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Abstract: The global growing population is experiencing challenges to satisfy the food chain supply in
a world that faces rapid changes in environmental conditions complicating the development of stable
cultivars. Emergent methodologies aided by molecular marker information such as marker assisted
selection (MAS) and genomic selection (GS) have been widely adopted to assist the development
of improved genotypes. In general, the implementation of GS is not straightforward, and it usually
requires cross-validation studies to find the optimum set of factors (training set sizes, number of
markers, quality control, etc.) to use in real breeding applications. In most cases, these different
scenarios (combination of several factors) vary just in the levels of a single factor keeping fixed the
levels of the other factors allowing the use of previously developed routines (code reuse). In this study,
we present a set of structured modules that are easily to assemble for constructing complex genomic
prediction pipelines from scratch. Also, we proposed a novel method for selecting training-testing
sets of sizes across different cross-validation schemes (CV2, predicting tested genotypes in observed
environments; CV1, predicting untested genotypes in observed environments; CV0, predicting tested
genotypes in novel environments; and CV00, predicting untested genotypes in novel environments).
To show how our implementation works, we considered two real data sets. These correspond to
selected samples of the USDA soybean collection (D1: 324 genotypes observed in 6 environments
scored for 9 traits) and of the Soybean Nested Association Mapping (SoyNAM) experiment (D2: 324
genotypes observed in 6 environments scored for 6 traits). In addition, three prediction models which
consider the effect of environments and lines (M1: E + L), environments, lines and main effect of
markers (M2: E + L + G), and also the inclusion of the interaction between makers and environments
(M3: E + L + G + G×E) were considered. The results confirm that under CV2 and CV1 schemes,
moderate improvements in predictive ability can be obtained with the inclusion of the interaction
component, while for CV0 mixed results were observed, and for CV00 no improvements were shown.
However, for this last scenario, the inclusion of weather and soil data potentially could enhance the
results of the interaction model.

Keywords: genotype-by-environment interaction (G×E); genomic prediction (GP); genomic predic-
tion pipeline; genomic selection (GS); similar sample sizes for cross-validation schemes; SoyNAM;
USDA soybean collection

1. Introduction

The world confronts several challenges for satisfying the increased demands to feed
the growing human population, which is projected to grow close to 10 billion by 2050 [1,2];
however, not only the population is increasing but also the natural resources (e.g., forest,
soil, land, and water availability, etc.) have been drastically affected due to environmental
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problems such as deforestation and land degradation [1]. In addition, in agriculture, the
elite genotypes (high yield performance) have been negatively impacted due to the more
often and more intense environmental perturbances. To guarantee the food requirements
and confront these challenges, the new varieties yet to develop (in the very near future)
will require to come up with a better resilience for a wide range of adaptation [3]. For
this, new strategies and methodologies for selecting genotypes to face these environmental
challenges [4] with high yield potential should be developed.

Breeders have implemented traditional breeding methods for selecting the best pheno-
types to increase genetic gains [5,6]. However, phenotyping all genotypes in a wide range
of environmental conditions is challenging because it requires a large number of plots in
field experiments, it is also time-consuming of manual labor, and in general, there is a
reduced availability of sources such as land, water, and seed. A more elaborated traditional
breeding method considers the use of the pedigree information derived from the genetic
relationship between the genotypes in the population [7–9]. Pedigree based selection has
been successful delivering predictions of the estimated breeding values of unobserved
genotypes; however, its implementation presents some challenges [10]. For example, it
requires to keep track of the genetic relationships between all genotypes in training and
testing sets. Also, it does not account for the Mendelian segregation within populations
from a pair of genotypes limiting the rates of genetic progress that can be accomplished in
a given period of time [11].

Hence, the traditional selection methods based on phenotypic and pedigree informa-
tion may not be the most suitable options for increasing genetic gains in short periods of
time. Specially, because it is not easy to a priori estimate the recombination amount of the
genome that comes from each of the parental lines [6] complicating the selection process.
The development of modern sequencing technologies offered the opportunity of charac-
terizing genotypes based on their genomic information [11]. A widely used alternative
to the traditional selection methods is the Marker Assisted Selection (MAS)which uses
genomic information [12]. It considers a reduced set of influential molecular markers also
known as quantitative trait loci (QTL) [13,14] to assist during the selection process. The
main objective of MAS is to help to select the best candidate genotypes best candidate
genotypes by predicting their phenotypic performance using the most influential genomic
variants. Furthermore, this methodology has demonstrated to be more effective than
the pedigree-based selection method [12–14]. However, this method also presents some
limitations specially when the traits are controlled by a large number of genes with small
effects (complex traits) such as yield [15] limiting/reducing the accuracy of the selection.

To overcome the limitations of MAS, the implementation of an emergent methodology
called GS became popular in the last decade in plant and animal breeding applications
across species and traits. Conceptually, this method uses the information on all available
molecular markers for selection purposes [11]. This methodology was first proposed by
Bernardo [16] and later on Meuwissen [17] introduced a new framework to confront the
challenge of dealing with a large set of markers (p) and a reduced number of phenotypic
records (n) available for model fitting.

GS enables the prediction of the performance of genotypes at the early stages of the
breeding programs using abundant molecular marker information of new/untested geno-
types and a relative small number of genotypes with phenotypic and genomic information
for model calibration. Such that, the predicted values can be used for selecting the best can-
didate genotypes that would perform well on advanced phenotyping stages [18]. Another
advantage of GS is that breeders can reduce phenotyping costs by employing predictions
as surrogates of phenotypes. At beginning, GS was used in plant breeding for performing
within-environments predictions only [18–21]. In general, breeders establish extensive
field experiments for testing new cultivars in a wide range of environmental conditions
and release stable genotypes that outperforms current elite cultivars [4]. However, usually
different response patterns are observed when same genotypes are observed in different
environments showing a change in the relative ranking from one environment to another
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complicating the selection process [22]. The occurrence of a change in the response patterns
is also known as the presence of the genotype-by-environment interaction (G×E).

Several studies highlighted the impacts of accounting for the G×E in GS models [23–25]
when performing predictions in multi environments. Several applications have been de-
veloped to conduct the predictions of genotypes in single and multi-environments [26–32].
However, to our knowledge, no comprehensive implementations/examples showing how
the genomic prediction pipelines are built have been released. Among the tasks that a GS
pipeline considers we have the implementation of quality control on genomic data, the assig-
nation of training and testing sets for different cross-validation schemes, the construction of
the different linear predictors, and the model fitting.

The main objective of this study is to provide an example of how a genomic prediction
pipeline is built when considering different cross-validation schemes while preserving
comparable sample sizes in training and testing sets. For this, we considered two soybean
data sets. The first one (D1) corresponds to a sample of the USDA soybean collection
with information on 324 genotypes tested in 6 environments (not all genotypes tested in
all environments) and 9 traits. The second dataset (D2) corresponds to a sample of the
SoyNAM experiment with information on 324 genotypes tested in 6 environments and
6 traits (all genotypes scored for all traits in all environments). The pipeline was built
considering elemental modules that perform simple tasks and their implementation is
controlled by changes in a parameter input file. Also, the outputs of the early stages of
the pipeline become the input of more advanced stages allowing the assemble of complex
structures in an easy way. Potentially, users will be able to easily modify and adapt
the proposed pipeline to conduct their own data analyses (data sets for a desired set of
parameters).

2. Materials and Methods
2.1. Phenotypic and Genomic Data

In this research, two different soybean datasets were used to show how the pipeline
is implemented and these correspond to a sample of the USDA soybean collection, and a
sample of the SoyNAM experiment.

