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a b s t r a c t

Land use change for bioenergy feedstocks is likely to intensify as energy demand rises

simultaneously with increased pressure to minimize greenhouse gas emissions. Initial

assessments of the impact of adopting bioenergy crops as a significant energy source have

largely focused on the potential for bioenergy agroecosystems to provide global-scale

climate regulating ecosystem services via biogeochemical processes. Such as those pro-

cesses associated with carbon uptake, conversion, and storage that have the potential to

reduce global greenhouse gas emissions (GHG). However, the expansion of bioenergy crops

can also lead to direct biophysical impacts on climate through water regulating services.

Perturbations of processes influencing terrestrial energy fluxes can result in impacts on

climate and water across a spectrum of spatial and temporal scales. Here, we review the

current state of knowledge about biophysical feedbacks between vegetation, water, and

climate that would be affected by bioenergy-related land use change. The physical

mechanisms involved in biophysical feedbacks are detailed, and interactions at leaf, field,

regional, and global spatial scales are described. Locally, impacts on climate of biophysical

changes associated with land use change for bioenergy crops can meet or exceed the

biogeochemical changes in climate associated with rising GHG's, but these impacts have

received far less attention. Realization of the importance of ecosystems in providing ser-

vices that extend beyond biogeochemical GHG regulation and harvestable yields has led to

significant debate regarding the viability of various feedstocks in many locations. The lack

of data, and in some cases gaps in knowledge associated with biophysical and biochemical

influences on landeatmosphere interactions, can lead to premature policy decisions.

Published by Elsevier Ltd.
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1. Introduction

Between 30 and 40% of total global ice-free land is devoted to

pasture or cropland [1]. Much of the remaining land is

considered unsuitable, inaccessible, or inappropriate for

agricultural development. The agricultural development that

has occurred in recent years been focused in the tropics and

has led to regional deforestation with extreme ecological and

climatological consequences. The spatial and ecological limits

of arable land combined with the effects of growing global

energy and dietary demands in a changing climate necessitate

comprehensive assessment of how to optimize the services

that agro-ecosystems provide. Recently, the fraction of arable

land being devoted to bioenergy production has increased,

largely due to the increased fraction of harvested maize (Zea

mays) being apportioned to ethanol production in the United

States and increased sugarcane (Saccharum officinarum) pro-

duction in Brazil (Fig. 1). The change in land use associated

with increased bioenergy production will lead to biogeo-

chemical and biophysical impacts on climate and coupled

Fig. 1 e (a) 2012 global distribution of biofuel production (Source: BP statistical review of world energy [105]). (b) Total

Brazilian Sugarcane Production (Source: Brazil Ministry of Agriculture [106]). (c) Percentage of US maize production utilized

for ethanol (Source: USDA Statistics [107]). Map of fraction of land used for sugarcane in Brazil (d), and maize in the US (e)

(Source: Monfreda et al. [108]).
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hydrological cycles [2,112]. The biogeochemical greenhouse

gas impacts of expanded bioenergy agroecosystems have

been extensively studied using gas exchange measurements,

a variety of computational crop models, life-cycle analyses,

and other analysis techniques (e.g. Refs. [3,4,17,28]). There are

important uncertainties of the biogeochemical greenhouse

gas impacts of bioenergy agroecosystems that remain due to

limitations in the analysis techniques. However, the direct

biophysical water and climate impacts of bioenergy expan-

sion and the biophysical interactions with biogeochemical

impacts have received far less attention, and large un-

certainties on the magnitude of biophysical impacts remain.

The regulation of climate and water are important

ecosystem services that can be valued across a spectrum of

spatial scales. At global scales biogeochemical processes

associated with changing greenhouse gasses (GHGs) are ex-

pected to dominate future changes in climate. This is one of

the motivating factors for the development of bioenergy, as

replacing fossil fuels with biofuel from well-designed bio-

energy agro-ecosystems could reduce GHG emissions,

although the potential for emissions from direct and indirect

land use change remain an issue (e.g. Refs. [3,4,10]). At smaller

spatial scales direct biophysical regulation of climate and

water can drive the feedbacks between vegetation and local

climate (e.g. Refs. [5,7,12,63]). Land use management or land

cover changes caused by bioenergy development lead to per-

turbations in fluxes of moisture and energy, which influence

local and regional hyrdoclimate. Just as changes in the climate

system are expected to influence vegetation, changes in the

distribution and composition of terrestrial vegetation are ex-

pected to modify hydrology and climate at a range of spatial

scales to differing degrees [6]. For example, climate influences

the extent of evapotranspiration by vegetation occurring at

the surface of the earth, which subsequently alters the energy

stored in atmospheric water vapor as latent heat. Water vapor

is transported via atmospheric circulation and later released

as latent heat when condensation occurs. This energy heats

the local atmosphere, and can lead to the formation of clouds

and precipitation, all of which constitute feedbacks on the

climate system [7].

