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Figure 1. Chart depicting work flow for the analysis. The
flow chart shows linkages between drivers of water storage
variability (climate and human intervention, approximated
by irrigation). Climate focuses primarily on droughts.
Climate forcing is linked to storage change through fluxes,
including precipitation (P), evapotranspiration (ET),
runoff (R), infiltration (I), and GW recharge (GW R).
Irrigation water use is linked to storage through infiltration
(I), GW R (mostly from SW irrigation), and GW pumping
(GW Pu). Total Water Storage Anomaly (TWSA) was
derived from GRACE satellites by subtracting the mean
TWS from the GRACE data over the period 2002-2017.
GRACE TWSA is based on the mean of the Univ. of Texas
Center for Space Research mascons (CSR-M) and NASA Jet
Propulsion Lab mascons (JPL-M). TWSA includes SW, SM,
and GWS anomalies. Seasonal Trend decomposition using
Loess (STL) was applied to disaggregate the time series into
long-term variability, including trends and interannual
variability. The companion paper to this study indicates
that TWSA and GWSA time series are very similar, with
limited SMS variability contributing to long-term TWS
variability [21]. Climate forcing was based on the US
Drought Monitor (USDM). Irrigation water use included
the volumes at 5 yr intervals and irrigation sources (surface
water, SW, and groundwater, GW) and irrigation efficiency
(table S15). Management strategies to increase
sustainability include conjunctive use of SW and GW, with
inefficient SW irrigation (mostly flood irrigation) and
efficient GW irrigation, MAR, and irrigation demand
reduction for systems with only access to GW.

In addition, this study leverages a recent study
that assessed the reliability of GRACE-derived GWS
variability through detailed comparisons with GW-
level monitoring data and regional and global mod-
els in major US aquifers [21]. The results of this
companion study show that TWS and GWS time
series plot very close to each other for most aquifers,
indicating that GWS is the dominant contributor to
long-term variability in TWS in most systems with
limited contribution from snow, SM, and reservoir
storage, except Powell and Mead reservoirs in Ari-
zona. There was good correspondence between GWS
trends from GRACE and those from regional models
for most aquifers with the exception of the Mississippi
Embayment aquifer. This companion study forms the
foundation for the current study, which focuses on
the causes of long-term TWS variability, emphasizing
climate variability and human water use, focusing on
irrigation. While we focus on the current climate in
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this analysis, we recognize the importance of climate
change with megadroughts projected for the South-
west and High Plains regions of the US in the latter
half of the 21st century [22, 23]. We examined various
approaches to more sustainable water management,
particularly GW management, based on insights from
GRACE data with implications for critically stressed
aquifers globally.

2. Materials and methods

We selected 14 major aquifers throughout the US that
are generally intensively monitored and modeled by
the US Geological Survey (figure 2). These aquifers
are described in supporting information (SI), section
1 (available online at stacks.iop.org/ERL/16/094009/
mmedia).

2.1. Water storage from GRACE satellite data
GRACE satellites monitor TWS variability at contin-
ental to global scales. TWS variability in this study is
based on GRACE data Release 06 from the University
of Texas Center for Space Research mascons (CSR-
M) solutions and NASA Jet Propulsion Lab mascons
(JPL-M) solutions. The data are based on the original
GRACE miission extending from April 2002 through
June 2017 (15.25 yr). More details are provided in SI,
section 2.

Water storage changes reflect the balance of fluxes
at the land surface in regional models, as follows:

GWP = TWS

(2)
where P is precipitation, Irrig. is irrigation return
flow, Qon and Qo represent surface and subsurface
(GW) flow into and out of the system, respectively,
ET is evapotranspiration, GWP is total GW pumpage,
including irrigation, and TWS is the change in
TWS [25].

Raw time series of TWS from GRACE
(TWSAR.w) was disaggregated into long-term (lin-
ear trend + interannual variability), annual, and
residual (mostly sub-annual) variability using Sea-
sonal Trend decomposition using Loess (STL) (SI,
section 2.1) [26]:

P+ Irrigt+ Qon ET  Qof

TWSARaw = T\NSALong term + TWSAannual
+ TWSAResidual : (3)

Linear trends were fit to the long-term variabil-
ity (TWSALong-term) USINg a nonparametric regression
tool (e.g. Sen slope) [27] and the remaining long-term
signal reflects interannual variability (equation (4)):

T\/VSALong term = TWSALinear trend ¥ TWSAlnterannual-
(4)

This study focuses on long-term (trend + interan-
nual) variability in TWS based on the ensemble mean
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