Data set 1 (D1). Sample of the USDA soybean collection.
The USDA soybean collection is comprised of 14,430 genotypes that were collected

in many locations around the world and observed in 4 different locations (States; Illinois,
Kentucky, Minnesota, and Missouri) in the USA from 1963 to 2003. Not all the genotypes
were observed in all the location-by-year combinations (environments). Further details of
the USDA soybean collection can be found in Bandillo [33]. The evaluation of the soybean
genotypes in the US locations was gradually conducted. For this reason, the connectivity
rate of genotypes across environments is very low. In this study, conveniently we selected
a reduced set of genotypes (324) that were observed in 6 environments (MN945, IL945,
IL0102, MS989, MS2000_2, and MN0102) and showed moderate levels of connectivity.
We selected genotypes that were observed in at least 2 environments and with complete
information on all 9 traits (grain yield, plant height in centimeters, lodging 1–5, days to
physiological maturity - DysToR8, oil content, protein content, seed weight of 100 seeds,
early shattering 1–5, and stem term score 1–5). Figure 1 illustrates the levels of connectivity
of the genotypes across environments for this data set (D1). Out of the 100% of the total
(324 × 6 = 1944) potential cells (all genotypes observed in all environments) only 33.6%
(654) of these combinations were observed (vertical gray lines in Figure 1) in fields.
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Figure 1. Graphical representation of the allocation of genotypes (x-axis) in environments (y-axis) of
324 soybean genotypes selected from the USDA soybean collection observed in 6 environments. Ver-
tical gray lines represent the genotypes-in-environments combinations that were observed while the
white lines correspond to unobserved combinations. The information of the observed combinations
(vertical gray lines) is used for establishing training-testing partitions.

Data set 2 (D2). Sample of the SoyNAM project.
A random sample of the SoyNAM project was selected for the second dataset. The Soy-

NAM project is comprised of 40 biparental populations (140 individuals per population) shar-
ing a common hub parent (IA3023) crossed with elite parents (17), plant introductions (8),
and parents with exotic ancestry (15). [34,35] provide a detailed description of the SoyNAM
data set. Briefly, the resulting 5400 accessions derived of the 40 biparental populations were
observed in 18 location × year combinations (environments). In our case, conveniently we
selected a random sample of 324 genotypes observed in 6 environments (IA_2012, IL_2011,
IL_2012, IN_2012, NE_2011, and NE_2012) and measured for 6 traits (yield, moisture, protein
content, oil content, fiber, and seed size). In this case, all the 324 genotypes were observed in
all the 6 environments and were scored for all 6 traits.

2.2. Models

The main objective of this research is to provide a genomic prediction pipeline easy to
adapt to different realistic scenarios of interest in breeding programs. Here, a set of 3 models
was considered to show how to compose the linear predictors to use in different cross-
validation schemes (4). Alternative models can be obtained by changing the assumptions
of the model terms. Later we describe how to perform these changes in an easy manner.

2.2.1. M1. E + L

Consider that yij represents the performance of the ith genotype observed in the jth

environment for a given trait (e.g., grain yield) and it can be described as the sum of
a constant common effect across lines and environments (µ), a fixed effect due to the
environmental stimuli

(
Ej
)

corresponding to the jth environment, a random effect (Li)

corresponding to the ith line such that Li ∼ N
(
0, σ2

L
)
, and a random effect

(
εij
)

capturing
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the non-explained variability by the previous model terms with εij ∼ N
(
0, σ2). Collecting

the previous assumptions, we have that the linear predictor becomes

yij = µ + Ej + Li + εij (1)

One disadvantage of this model is that it does not allow the borrowing of information
between genotypes complicating the prediction of the untested materials. To overcome
this issue, the genomic information of the individuals in training and testing sets can be
leveraged together with the phenotypic data from the observed genotypes (training set) to
predict un-phenotyped individuals. Details of this approach are provided in model M2.

2.2.2. M2. E + L + G

In the previous model M1, the Li term is used to describe the effect of the ith genotype
and it relies on phenotypic information only. Now, consider that this term can be also
described by a linear combination between p molecular markers and their corresponding
marker effects such as gi = ∑

p
k=1 xikbk, where bk corresponds to the marker effect of the

kth SNP (xik). When the number of molecular markers (p) surpass the number of data
points (n) available for model fitting, it is impossible to obtain a unique solution for the
marker effects because it involves the inversion of non-full rank matrices. In these cases,
further assumptions about the marker effects should be considered under the statistical
framework. Several alternatives have been proposed to overcome this issue and some of
these are based on penalized regressions (Ridge Regression, LASSO, ELASTICNET, etc.)
and Bayesian approaches (Bayesian Ridge Regression, Bayesian LASSO, BayesA, BayesB,
etc.) Meuwissen [17] proposed a set of models for those cases where the number of genomic
variants (p) was larger than the number of data points (n) available for model fitting. A
compressive review of the available genomic models to deal with this issue can be found
in [11].

In our case, the marker effects were considered independent and identically dis-
tributed (IID) outcomes from a normal distribution centered on zero with a common
variance

(
σ2

b
)

[36,37] such that bk ∼ N
(
0, σ2

b
)
. From results of the multivariate normal

distribution, the vector of genomic effects g = {gi} ∼ N
(

0, Gσ2
g

)
where G = XX′

p , X is

the standardized matrix (by columns) of marker SNPs and σ2
g = pσ2

b is the corresponding
variance component. To avoid model miss specification due to imperfect genomic data the
Li term is also included in the model together with the genomic effect gi. Considering the
previous assumptions, we have that the resulting model becomes

yij = µ + Ej + Li + gi + εij (2)

An advantage of this model is that it allows the borrowing of information between
tested and untested genotypes permitting the prediction of materials yet to be observed.
However, a disadvantage of this model is that across environments it returns the same
genomic value gi for the ith genotype. To allow specific genomic values of genotypes in
environments, the reaction norm model [25] was also implemented. This model decom-
poses the genomic effect as the sum of a common effect (intercept) of the genotypes across
environments plus specific effects (slopes) for each environment. Further details of this
model are provided next.

2.2.3. M3. E + L + G + G×E

Consider the inclusion of the gEij model term to describe the specific response of
the ith genotype in the jth environment

(
giEj

)
. Jarquin [25] proposed to model the vec-

tor of genomic effects in interaction with environments via co-variance structures as
gE =

{
gEij

}
∼ N

(
0, ZgGZ′g◦ZEZ′Eσ2

gE

)
, where Zg and ZE are the corresponding inci-

dence matrices that connect phenotypes with genotypes and environments, respectively, “◦”
represents the cell-by-cell product between two matrices also know as Hadamard or Shur
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product, and σ2
gE is the corresponding variance component. The resulting linear predictor

is
yij = µ + Ej + Li + gi + gEij + εij (3)

2.3. Cross-Validation Schemes

To assess the ability of the different prediction models for delivering accurate results,
four prediction scenarios that are of interest for breeders were considered. These prediction
scenarios attempt to mimic different realistic prediction problems that breeders might
face [38] at different stages of the breeding pipeline. Figure 2 presents the four different
cross-validation scenarios using as example a hypothetical population of 48 genotypes to
be observed in 6 environments. The different colors (vertical lines) correspond to a fivefold
assignation of either phenotypes (CV2, and CV0) or genotypes (CV1, and CV00).

CV2 (tested genotypes in observed environments), corresponds to the scenario of
predicting incomplete field trials where some genotypes have been observed in some envi-
ronments but not in others. In this case, the genotypes of interest are probably observed in
other environments and also other genotypes have been already observed in the environ-
ment(s) of interest. A random fivefold assignation, represented with different colors (black,
gray, red, yellow and blue) in the top left panel of Figure 2, was considered. Here the
phenotypic data was randomly assigned to each one of the five folds (colors) maintaining
folds of similar size (~20% of the observations). Then four folds are employed for model
calibration when predicting the remaining fold, and this procedure is sequentially repeated
for all five folds (one at a time).

CV1 (untested genotypes in observed environments), mimics the scenario of predicting
genotypes that have not been observed yet at any of the environments and the goal is
to predict the performance of these genotypes in environments where other genotypes
were already observed. Here, a fivefold cross-validation was implemented by assigning
around 20% of the genotypes to folds (bottom left panel in Figure 2) such that all the
phenotypic records of a genotype are assigned to the same fold (color) avoiding to encounter
phenotypes of the same genotype in different folds. In the bottom left panel in Figure 2,
across environments (horizontal lines) the phenotypes of the 48 genotypes have the same
color, and those genotypes with the same color belong to the same fold. Same as before,
four folds are considered for model training when predicting the remaining fold. This
prediction procedure is sequentially repeated for each one of the five folds (one at a time).