Bioenergy cropping systems are likely to diversify as the

biofuel industrymatures, ideally leading to the introduction of

regionally appropriate species to the agricultural landscape

[8]. The criteria for the appropriateness of a species for a re-

gion has been defined based on invasion risks, water use,

climate and edaphic suitability, and a range of other metrics.

Together, these criteria can promote enhanced sustainability

of a given bioenergy feedstock in a certain area [9,10]. Intro-

ducing bioenergy crops that differ from existing vegetation at

a given location is likely to alter local and regional hydro-

climate [5,11e14,112]. The magnitude of crop-specific im-

pacts on modulation of moisture and energy fluxes, however,

remains uncertain and it is therefore difficult to assess the

appropriateness of different cropping systems in the context

of water cycling and biophysical climate regulation.

The water use of a given species is not necessarily trans-

ferrable from one field to the next, and the integrated

response of water cycling between a regional landscape and

the atmosphere does not scale directly from individual site

measurements [15]. Similarly, altering the vegetative

composition of a region perturbs the biophysical partitioning

of energy at the earth's surface in a fashion that is closely

coupled to water use. However, observations of the impact of

bioenergy adoption on the surface energy budget (SEB) are

sparse or nonexistent, particularly for advanced bioenergy

crops. Nevertheless, quantifying the fluxes of water and en-

ergy between terrestrial ecosystems and the atmosphere are

of great concern for projecting ecosystem health in response

to climate change. The carbon sink strengths of recognized

bioenergy crops that are being researched have been

described in the scientific literature (e.g. Refs. [3,16,17]), but

the water and energy balances of these agro-ecosystems have

received less attention [2,5,11,14,18].

Uncertainties regarding food vs. fuel and indirect land use

change are leading to increased efforts to utilize abandoned,

idle, and marginal lands for potential bioenergy production

[19e21]. In many cases these lands have been abandoned for

agriculture in the past because nutrient and water limitations

associated with soil quality, climate, or both have led to

agricultural production becoming uneconomical in the region.

However, the extent of marginal and abandoned lands are

subjected to the vagaries of global markets and politics, where

rises in grain prices, changes in policy incentives, and new

laws may lead to marginal and abandoned land becoming

economically viable. For example, it has been recently sug-

gested that an observed westward expansion of Midwestern

USmaize intomarginal grasslands of the Dakotas, Minnesota,

Nebraska, and Iowa could be directly tied to the rising market

value of the crop [22]. The net effect of land use change on the

SEB and hydroclimate may not be self-evident. Part of the

uncertainty associated with these shifts in land use is due to

climatic and hydrological feedbacks occurring across a po-

tential spectrum of spatial scales ranging from the leaf to the

planetary scale. At each of these scales key questions not

currently understood require examination to assess the full

biophysical impacts of bioenergy expansion.

Here we review the link between vegetation and climate in

a bioenergy context, focusing on the following fundamental

questions:

(1) How does climate dictate the potential suitability of a

region for bioenergy development, and what is the po-

tential for bioenergy agro-ecosystems to influence

water cycling and climate at a variety of spatial scales?

(2) What are the open scientific questions that must be

addressed at each scale to assess the biophysical

climate impacts of water and energy regulating services

in a bioenergy agro-ecosystem?

(3) What observational and computational tools are

needed to reduce uncertainty in assessments of bio-

energy feedbacks to climate?

To address these questions Section 2 describes how cli-

matic limitations constrain the spatial extent of bioenergy

agro-ecosystems, and where opportunities exist for bioenergy

expansion. Section 3 reviews how the surface energy budget

influences biophysical feedbacks of vegetation on climate,

and introduces some key uncertainties in assessing these

feedbacks. Section 4 details processes that influence bio-

physical water and energy regulation at the leaf, plant-field,

b i om a s s a n d b i o e n e r g y 7 1 ( 2 0 1 4 ) 1 8 7e2 0 1 189

http://dx.doi.org/10.1016/j.biombioe.2014.10.007
http://dx.doi.org/10.1016/j.biombioe.2014.10.007


regional, and global scales, and presents key questions that

need to be addressed at each scale to reduce uncertainty in

vegetation-climate feedbacks. Specific tools needed to assess

open questions across scales in the vegeta-

tionewatereclimate link are presented in Section 5. Finally,

Section 6 gives an outlook for improved assessments of

vegetation-climate interactions.

