 
use product is essential for ensuring more sustainable management of our food production systems. The Food 
and Agriculture Organization (FAO) estimates that by 2030 the world will require an additional 60% of food to 
feed an increasing global  population64. What is less well appreciated is that this increased demand for food will 
require a commensurate demand for water. Unfortunately, many of our water systems are already under pressure 
to meet current food production  goals65, so using irrigation more efficiently is necessary to both safeguard our 
supplies and meet food production  objectives66. Beyond the food-water nexus, reducing irrigation rates also 
decreases on-farm energy costs, with more than 20% of the total energy consumption attributed to pumped 
 water67. Knowledge of actual crop water use rates also enables the implementation of novel irrigation strategies 
such as deficit irrigation: a strategy that purposely allows the crops to undergo water stress outside critical crop-
growth periods, with little impact to  yield68 and offering improved water productivity and water use  strategies33.

Although demonstrated via a relatively small scale case-study, the scalability of the approach is such that 
regional to global application is imminently achievable, offering a useful tool to inform and improve food and 
water security  efforts69. Nevertheless, application beyond the field scale will benefit from the availability of higher 
spatial resolution meteorological data, which drive all E  models32. While this might come from advanced numeri-
cal weather prediction  schemes70, the increasing availability of distributed ground-based sensors in precision 
 agriculture71 may be an alternative conduit for this much needed information. Furthermore, while reflectance 
derived vegetation indices are a good indicator of vegetation health and conditions, they cannot provide the early 
warning signals against yield losses relative to models that incorporate  LST72 or  fluorescence73. Unfortunately, 
such alternative sources of information do not currently provide the level of spatiotemporal resolution afforded 
by optical sensors. For instance, on an area-equivalent basis, the ECOSTRESS LST pixel (70 × 70 m; 4,900  m2) 
is around 5.5 times larger than the optical sensors from Landsat-8 (30 × 30 m; 900  m2), limiting the achievable 
spatial resolution of the ECOSTRESS evaporation product. Potential data fusion and downscaling approaches 
may provide a pathway to overcoming such  constraints21,74,75.

It is worth noting that the daily cloud-free CubeSat data used in this study assumes that past observations 
can accurately recreate missing data (e.g., areas affected by cloud contamination). Indeed, depending on the 
duration of cloud-cover, gap-filling may not capture abrupt vegetation changes, such as field  harvests76. One 
solution would be to explore multi-sensor fusion approaches, such as Sentinel-1 radar backscatter data, to act 
as an additional level of information on surface  condition77. Additionally, imagery from the Planet CubeSat 

Figure 5.  Scatter plots of CubeSat-based E against residual corrected eddy covariance E fluxes for each of the 
US-Ne1, US-Ne2, and US-Ne3 field sites.
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constellation requires radiometric correction and harmonization to avoid cross-sensor discrepancies, since the 
images collected over a given area are often taken by multiple CubeSats with inherent sensor  differences28,29. 
The harmonization source for the CubeSat product used in this study derives from the harmonized Landsat and 
Sentinel-2 (HLS) surface reflectance data  set46, which is dependent on the continuation of key satellite missions 
from the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). One 
potential substitute for inter-satellite calibration could be the use of ground-based reflectance reference sites 
that can be used to perform vicarious  calibration78. The feasibility of using ground targets would depend on the 
development of a calibration network, and would still be subject to clear sky conditions and satellite coverage 
of the calibration site(s)79.

Finally, while our study focused on crop water use, high-spatiotemporal CubeSat products can be of use in 
monitoring and forecasting other farm activities, such as crop health and development, either by themselves or 
through integration with crop biophysical  models80. Indeed, improved approaches for yield prediction represents 
an incredibly valuable tool for both water and food security related  issues69. One of the best approaches to predict 
crop development is by simulating crop growth based on weather and management  information81. Recent studies 
have shown the considerable potential of using spatially distributed information from remote sensing to provide 
for enhanced prediction of  yields82. Although advances have been made in the integration of remote sensing 
data and crop models, previous applications have tended to focus on coarser resolution satellite data, which 
inhibit any capacity to explore the intra-field variability required for in a precision agricultural  context83. More 
generally, the daily CubeSat product developed herein can be of considerable benefit to applications beyond just 
agriculture, such as water resources management and  security84, drought  monitoring85,86 and ecosystem structure 
 studies87 to name just a few. Future work should focus on exploring the various synergies afforded by these high 
spatiotemporal CubeSat datasets and their applications to support multidisciplinary insights.

Data availability
The CubeSat data that supports the findings of this study are available from Planet. Restrictions apply to the 
sharing of these images, which were used under license, and so are not available for redistribution. The in-situ 
meteorological and eddy covariance data used on this study is available at https:// doi. org/ 10. 17190/ AMF/ 12460 
84, https:// doi. org/ 10. 17190/ AMF/ 12460 85, and https:// doi. org/ 10. 17190/ AMF/ 12460 86 for US-Ne1, US-Ne2, 
and US-Ne3 respectively.
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