CV0 (tested genotypes in unobserved environments), represents the prediction sce-
nario of predicting the mean performance of genotypes in hypothetical unobserved envi-
ronments. It considers phenotypic information of same and from other genotypes observed
in other environments (training set). In this case, the conventional prediction procedure
consists of leaving one environment out and then use the remaining environments for
model calibration when predicting the excluded environment. This procedure is sequen-
tially repeated for each environment (one at a time). However, in our case, we introduced
an alternative way to conduct the prediction of unobserved environments in an attempt for
preserving similar sample sizes for training and testing sets than in previous schemes. In
this way, it is possible to compare the results of the different cross-validation scenarios with
similar sample sizes. The top right panel of Figure 2 illustrates an example that considers
the prediction of the genotypes in gray color (horizontal lines) in environment 3. In this
case, there is information available of the same genotype but observed in the remaining
5 environments. Here, the same fold assignation as in the CV2 was such that it is possible
to conduct a direct comparison of the accomplished predictive ability between these two
cross-validation scenarios. The prediction procedure consists of sequentially predicting
each one of the five folds in each environment (one at a time). This procedure is repeated
for each environment (one at a time).
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Figure 2. Graphical representation of four cross-validation schemes (CV2, predicting tested genotypes in observed environ-
ments; CV1, predicting untested genotypes in observed environments; CV0, predicting tested genotypes in unobserved
environments; and CV00, predicting untested genotypes in unobserved environments) that preserve comparable training
and testing set sizes. The colored horizontal lines correspond to a fivefold assignation of phenotypes (CV2; top left) and
genotypes (CV1; bottom left) for composing training and testing sets (e.g., consider 4 folds for a training set: black, blue,
red and yellow horizontal lines; while for testing set only one fold is considered: gray color lines). For CV0 (top right) and
CV00 (bottom right), the genotypes represented with horizontal gray lines in environment 3 (Env 3) correspond to the
target prediction set. In addition, for CV00 the horizontal white lines in the remaining environments (1–2, 4–6) correspond
to missing phenotypic information of the target genotypes in other environments. Similar volumes of information for model
training are employed for predicting comparable testing set sizes.

CV00 (untested genotypes in unobserved environments), corresponds to the case of
predicting new genotypes in novel environments. The conventional method for predicting
untested genotypes in unobserved environments consist of discarding from the training
set the phenotypic records of those genotypes in the target environment (testing set), then
predict the performance of those genotypes in the novel environment using the phenotypic
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information available in the calibration environments. However, this procedure poses extra
challenges as the number of common genotypes increases across environments. In our
hypothetical example in Figure 2, all the genotypes were observed in all environments.
Thus, if the phenotypic information for those genotypes in the target environment is dis-
carded across environments, no phenotypic records will be available for model calibration.
However, with the proposed scheme (bottom right panel in Figure 2) only the phenotypic
information of those genotypes in the gray fold is deleted across environments. Then the
information of the remaining folds (colors) in the other environments is used for model
calibration when predicting the gray fold in environment 3. The same procedure is repeated
for the remaining four folds (one at a time) in environment 3. This same procedure is
repeated for the other environments (one at a time).

2.4. Assessment of Predictive Ability within and across Environments

For all cross-validation schemes, the predictive ability was assessed as the within
environments correlation between predicted and observed values. The average correlation
across environments was computed according to [39] for accounting for uncertainty and
the sample size of the environments as

rϕ =
∑I

i=1
ri

V(ri)

∑I
i=1

1
V(ri)

where ri is the Pearson’s correlation between predicted and observed values at the ith

environment, V(ri) =
1−r2

i
ni−2 corresponds to the sampling variance and ni is the number of

observations at the ith environment.

2.5. Variance Components

To assess the relative importance of the different model terms on each one of the
prediction models, a full data analysis (i.e., non-missing values are considered) is conducted
for computing the corresponding variance components. Then, percentage of explained
variability by the zth model term is computed as the ratio between the corresponding
variance component and the sum of all the variance components of the model times 100,(

σ2
z

∑t
z=1 σ2

z
× 100

)
. The percentage of explained variability was computed for each model

for each trait.

2.6. Modules

One of the principal objectives of this manuscript is to provide a template for imple-
menting genomic prediction pipelines in an easy way. First, the different modules that
are used for assembling the pipeline are presented. These modules work in a way that
the outputs of these become the input of other modules in more advanced stages of the
pipeline. The pipeline here presented considers all the different stages from the initial
data sets until the prediction stage. Two examples of these pipelines are provided in the
supplementary section.

The structure of the different modules is as follows: basically, all of these are comprised
of three directories or folders “code”, “input” and “output”. The “code” folder contains
the “mainCode.R” script which performs a specific routine depending on the module. The
“input” folder contains a parameter file “parameters.R” where the inputs of the module are
specified. During the implementation of the different modules, this is the only file that is
modified according to the different conditions (parameters) to consider in the routines. The
“output” folder is used for storing the results. Such that the outputs derived from these
modules (routines) in previous stages will be used as the corresponding inputs in more
advanced stages of the pipeline.

Initially, the phenotypic and genomic data are stored in a common repository/directory
called “1.root.Data”. Then the modules will refer to these data sets at the different stages of
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the pipeline. It is assumed that the genomic and phenotypic information (including missing
values) are available for the same genotypes in both datasets. In our case, “Pheno.csv” and
“SNPs.rda” correspond to the data sets containing the phenotypic and the molecular marker
data. All of the modules used in our pipeline can be found in the ‘modules’ folder in the
supplementary section. For assembling the pipeline at the different stages, these modules
should be copied and renamed, and only the “parameter.R” file should be modified.

2.7. SplittingSNPs: Module for Applying Quality Control on Marker Data

The “SplitingSNPs” module performs the quality control based on missingness of the
marker data by discarding molecular markers that exceed a given proportion of missing
values (PMV). In the “parameters.R” file it should be specified the path (mm.file) to the
marker data set “SNPs.rda”, the highest proportion of missing values PMV (NaN.freq.i) to
tolerate for including a marker SNP in the analysis. After applying the QC, the resulting
set of maker SNPs (“X.csv”) is stored in the “output” folder.

2.8. Gmatrix: Module for Constructing the Covariance Matrices Using Genomic and
Environmental Factors

The “Gmatrix” module is used for constructing the relationship matrices between
pairs of genotypes and between pairs of environments using the matrix of marker SNPs or
the name (or ID) of the environments, respectively. In the “parameters.R” file, the path to
the matrix of phenotypes (phenotype.file) and the path to the matrix of molecular markers
(mm.file) should be specified for computing the kinship matrix using genomic data. If the
value of “mm.file” is declared as “NULL” the covariance structure between genotypes or
between environments is computed using the incidence matrices only. The value of the
smallest allele frequency to tolerate for including markers in the analysis is specified with
the “prop.MAF.j” option. The “colIDy” parameter indicates the column in the matrix of
phenotypes that will be used to link the genotypes with marker data or phenotypes with
environments. The outputs of this module will be store in the “output” folder and these
are the resulting kinship matrix (G.rda), and its corresponding eigen value decomposition
(EVD.rda) which are necessary to compute more elaborate model terms and for setting up
the linear predictor, respectively.

2.9. Z: Module for Constructing Incidence Matrices for Genotypes and Environments

The “Z” module is used to include the main effects of genotypes or environments. In
the “parameters.R” file in the “input” folder, the path to the matrix (phenotype.file) that
contains the phenotypic information and the column (colIDy) that contains the information
of the ID of the genotypes or environments should be specified. In the “output” folder the
resulting incidence matrix “Z.rda” is stored as well as a graphical representation of the
distribution of phenotypes across genotypes or environments (exp.des.pdf).

2.10. Imatrix: Module for Constructing the Interaction Matrix between Markers and
Environments

The “Imatrix” module is used to compute the Hadamard product (or cell-by-cell
product) between two covariance structures. The resulting matrix is needed for including
the interaction between molecular markers and environments [25]. In the “parameters.R”
file in the ”input” folder, the path to the resulting matrices of the two factors (G1.file
and G2.file) that will be considered in the interaction (G and E in our case) should be
specified. The “output” folder will contain the resulting covariance matrix (G.rda) and its
corresponding eigen value decomposition (EVD.rda).