2. Climatic limitations and opportunities for
expansion of agro-ecosystems

The area available for expansion of bioenergy agroecosystems

is limited. While the specific changes in land cover associated

with agricultural expansion vary regionally, the majority of

bioenergy croplands that have been developed to date have

been grown in Brazil and the United States as these two

countries account for approximately 68% of global biofuel

production, primarily through maize (US) and sugarcane

(Brazil) harvest (Fig. 1). The regional viability and productivity

of agro-ecosystems, and vegetation in general, are funda-

mentally determined by complex soil and climatological lim-

itations imposed by varying temperature, water, and radiation

[23]. For example, patterns of water limitation can be inferred

by comparing the ratio of evapotranspiration to precipitation

(Fig. 2). As the annual ratio gets closer to one, productivity

becomesmore water-limited and the types of bioenergy crops

that can be grown become restricted to thosewith adaptations

to arid conditions.

Currently, in the United States climatological factors

including precipitation and temperature (Fig. 3a,b) combine to

regionally constrain viable bioenergy crops, and selecting an

optimal feedstock requires balancingmultiple factors [8,24]. In

the Midwest US (red outline in Fig. 3b), perennial grasses such

as miscanthus (Miscanthus � giganteus) and switchgrass

(Panicum vergatum) are well suited to the region. These species

take advantage of carbon concentrating C4 photosynthesis to

generate large yields with efficient water use, minimal fertil-

ization requirements, and permanent rooting stocks that

contribute to soil organic matter. Estimates suggest that

miscanthus could provide 260% more ethanol per hectare

than corn grain in the region with lower environmental costs

[25].

Drought tolerant and water-efficient crops such as sor-

ghum (Sorghum bicolor) and switchgrass would be beneficial in

the relatively arid Great Plains, loosely defined as the region

containing Kansas, Oklahoma, portions of Texas and the

Western Midwest States (Fig. 3b) [26]. In the Eastern United

States, fast growing woody plants such as poplar and willow

are potentially productive bioenergy crops, while along the

Gulf Coast (white outline in Fig. 3b) sugarcane variants

selected for high fiber content (i.e. energy cane) and tropical

grasses are seen as viable crops capable of large energy yields

(Fig. 3c). Although the Southwestern US may appear to be an

unlikely candidate for development of bioenergy agro-

ecosystems due to extreme water limitations, adapted

regional crops are being explored for biofuel production. One

adaption to water limitations that plants utilize is the

Fig. 2 eAnnual ratio of evapotranspiration to precipitationmodeled using a simple LSM described in Ref. [109], and potential

vegetation. As the ratio becomes closer to one, potential bioenergy crops are likely to become more water-limited, and need

to be adapted to thrive in arid conditions.
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Fig. 3 e US climatological JuneeAugust precipitation (a) and temperature (b) from CRU dataset [110]. Climatology is defined

here as the mean of 1961e1990. Also shown is a map of approximate locations where potential bioenergy agroecosystems

may be adopted in the US (c) (adapted from Department of Energy map [111]). The states outlined in red in (b) represent the

Midwest United States for the purposes of this study, and the coast outlined in white denotes the Gulf Coast. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

b i om a s s a n d b i o e n e r g y 7 1 ( 2 0 1 4 ) 1 8 7e2 0 1 191

http://dx.doi.org/10.1016/j.biombioe.2014.10.007
http://dx.doi.org/10.1016/j.biombioe.2014.10.007


Crassulacean Acid Metabolism (CAM) photosynthetic

pathway, distinguished by exceptional water use efficiency

(WUE). Recent research on the suitability of bioenergy pro-

duction in the region has focused on the genus Agave, a group

of obligate CAM plants that have been grown commercially in

this and other semi-arid parts of the world [27]. Similarly, in

other regions of the globe, including East Asia and Africa,

analyses have been done to understand the suitability of local

lands to bioenergy expansion [28e30].