2.11. Preparing.CV1.CV2: Module for Assigning Genotypes and Phenotypes to Folds

This module is used for assigning phenotypes/genotypes to training-testing sets for
CV1 and CV2 cross-validation schemes. In the “parameters.R” file in the “input” folder, it
should be specified the path to the matrix of phenotypes (phenotype.file), the number of
folds to consider (folds) in the cross-validation, the column in the matrix of phenotypes
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(colIDy) that contains the names (IDs) of the genotypes, the type of cross-validation (either
CV1 or CV2 or both). Also, it is possible to fix the seed value needed in the randomization
and it varies between the replicates of the training-testing assignation. The resulting matrix
(Y.csv) will be stored in the “output” folder. This matrix is identical to the initial matrix of
phenotypes except that those column(s) containing the information of the fold assignation
are added at the end of the matrix.

2.12. Preparing.CV0 and CV00 Module

Since one of the goals of this research is to provide a cross-validation scheme that
preserves comparable sample sizes across different cross-validation schemes, the results
from the cross-validation assignation CV1 and CV2 are used as inputs for the assignation of
CV0 and CV00 schemes. For CV0 scheme, the resulting matrix from the previous module
when conducting the CV2 assignation acts as input argument. In the “parameters.file”
in the “input” folder, the path (phenotype.file) to the output file (Y.csv) derived from the
“Preparing.CV2.CV1” module is specified, also the number of folds (it should be the same
number of folds than in the previous output), the column that contains the phenotypic
information (colPhen), and the column that contains the information of the folds (colFolds)
for the CV2 scheme. The “output” folder will contain the resulting matrix of phenotypes.
In this case, depending on the number of folds, the same number of extra columns are
added masking as missing values those phenotypes belonging to the different folds at the
different columns (one column for each fold). For the CV00 assignation, a similar procedure
is performed but in this case, the column of the assignation of folds for CV1 scheme is used
instead. Also, the resulting matrix of phenotypes is stored in the “output” folder.

2.13. Fitting.Models: Module for Performing the Predictions of the Missing Values and Compute
the Variance Components

This module is used for fitting the models, perform the predictions of missing values
and computing the variance components. In the “parameters.R” file in the “input” folder,
the path to the matrix of phenotypes (phenotype.file) and the ID of the partitions (folds) to
be predicted (e.g., ID of the folds [1, 2, 3, 4, and 5] or the ID of the environments [CV0 and
CV00]) are specified. Also, since the BGLR [26,31] R package [40] was used for model fitting
and it is based on the Bayesian framework, it is also necessary to specify the number of
iterations (nIter) for the GIBBS sampler and the number of iterations to be used as burn-in
(burnIn). Then, the linear predictor is built by providing the different models terms and
their corresponding assumptions.

For this, a list is started “AB <- list()” to add the paths to the different model matrices
that were created in previous stages. Such that the ith element of the list corresponds to
the ith model term “AB[[i]] <-”. Also, it is necessary to specify the type of the effects with
“FIXED” for a fixed effect, “BRR” for a random main effect (RR-BLUP) or “RKHS” for the
GBLUP model. In addition, it is necessary to provide the column numbers in the matrix
of phenotypes that contain the ID (colVAR) of the genotypes, the phenotypic information
(colPhen), the different training-testing partitions (colCV, folds or environments), and
set/fix the seed for replicating exactly same the results “set.seed(i)” with the GIBBS sampler.

2.14. Pipeline

Each one of the different stages (2–6) of the pipeline is built using the modules stored in
the repository folder (modules). For this, it is necessary to copy and rename these according
to the different stages and only modify the “parameter.R” file in the “input” folder. The
pipeline starts with the “1.root.Data” folder where the files with phenotypic (Phenos) and
genomic information (SNPs) are stored. The next stage considers the implementation of
quality control (QC) on the genomic data based on missing values and it corresponds to
the “2.splitingSNPs” folder. Here, the path to the matrix of marker SNPs and the PMV
should be provided; the resulting matrix “X.csv” is stored in the “output” folder.

The next stages consider the computation of the different model terms. The main and
the interaction effects are stored in folders “3.Gmatrices” and “4.Imatrices”, respectively.
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In folder “3.Gmatrices”, the covariance matrices for “G” and “E” using the marker data
and the ID of the environments, are computed. In addition, the incidence matrices that
connects phenotypes with genotypes “ZL” and with environments “ZE” are also obtained.
In the “4.Imatrices” folder, the outputs of the covariance matrices “G” and “E” are used to
compute the interaction matrix “G×E”.

The 5th stage corresponds to the training-testing assignation, and it is divided in
3 sections. In the 5.1.CV2.CV1 section, for each replicate (1–10) the folds (5) are assigned for
the cross-validations schemes CV1 (predicting new genotypes in observed environments)
and CV2 (incomplete field trials). The resulting matrices are stored in the corresponding
“output” folder. For the cross-validation CV0 and CV00, the configuration between them
is very similar. Under CV0, in the folder “5.2.CV0” for each trait × replicate combination
the training-testing assignation at each environment is performed by masking as missing
values the corresponding observations derived from the CV2 scheme. While for CV00, the
corresponding observations derived from CV1 scheme were considered.

The 6th stage corresponds to the prediction of missing values and it also comprises
three sections. These correspond to the three different assignation schemes in the previous
stage. Here, the “fitting.Models” module stored in the “modules” folder was implemented.
For CV1 and CV2, for each trait × model × replicate combination, the prediction of the
missing values is conducted, and the results are stored in the “output” folder according to
the different folds (1–5). The model fitting for CV0 and CV00 schemes was performed for
each trait ×model × replicate × fold combination and the resulting predicted values are
stored in the “output” folder.

Finally, the 7th stage considers the computation of the variance components. For
this, the same module as in the previous state “fitting.Modules” was implemented for
each trait ×model combination by performing a full data analysis (i.e., no missing values
were considered). Here, it is necessary to assign “−999” to the “folds” parameter in the
“parameters.R” file. The resulting file “fm_full.R.Data” stored in the output folder contains
the obtained variance components among other objects.

3. Results

Since one of the main objectives of this manuscript is to provide a template for
implementing genomic prediction pipelines in an easy way, the obtained results are briefly
described for both data sets. The supplementary materials section contains the full pipelines
for data sets D1 and D2. The only difference between these two pipelines is that while for
data set D1 the main effect of the environments was considered as fixed, for the second
data set D2 it was treated as random. This was intended in this way to show the flexibility
of the pipeline for considering different assumptions of the model terms.

3.1. D1: Sample of the USDA Collection

Percentage of variability explained by the different model terms.
Table 1 presents for each trait and model, the percentage of variability explained by

each model term. For grain yield, with model M1 (E + L), the main effect of the environ-
ments (E) explains 55.7% of the total variability while the line effect (L) captures 25.2% and
the residual term (R) 19.2%. The main effect of makers (G) introduced in M2 (E + L + G),
captured 14.2% of the variability, and the residual variance (R) was increased to 25.5%
compared with M1 (19.2%). The inclusion of the interaction between markers and environ-
ments (G×E) in M3, captured 9.0% of the total variability and the residual term (R) only
17.6%. Similar trends were observed for the remaining 8 traits. In general, for all traits, the
model that includes the interaction between markers and environments (M3) returned the
lowest residual variance. Also, as expected as the different model terms were added to the
linear predictor, the variability explained by the environmental term (E) was reduced.
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Table 1. Percentage of explained variability by each model term for all traits (9) using phenotypic and genomic data from
the USDA soybean collection for 324 genotypes observed in 6 environments. Three models were considered, and these were
constructed with the following components: E, main effect of environments; L, main effect of genotypes; G main effect of
markers; and G×E for the interaction between genotypes and environments using marker data.

Trait Model E L G G×E R

Yield
M1: E + L 55.7 25.2 19.2
M2: E + L + G 54.1 6.2 14.2 25.5
M3: E + L + G + G×E 51.0 6.8 15.7 9.0 17.6

Height
M1: E + L 41.9 47.5 10.6
M2: E + L + G 48.6 7.8 30.8 12.8
M3: E + L + G + G×E 44.7 7.8 33.9 4.9 8.7

Lodging
M1: E + L 40.8 44.5 14.7
M2: E + L + G 46.4 7.5 26.0 20.1
M3: E + L + G + G×E 42.7 7.2 28.0 6.6 15.3

DaysToR8
M1: E + L 63.6 15.4 21.0
M2: E + L + G 80.2 1.9 14.2 3.7
M3: E + L + G + G×E 76.4 2.0 16.2 2.3 2.9

Oil
M1: E + L 39.6 42.5 17.9
M2: E + L + G 49.5 6.2 20.3 24.0
M3: E + L + G + G×E 46.6 7.0 21.9 10.8 13.7

Protein
M1: E + L 28.5 52.6 18.9
M2: E + L + G 29.3 8.9 37.1 24.8
M3: E + L + G + G×E 26.5 8.5 35.5 14.9 14.6

Seedweight
M1: E + L 36.0 55.8 8.2
M2: E + L + G 49.4 6.5 29.2 14.9
M3: E + L + G + G×E 46.1 6.6 32.8 5.4 9.1

Shaterly
M1: E + L 32.3 19.6 48.1
M2: E + L + G 29.9 7.2 10.6 52.2
M3: E + L + G + G×E 28.6 8.3 9.7 14.4 39.0

Stemtermscore
M1: E + L 40.2 48.0 11.8
M2: E + L + G 49.0 6.1 28.8 16.1
M3: E + L + G + G×E 45.3 6.0 31.6 5.5 11.6

Prediction Accuracy

Table 2 presents the mean (10 replicates) average correlation for 4 cross-validation
schemes (CV2, CV1, CV0, and CV00) and 3 models (M1: E + L, M2: E + L + G, and
M3: E + L + G + G×E). Under CV2, for grain yield, the models M1, M2, and M3 returned
a mean average correlation of 0.576, 0.670, and 0.718, respectively. For CV1, the models
M1-M3 returned a mean average correlation of −0.121, 0.635 and 0.662. While under CV0,
the respective values for these three models were 0.114, 0.135 and 0.163; and for CV00,
−0.010, 0.088 and 0.114. The predictive ability in CV2, CV1, CV0 and CV00 schemes was
benefited when including the interaction between marker genotypes and environments
with model M3. Similar trends were observed for the remaining traits.

3.2. D2: Sample of the SoyNAM

Percentage of variability explained by the different model terms.
Table 3 presents for each trait and model, the percentage of variability explained by

each model term. For grain yield, under model M1 (E+L) the main effect of the environ-
ments (E) explained 68.0% of the total variability while the line effect (L) captured 7.8%,
and the residual term (R) 24.2%. When the main effect of the markers (G) was included
with M2, it captured 5% of the phenotypic variability and the residual term (R) 26.3%.
The genotype by environment interaction (G×E) from M3 captured 7.2% of the variability
and the residual term (R) addressed 20.4%. Also, for all traits the model that included the
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interaction term (M3) returned the lowest un-explained variability captured by the residual
term (R). Similarly than with the previous data set (D1), as the different model terms were
added the variability explained by the environmental term (E) was reduced.

Table 2. Average mean (10 replicates) correlation between predicted and observed values for four cross-validation scenarios,
three models (M1: E + L, M2: E + L + G, and M3: E + L + G + G×E) and 9 traits from a sample of the USDA Soybean
collection comprised of 324 genotypes observed in 6 environments (not all genotypes in all environments).

Trait CV2 CV1 CV0 CV00

M1:
E + L

M2: E +
L + G

M3: E +
L + G +
G×E

M1:
E + L

M2: E +
L + G

M3: E +
L + G +
G×E

M1:
E + L

M2: E +
L + G

M3: E +
L + G +
G×E

M1:
E + L

M2: E +
L + G

M3: E +
L + G +
G×E

Yield 0.576 0.670 0.718 −0.121 0.635 0.662 0.114 0.135 0.163 −0.010 0.088 0.114
Height 0.835 0.835 0.862 −0.087 0.610 0.617 0.260 0.283 0.325 0.024 0.174 0.161

Lodging 0.771 0.808 0.812 −0.113 0.689 0.691 0.208 0.241 0.268 0.015 0.170 0.146
DysToR8 0.592 0.830 0.831 −0.090 0.674 0.676 0.048 0.126 0.142 0.007 0.095 0.102

Oil 0.788 0.832 0.834 −0.110 0.764 0.765 0.190 0.226 0.274 −0.009 0.186 0.188
Protein 0.726 0.757 0.766 −0.105 0.591 0.617 0.193 0.219 0.203 0.008 0.135 0.079

Seedweight 0.913 0.930 0.934 −0.089 0.860 0.861 0.329 0.356 0.464 0.005 0.311 0.353
Shaterly 0.674 0.690 0.649 −0.141 0.555 0.546 0.099 0.099 0.112 0.008 0.109 0.097

Stemtermscore 0.819 0.845 0.858 −0.070 0.710 0.720 0.287 0.315 0.351 0.020 0.233 0.193

Table 3. Percentage of explained variability by each model term for all traits (6) using phenotypic and genomic data from
the SoyNAM experiment for 324 genotypes observed in 6 environments. Three models were considered, and these were
constructed with the following components: E, main effect of environments; L, main effect of genotypes; G main effect of
markers; and G×E for the interaction between genotypes and environments using marker data.

Trait Model E L G G×E R

Yield
M1: E + L 68.0 7.8 24.2
M2: E + L + G 64.7 4.0 5.0 26.3
M3: E + L + G + G×E 63.8 4.0 4.5 7.2 20.4

Moisture
M1: E + L 46.3 4.5 49.2
M2: E + L + G 40.6 3.8 1.7 54.0
M3: E + L + G + G×E 38.9 3.6 1.4 11.6 44.4

Protein
M1: E + L 42.9 27.5 29.5
M2: E + L + G 37.4 9.6 20.4 32.6
M3: E + L + G + G×E 35.3 10.6 20.2 8.5 25.5

Oil
M1: E + L 46.3 30.7 22.9
M2: E + L + G 41.9 13.7 18.6 25.8
M3: E + L + G + G×E 40.1 14.7 18.2 6.5 20.4

Fiber
M1: E + L 32.8 36.8 30.4
M2: E + L + G 25.8 10.4 31.3 32.5
M3: E + L + G + G×E 23.1 11.0 32.3 8.0 25.7

Size (seed)
M1: E + L 47.0 31.9 21.1
M2: E + L + G 41.4 14.3 21.3 23.0
M3: E + L + G + G×E 39.9 15.6 20.7 6.5 17.4

Prediction Accuracy

Table 4 presents the mean (10 replicates) average correlation for 4 cross-validation
schemes (CV2, CV1, CV0, and CV00) and 3 models (M1: E + L, M2: E + L + G, and M3:
E + L + G + G×E). Under CV2, for grain yield the models M1, M2 and M3 returned a
mean average correlation of 0.342, 0.380 and 0.446, respectively. For CV1, the models
M1–M3 returned a mean average correlation of −0.15, 0.296 and 0.373. While under CV0,
the respective values for these three models were 0.197, 0.234 and 0.210; and for CV00,
−0.014, 0.182 and 0.160. Also as expected, the predictive ability under the CV2 and CV1
schemes was slightly improved by including the interaction between marker genotypes and
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environments with model M3. However, for the remaining schemes (CV0 and CV00) the
correlation between predicted and observed values was slightly reduced with the inclusion
of the interaction effect (M3). Similar trends were observed for the remaining traits for all
cross-validations schemes, showing only marginal improvements for oil content (0.647)
under CV0.

Table 4. Average mean (10 replicates) correlation between predicted and observed values for four cross-validation scenarios,
three models (M1: E + L, M2: E + L + G, and M3: E + L + G + G×E) and 6 traits from a sample of the SoyNAM experiment
comprised of 324 genotypes observed in 6 environments (all genotypes in all environments).