Abandoned cropland that has been classified as ‘marginal’ is

being specifically studied for bioenergy expansion [4,20,21]. In

the US alone, it has been estimated that there are between 40

and 68 Mha of abandoned cropland, although ~2 Mha of that

has been converted to urban areas, and ~21 Mha (largely in the

Northeast US) has undergone afforestation [21]. The approach

of targeting abandoned cropland reduces the potential for in-

direct land use change byminimizing the competition between

bioenergy and food agro-ecosystems for available arable land

[31]. Additional opportunities, such as double-cropping and

utilizing harvest residue, exist to expand bioenergy production

within our existing agricultural infrastructure [32,33]. However,

the long-term sustainability and impacts of these practices on

ecosystem services, including biophysical regulation of water

and climate, must first be established [4,34].

3. Biophysical feedbacks of vegetation on
climate: the role of the surface energy budget

The biophysical feedbacks between vegetation, water, and

climate in agro-ecosystems occur across a continuum of

spatial scales. While key processes spanning spatial scales are

detailed below, many of the impacts manifest themselves as

perturbations to the SEB. Net radiant energy available at the

surface (Rn; Wm�2), which is defined as the sum of net surface

solar and terrestrial radiation, regulates the energetics of

evapotranspiration and is expressed as:

Rn ¼ Sð1� aÞ þ Lw � εsT4 (1)

where S is incoming solar radiation (W m�2), a is albedo (the

integrated reflectance of the surface over the shortwave and

near-infrared regions of the electromagnetic spectrum; unit-

less), Lw is incoming longwave radiation (W m�2), ε is surface

emissivity (unitless), s is the StefaneBoltzmann constant

(5.67 � 10�8 W m�2 K�4), and T denotes surface temperature

(K). Rn is partitioned into sensible (H;Wm�2), latent (L; Wm�2),

and ground (G; W m�2) heat fluxes as:

Rn ¼ Hþ Lþ G (2)

H represents the direct exchange of energy between the

earth's surface and the atmosphere by convection or con-

duction, and G is the conductance of heat into or out of the

soil. Finally, L is the flux of energy between the surface and

atmosphere through the evaporation of water and is directly

related to evapotranspiration:

L ¼ l$ET (3)

where l is the latent heat of vaporization (J mol�1 or J kg�1) and

ET is evapotranspiration (mol m�2 s�1 or kg m�2 s�1).

The partitioning of Rn into sensible, latent, and ground heat

fluxes is strongly influenced by the presence and variation of

vegetation, whichmay tap into reservoirs of stored soil water.

The correct representation of Rn and its partitioning is

essential for diagnosis of landeatmosphere impacts and

assessment of vegetationeclimate impacts across the spec-

trum of spatial and temporal scales [7,35]. Differences in

vegetative covers (e.g., forest or agriculture), including those

associated with variations in bioenergy crop type, are char-

acterized by variability in biophysical parameters (e.g., albedo,

Fig. 4 e Schematic of major impacts of bioenergy adoption

occurring at leaf to global scales as described in Section 4.
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leaf area index [LAI], canopy architecture, rooting depth,

photosynthesis physiology etc.) that affect both Rn and its

partitioning. In modern land surface models the variability in

biophysical parameters is poorly constrained for most eco-

systems, leading to uncertainty in the representation of

vegetation [36,37]. For novel bioenergy agro-ecosystems this

uncertainty is amplified by the lack of measurements of key

biophysical parameters tied to parameterizations of photo-

synthetic capacity, stomatal conductance, respiration, and

plant carbon allocation.

4. Scales of vegetationeclimate interaction

The biophysical interaction between bioenergy crops and

climate occurs within the atmospheric boundary layer and is

defined by the nature of the land surface. There are a variety of

processes by which plants can interact with climate. These

processes operate across a spectrum of spatial and temporal

scales from the leaf to the globe (Fig. 4). This section separates

the spatial spectrum of processes into leaf, plant/field,

regional, and global categories, and reviews important vege-

tationeclimate interactions occurring at each scale. These

categories are meant to be useful as an illustrative concept

and not imply that the processes occurring at each scale are

mutually exclusive.

4.1. Leaf scale

At the leaf surface, the partitioning of energy is analogous to

the land surface balance given in Equation (2), with net

absorbed/emitted radiation at the leaf surface balanced by

latent and sensible heat fluxes (Fig. 4). An estimate of the

latent and sensible heat fluxes between the leaf and atmo-

sphere can be represented by:

HleafzcpghðTl � TaÞ; (4)

Lleafzlgv
esðTlÞ � ea

pa
(5)

where cp is the specific heat of air (J mol�1 K�1 or J kg�1 K�1), TL

is leaf temperature (K), Ta is the air temperature (K), es and ea
are vapor pressures at the leaf surface and in the air (kPa), pa is

atmospheric pressure (kPa) [38]. gh and gv represent leaf con-

ductances (mol m�2 s�1 or mm s�1) of heat and water

respectively. It is useful to consider the leaf conductance of

water as the conductance of water through the leaf boundary

layer in series with the conductance of water through the leaf

stomata:

gv ¼ gsgbl

gs þ gbl
(6)

where gbl is the leaf boundary layer conductance to water

vapor, and gs is the leaf's stomatal conductance of water

vapor.