Trait CV2 CV1 CV0 CV00

M1:
E + L

M2: E +
L + G

M3: E +
L + G +
G×E

M1:
E + L

M2: E +
L + G

M3: E +
L + G +
G×E

M1:
E + L

M2:
E + L
+ G

M3: E +
L + G +
G×E

M1:
E + L

M2: E +
L + G

M3: E +
L + G +
G×E

Yield 0.342 0.380 0.446 −0.105 0.296 0.373 0.197 0.234 0.210 −0.014 0.182 0.160
Moisture 0.024 0.057 0.281 −0.099 0.076 0.305 0.033 0.031 0.025 0.003 −0.004 0.000
Protein 0.640 0.657 0.689 −0.086 0.474 0.515 0.580 0.614 0.597 −0.013 0.429 0.424

Oil 0.708 0.715 0.737 −0.058 0.469 0.495 0.631 0.631 0.647 −0.014 0.427 0.417
Fiber 0.686 0.698 0.717 −0.057 0.498 0.527 0.654 0.675 0.673 −0.020 0.466 0.463
Size 0.720 0.726 0.757 −0.072 0.432 0.469 0.644 0.673 0.665 −0.013 0.385 0.377

4. Discussion
4.1. Data Analysis

The main objective of this manuscript is to provide a template of a genomic prediction
pipeline easy to implement, modify and adapt to other data sets. For this reason, the results
derived from the implemented pipeline are briefly discussed focusing on the proposed
implementation instead. These two data sets (D1: USDA soybean collection, and D2:
SoyNAM) were already studied in several manuscripts [41,42]. The obtained results from
our study (percentage of variability explained by the different model terms and prediction
accuracy) are in line with the results of these studies.

In general, for both data sets (D1 and D2) and for all traits (15 = 9 + 6) the inclusion of
the interaction term helped to reduce the percentage of variability explained by the envi-
ronmental component. Also, it helped to decrease the non-explained variability addressed
by the residual term. However, while the variability explained by the environmental term
varied between 51% and 55.7% for grain yield in D1, for D2 it ranged between 63.8% and
68%, which represent around 10% of more variability captured by the environmental com-
ponent in D2. A similar trend was observed for the residual term capturing a non-explained
variability ranging between 19.2 and 17.6% for D1 and between 24.2% and 20.4% for D2.
Thus, there was less unexplained variability in D1 which potentially contributed to deliver
higher correlations between predicted and observed values for this data set compared with
D2.

Regarding the predictive ability, across all models, traits and cross-validation schemes,
different results were obtained in both data sets. Under CV2 and CV1 schemes, the correla-
tion between predicted and observed values using molecular marker information (M2 and
M3) was significantly higher for grain yield (0.670–0.718) for D1 than for D2 (0.380–0.446).
While for protein and oil content the results were comparable in both data sets with these
ranging between 0.757 and 0.832 for D1 and between 0.657 and 0.737 for D2. Under CV0
scheme, for D1 in 8 (except for protein content) out of the 9 traits, the M3 model outper-
formed the main effects models M2 while for D2 the M3 model was superior to M2 only for
oil content. Regarding CV00, mixed results were observed; for D1 the M3 model slightly
outperformed M2 in 4 (grain yield, days to maturity, oil content, and seed weight—100) out
of the 9 traits while for D2 for all 6 traits M2 model outperformed M3. Perhaps the larger
genetic diversity in D1 helped to increase the predictive ability of the genomic models (M2
and M3) with respect to D2 where all genotypes were observed in all environments.
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4.2. Flexibility of the Pipeline

There are many implementations to conduct genomic prediction studies such as
BGLR [26,31], rr-BLUP [30], asreml-R [27,28], sommer [29], BWGS [43], and bWGR [32].
However, to our knowledge, there are not available comprehensive examples of genomic
prediction pipelines for conducting exhaustive studies while considering multiple factors.
For example, providing plenty flexibility for selecting markers by applying quality control,
different cross-validation schemes, model terms, model development (different types
of effects and assumptions on these), etc. The pipeline here presented is based on a
collection of modules that perform all the needed tasks that are required to conduct
genomic prediction studies.

4.3. Potential Extensions of the Current Pipeline

The modules here described allow the construction of more elaborated pipelines in an
easy way. For example, studies for finding the optimal quality control [44,45] can be per-
formed by considering different combinations of percentage of missing values (PMV) and
minor allele frequency (maf), different ways for composing training and testing sets [4,41],
different features for sparse testing designs [46], study the distribution of the variance com-
ponents by considering random sets of molecular markers [47], include weather data [38],
leverage the information of correlated traits [48], and predict the performance of hybrid
crosses using genomic inbred data [38] among other studies.

5. Conclusions

GS is a widely adopted method in plant and animal breeding programs, and con-
ceptually its implementation is easy to follow. Initially, it requires a set of genomic and
phenotypic data for model calibration for predicting the performance of candidate geno-
types in target environments. However, in order to achieve the highest prediction accuracy
between predicted and observed values, many factors should be assessed through cross-
validation studies for a correct implementation of GS in real prediction problems.

For this reason, factors such as quality control on marker covariates, suitable cross-
validation schemes mimicking real prediction scenarios, and the election of the prediction
model among others should be evaluated. In most of the cases, the evaluation of these
factors corresponds to minimal variations on the set of parameters to evaluate in the
pipeline. Thus, there is no need to start from scratch the set of analyses when modifying
the levels of the parameter(s) of interest(s). This allows the reuse of already developed
code at different stages of the pipeline. Thus, it is easy to perform simple modifications in
these codes to adapt them to particular cases.

In this study, we provide a set of modules that can be easily assembled to build
complex prediction pipelines where the outputs of the early stages become the input
of the more advanced ones. One feature of the proposed modules is that these can be
used in a black box fashion where the specifics of the different analyses are controlled
with a parameter file and there is no need to modify the main script (mainCode.R). With
respect to the different cross-validation schemes, we provide a novel framework that allows
similar sample sizes in calibration and prediction sets such that the results of the different
prediction scenarios can be directly contrasted.

Finally, with respect to the obtained results in both data sets, we confirm again
the advantages of considering the genotype-by-environment interaction in prediction
models under the cross-validation schemes CV2 and CV1. Under the CV0 scheme, mixed
results were observed for the first data set D1 while for D2 in most cases the main effects
model was slightly superior. With CV00 scheme, no significant differences were observed
for both data sets. We conclude, that using similar sample sizes in training sets the
genotype-by-environment interaction can be leveraged when a portion of the data in the
target environment has been observed via other genotypes while for the case of novel
environments, there is a need of incorporating other sources of information such as soil
and weather data to improve results.



Agriculture 2021, 11, 932 16 of 17

Supplementary Materials: The Supplementary Material for this article can be found online at: https:
//uofnelincoln-my.sharepoint.com/:f:/g/personal/jhernandezjarquin2_unl_edu/EvvrOyt9ZhVCt
Hj1BwToUYIBMOtqT44QPTcDvVKS-RHLcQ?e=dBfDoL (accessed on 27 July 2021).

Author Contributions: R.P., Conceptualization, data collection, data analysis, elaboration of the first
draft. M.G., Conceptualization, provided oversight of the study. D.J., Conceptualization, develop-
ment of the modules, provided oversight of the study and participated in the conceptualization of
the study. All authors have read and agreed to the published version of the manuscript.

Funding: This project was supported by the Agriculture and Food Research Initiative Grant (NEB-
21-176) from the USDA National Institute of Food and Agriculture, Plant Health and Production and
Plant Products: Plant Breeding for Agricultural Production, A1211, Accession No. 1015252.

Data Availability Statement: The original contributions presented in the study are included in the
article/Supplemental Material, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture Trends and Challenges; FAO: Rome,

Italy, 2017; p. 180, ISSN 2522-722X.
2. Food and Agriculture Organization (FAO). The Future of Food and Agriculture—Alternative Pathways to 2050; Food and Agriculture

Organization of the United Nations: Rome, Italy, 2018; p. 224.
3. Harris, J.; Spiegel, J. Food Systems Resilience: Concepts & Policy Approaches (Center for Agriculture and Food Systems).

Available online: https://www.vermontlaw.edu/sites/default/files/2019-07/Food%20Systems%20Resilience_Concepts%20
%26%20Policy%20Approaches.pdf) (accessed on 27 July 2021).

4. Widener, S.; Graef, G.; Lipka, A.E.; Jarquin, D. An Assessment of the Factors Influencing the Prediction Accuracy of Genomic
Prediction Models across Multiple Environments. Front. Genet. 2021, 12, 689319. [CrossRef] [PubMed]

5. Bernardo, R. Breeding for Quantitative Traits in Plants; Stemma Press: Woodbury, MN, USA, 2002.
6. Breseghello, F.; Coelho, A. Traditional and Modern Plant Breeding Methods with Examples in Rice (Oryza sativa L.). J. Agric.

Food Chem. 2013, 61, 8277–8286. [CrossRef] [PubMed]
7. Henderson, C.R. Selection Index and Expected Genetic Advance. Statistical Genetics and Plant Breeding; Hanson, W.D., Robinson, H.F.,

Eds.; National Academy of Sciences-National Research Council: Washington, DC, USA, 1963; pp. 141–163.
8. Henderson, C.R. Best Linear Unbiased Estimation and Prediction under a Selection Model. Biometrics 1975, 31, 423. [CrossRef]
9. Henderson, C.R. Applications of Linear Models in Animal Breeding; University of Guelph: Guelph, ON, Canada, 1984.
10. Beaulieu, J.; Doerksen, T.K.; MacKay, J.; Rainville, A.; Bousquet, J. Genomic selection accuracies within and between environments

and small breeding groups in white spruce. BMC Genom. 2014, 15, 1048. [CrossRef]
11. de los Campos, G.; Hickey, J.M.; Pong-Wong, R.; Daetwyler, H.D.; Calus, M.P.L. Whole-genome regression and prediction

methods applied to plant and animal breeding. Genetics 2013, 193, 327–345. [CrossRef] [PubMed]
12. Fernando, R.L.; Grossman, M. Marker assisted selection using best linear unbiased prediction. Genet. Sel. Evol. 1989, 21, 467.

[CrossRef]
13. Soller, M.; Plotkin-Hazan, J. The use marker alleles for the introgression of linked quantitative alleles. Theor. Appl. Genet. 1977, 51,

133–137. [CrossRef]
14. Soller, M. The use of loci associated with quantitative effects in dairy cattle improvement. Anim. Sci. 1978, 27, 133–139. [CrossRef]
15. Bernardo, R. Molecular Markers and Selection for Complex Traits in Plants: Learning from the Last 20 Years. Crop Sci. 2008, 48,

1649–1664. [CrossRef]
16. Bernardo, R. Prediction of Maize Single-Cross Performance Using RFLPs and Information from Related Hybrids. Crop Sci. 1994,

34, 20–25. [CrossRef]
17. Meuwissen, T.H.E.; Hayes, B.; Goddard, M. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics

2001, 157, 1819–1829. [CrossRef] [PubMed]
18. Malosetti, M.; Bustos-Korts, D.; Boer, M.P.; Van Eeuwijk, F.A. Predicting Responses in Multiple Environments: Issues in Relation

to Genotype × Environment Interactions. Crop Sci. 2016, 56, 2210–2222. [CrossRef]
19. Crossa, J.; de Los Campos, G.; Pérez, P.; Gianola, D.; Burgueño, J.; Araus, J.L.; Makumbi, D.; Singh, R.P.; Dreisigacker, S.; Yan, J.;

et al. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 2010,
186, 713–724. [CrossRef] [PubMed]

20. Heslot, N.; Yang, H.-P.; Sorrells, M.E.; Jannink, J.-L. Genomic Selection in Plant Breeding: A Comparison of Models. Crop Sci.
2012, 52, 146–160. [CrossRef]

21. Piepho, H.P. Ridge Regression and Extensions for Genomewide Selection in Maize. Crop Sci. 2009, 49, 1165–1176. [CrossRef]
22. Crossa, J.; Pérez-Elizalde, S.; Jarquin, D.; Cotes, J.M.; Viele, K.; Liu, G.; Cornelius, P.L. Bayesian Estimation of the Additive Main

Effects and Multiplicative Interaction Model. Crop Sci. 2011, 51, 1458–1469. [CrossRef]

https://uofnelincoln-my.sharepoint.com/:f:/g/personal/jhernandezjarquin2_unl_edu/EvvrOyt9ZhVCtHj1BwToUYIBMOtqT44QPTcDvVKS-RHLcQ?e=dBfDoL
https://uofnelincoln-my.sharepoint.com/:f:/g/personal/jhernandezjarquin2_unl_edu/EvvrOyt9ZhVCtHj1BwToUYIBMOtqT44QPTcDvVKS-RHLcQ?e=dBfDoL
https://uofnelincoln-my.sharepoint.com/:f:/g/personal/jhernandezjarquin2_unl_edu/EvvrOyt9ZhVCtHj1BwToUYIBMOtqT44QPTcDvVKS-RHLcQ?e=dBfDoL
https://www.vermontlaw.edu/sites/default/files/2019-07/Food%20Systems%20Resilience_Concepts%20%26%20Policy%20Approaches.pdf)
https://www.vermontlaw.edu/sites/default/files/2019-07/Food%20Systems%20Resilience_Concepts%20%26%20Policy%20Approaches.pdf)
http://doi.org/10.3389/fgene.2021.689319
http://www.ncbi.nlm.nih.gov/pubmed/34367248
http://doi.org/10.1021/jf305531j
http://www.ncbi.nlm.nih.gov/pubmed/23551250
http://doi.org/10.2307/2529430
http://doi.org/10.1186/1471-2164-15-1048
http://doi.org/10.1534/genetics.112.143313
http://www.ncbi.nlm.nih.gov/pubmed/22745228
http://doi.org/10.1186/1297-9686-21-4-467
http://doi.org/10.1007/BF00273825
http://doi.org/10.1017/S0003356100035960
http://doi.org/10.2135/cropsci2008.03.0131
http://doi.org/10.2135/cropsci1994.0011183X003400010003x
http://doi.org/10.1093/genetics/157.4.1819
http://www.ncbi.nlm.nih.gov/pubmed/11290733
http://doi.org/10.2135/cropsci2015.05.0311
http://doi.org/10.1534/genetics.110.118521
http://www.ncbi.nlm.nih.gov/pubmed/20813882
http://doi.org/10.2135/cropsci2011.06.0297
http://doi.org/10.2135/cropsci2008.10.0595
http://doi.org/10.2135/cropsci2010.06.0343


Agriculture 2021, 11, 932 17 of 17

23. Burgueño, J.; Campos, G.D.L.; Weigel, K.; Crossa, J. Genomic Prediction of Breeding Values when Modeling Genotype ×
Environment Interaction using Pedigree and Dense Molecular Markers. Crop Sci. 2012, 52, 707–719. [CrossRef]

24. Schulz-Streeck, T.; O Ogutu, J.; Gordillo, A.; Karaman, Z.; Knaak, C.; Piepho, H.-P. Genomic selection allowing for marker-by-
environment interaction. Plant Breed. 2013, 132, 532–538. [CrossRef]

25. Jarquín, D.; Crossa, J.; Lacaze, X.; Du Cheyron, P.; Daucourt, J.; Lorgeou, J.; Piraux, F.; Guerreiro, L.; Pérez-Rodríguez, P.; Calus,
M.; et al. A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor. Appl.
Genet. 2014, 127, 595–607. [CrossRef]

26. de los Campos, G.; Pérez-Rodríguez, P. BGLR: Bayesian Generalized Linear Regression, R package Version 1(3); R Foundation for
Statistical Computing: Vienna, Austria, 2013.

27. Butler, D.; Cullis, B.; Gilmour, A.; Gogel, B.J. ASReml-R Reference Manual, Version 3. Training and Development Series, No. QE02001;
Queensland Department of Primary Industries: Queensland, Australia, 2009.

28. Butler, D.G.; Cullis, B.R.; Gilmour, A.R.; Thompson, R. ASReml-R Reference Manual, Version 4; University of Wollongong:
Wollongong, Australia, 2018. Available online: https://mmade.org/wp-content/uploads/2019/01/asremlRMfinal.pdf (accessed
on 23 September 2011).

29. Covarrubias-Pazaran, G. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer. PLoS ONE 2016, 11,
e0156744. [CrossRef]

30. Endelman, J.B. Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP. Plant Genome 2011, 4.
[CrossRef]

31. Pérez-Rodríguez, P.; de los Campos, G. Genome-wide regression and prediction with the BGLR statistical pack-age. Genetics 2014,
198, 483–495. [CrossRef] [PubMed]

32. Xavier, A.; Muir, W.M.; Rainey, K.M. bWGR: Bayesian whole-genome regression. Bioinformatics 2019, 36, 1957–1959. [CrossRef]
33. Bandillo, N.; Jarquin, D.; Song, Q.; Nelson, R.L.; Cregan, P.; Specht, J.; Lorenz, A. A Population Structure and Ge-Nome-Wide

Association Analysis on the USDA Soybean Germplasm Collection. Plant Genome 2015, 8, 2015. [CrossRef]
34. Diers, B.W.; Specht, J.; Rainey, K.M.; Cregan, P.; Song, Q.; Ramasubramanian, V.; Graef, G.; Nelson, R.; Schapaugh, W.; Wang, D.;

et al. Genetic architecture of soybean yield and agro-nomic traits. G3 Genes Genomes Genet. 2018, 8, 3367–3375.
35. Xavier, A.; Jarquin, D.; Howard, R.; Ramasubramanian, V.; Specht, J.E.; Graef, G.L.; Beavis, W.D.; Diers, B.W.; Song, Q.; Cregan,

P.B.; et al. Genome-Wide Analysis of Grain Yield Stability and Environmental Interactions in a Multiparental Soybean Population.
G3 Genes Genomes Genet. 2018, 8, 519–529. [CrossRef]

36. Habier, D.; Fernando, R.L.; Dekkers, J.C.M. The Impact of Genetic Relationship Information on Genome-Assisted Breeding Values.
Genetics 2007, 177, 2389–2397. [CrossRef]

37. VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [CrossRef] [PubMed]
38. Jarquin, D.; de Leon, N.; Romay, C.; Bohn, M.; Buckler, E.S.; Ciampitti, I.; Edwards, J.; Ertl, D.; Flint-Garcia, S.; Gore, M.A.; et al.

Utility of Climatic Information via Combining Ability Models to Improve Genomic Prediction for Yield within the Genomes to
Fields Maize Project. Front. Genet. 2021, 11, 1819. [CrossRef]

39. Tiezzi, F.; de Los Campos, G.; Gaddis, K.P.; Maltecca, C. Genotype by environment (climate) interaction improves genomic
prediction for production traits in us holstein cattle. J. Dairy Sci. 2017, 100, 2042–2056. [CrossRef] [PubMed]

40. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2019; Available online: https://www.R-project.org/ (accessed on 27 September 2021).

41. Jarquin, D.; Specht, J.; Lorenz, A. Prospects of Genomic Prediction in the USDA Soybean Germplasm Collection: Historical Data
Creates Robust Models for Enhancing Selection of Accessions. G3 Genes Genomes Genet. 2016, 6, 2329–2341. [CrossRef]

42. Persa, R.; Hiroyoshi, I.; Jarquin, D. Use of family structure information in interaction with environments for leveraging genomic
prediction models. Crop J. 2020, 8, 843–854. [CrossRef]

43. Charmet, G.; Tran, L.-G.; Auzanneau, J.; Rincent, R.; Bouchet, S. BWGS: A R package for genomic selection and its application to a
wheat breeding programme. PLoS ONE 2020, 15, e0222733. [CrossRef]

44. Jarquin, D.; Kocak, K.; Posadas, L.; Hyma, K.; Jedlicka, J.; Graef, G.; Lorenz, A. Genotyping by Sequencing for Genomic Prediction
in a Soybean Breeding Population. BMC Genom. 2014, 15, 740. [CrossRef]

45. Jarquín, D.; Howard, R.; Graef, G.; Lorenz, A. Response Surface Analysis of Genomic Prediction Accuracy Values Using Quality
Control Covariates in Soybean. Evol. Bioinform. 2019, 15, 1176934319831307. [CrossRef] [PubMed]

46. Jarquin, D.; Howard, R.; Crossa, J.; Beyene, Y.; Gowda, M.; Martini, J.W.R.; Pazaran, G.C.; Burgueño, J.; Pacheco, A.; Grondona,
M.; et al. Genomic Prediction Enhanced Sparse Testing for Multi-environment Trials. G3 Genes Genomes Genet. 2020, 10, 2725–2739.
[CrossRef]

47. Gage, J.L.; Jarquin, D.; Romay, C.; Lorenz, A.; Buckler, E.S.; Kaeppler, S.; Alkhalifah, N.; Bohn, M.; Campbell, D.; Edwards, J.; et al.
The effect of artificial selection on phenotypic plasticity in maize. Nat. Commun. 2017, 8, 1–11. [CrossRef]

48. Jarquin, D.; Howard, R.; Xavier, A.; Das Choudhury, S. Increasing Predictive Ability by Modeling Interactions between Environ-
ments, Genotype and Canopy Coverage Image Data for Soybeans. Agronomy 2018, 8, 51. [CrossRef]

http://doi.org/10.2135/cropsci2011.06.0299
http://doi.org/10.1111/pbr.12105
http://doi.org/10.1007/s00122-013-2243-1
https://mmade.org/wp-content/uploads/2019/01/asremlRMfinal.pdf
http://doi.org/10.1371/journal.pone.0156744
http://doi.org/10.3835/plantgenome2011.08.0024
http://doi.org/10.1534/genetics.114.164442
http://www.ncbi.nlm.nih.gov/pubmed/25009151
http://doi.org/10.1093/bioinformatics/btz794
http://doi.org/10.3835/plantgenome2015.04.0024
http://doi.org/10.1534/g3.117.300300
http://doi.org/10.1534/genetics.107.081190
http://doi.org/10.3168/jds.2007-0980
http://www.ncbi.nlm.nih.gov/pubmed/18946147
http://doi.org/10.3389/fgene.2020.592769
http://doi.org/10.3168/jds.2016-11543
http://www.ncbi.nlm.nih.gov/pubmed/28109596
https://www.R-project.org/
http://doi.org/10.1534/g3.116.031443
http://doi.org/10.1016/j.cj.2020.06.004
http://doi.org/10.1371/journal.pone.0222733
http://doi.org/10.1186/1471-2164-15-740
http://doi.org/10.1177/1176934319831307
http://www.ncbi.nlm.nih.gov/pubmed/30872917
http://doi.org/10.1534/g3.120.401349
http://doi.org/10.1038/s41467-017-01450-2
http://doi.org/10.3390/agronomy8040051

	Development of a Genomic Prediction Pipeline for Maintaining Comparable Sample Sizes in Training and Testing Sets across Prediction Schemes Accounting for the Genotype-by-Environment Interaction
	Introduction 
	Materials and Methods 
	Phenotypic and Genomic Data 
	Models 
	M1. E + L 
	M2. E + L + G 
	M3. E + L + G + GE 

	Cross-Validation Schemes 
	Assessment of Predictive Ability within and across Environments 
	Variance Components 
	Modules 
	SplittingSNPs: Module for Applying Quality Control on Marker Data 
	Gmatrix: Module for Constructing the Covariance Matrices Using Genomic and Environmental Factors 
	Z: Module for Constructing Incidence Matrices for Genotypes and Environments 
	Imatrix: Module for Constructing the Interaction Matrix between Markers and Environments 
	Preparing.CV1.CV2: Module for Assigning Genotypes and Phenotypes to Folds 
	Preparing.CV0 and CV00 Module 
	Fitting.Models: Module for Performing the Predictions of the Missing Values and Compute the Variance Components 
	Pipeline 

	Results 
	D1: Sample of the USDA Collection 
	D2: Sample of the SoyNAM 

	Discussion 
	Data Analysis 
	Flexibility of the Pipeline 
	Potential Extensions of the Current Pipeline 

	Conclusions 
	References