Stomatal conductance is the key linkage between plants

and climate at the leaf scale. Stomata exert control over the

exchange of water, energy, and carbon between leaves and

their environment and are fundamental drivers for significant

environmental change [38e40]. Under photosynthetic

conditions, stomata allow inward diffusion of CO2, which is

used as a substrate for photosynthesis, while allowing water

to exit the leaf.

Stomata respond to a wide range of environmental condi-

tions including light, humidity, [CO2], and to a lesser extent

temperature [40]. Stomatal conductance is linked to leaf

photosynthesis, which itself is highly responsive to the envi-

ronment [39]. Although we do not currently have a complete

physical understanding of stomatal regulation, the predict-

able means by which stomata respond to the environment led

to the development of an empirical model ([40,41]) that

explicitly links transpiration and the assimilation of CO2 and

implicitly links water and energy at the leaf-scale:

gs ¼ mAnhs

cs
þ b (7)

where gs is the stomatal conductance to water vapor, An is the

net rate of carbon assimilation into the leaf, cs is the concen-

tration of CO2 ([CO2]) at the surface of the leaf, hs is the relative

humidity of air at the leaf surface, and m and b are stomatal

slope and intercept parameters that are typically unique to

individual plant species. This seemingly simple relationship

belies the complexity of the role stomatal conductance plays

in determining the feedbacks between vegetation and climate.

The importance of stomata in regulating the partitioning of

net radiation into latent and sensible heat flux and the re-

sponses of stomata, including its variation, to the environ-

ment are all factors that warrant consideration when land use

changes lead to a transition from one vegetation type to

another. An analogy of the influence that changes in stomata

can play at the landscape level is linked to the gradual in-

crease in atmospheric CO2. As described in Equation (7), rising

[CO2] leads to a decrease in stomatal conductance. If this

decrease in stomatal conductance alters the SEB, the gradual

increase in atmospheric [CO2] since the start of the industrial

revolution should have resulted in decreased evapotranspi-

ration. Some analyses have shown that this response of sto-

mata is a major driver for increased water discharge from

major watersheds in the US, although subsequent studies

have increased the uncertainty of this effect [42e44]. While

Gedney et al. ([42]) linked the increase in surface flow of water

to stomata, mass balance dictates that this increased flow is

directly tied to less evapotranspiration and higher sensible

heat fluxes (e.g. [45]) that directly influence climate through

biophysical feedbacks. Similarly, planting bioenergy crops

with altered stomatal responses relative to the existing

vegetation is likely to perturb the feedbacks between leaf

stomata and climate in much the same manner, although not

necessarily to the same degree or in the same direction.

There exists a large body of scientific research on the

feedbacks between leaf physics and climate (e.g. Refs. [40,41]).

However, important questions remain, including: (1) How

variable are the species-specific parameters, such as those

used in Equation (7), for various potential bioenergy feed-

stocks and how might they differ from the vegetation they

replace? (2) How do species-specific leaf responses scale up to

water use and energy partitioning at the canopy and/or

ecosystem scale? (3) To what extent is the ratio of crop yield to

water usage regulated by stomatal conductance and how can

that inform the suitability of a crop for a given region?
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4.2. Plant-field scale

There are a variety of processes that can influence the link-

ages between vegetation and climate that occur at the plant

and field scale. Plant canopies absorb and partition energy

differently throughout their growing season due to changes in

plant specific radiative properties, canopy architecture, and

physical size. This can contribute to differences in the SEB

between crop types. The differences in SEB can be particularly

acute when considering shifts in land use to bioenergy agro-

ecosystems where plants are commonly selected for high

rates of carbon assimilation and overall yield [25]. These dif-

ferences are complicated by the fact that the partitioning of

energy not only changes seasonally and between vegetation

types, but also within a plant canopy itself where substantial

changes in microclimate occur.

Characteristics suchasplant structureandalbedodetermine

the available radiation throughout the canopy and at the soil

surface. Small changes in overall plant albedo can add up to

significant alterations in the field energy balance. For most

ecosystems,albedovariesbetween~10%and35%,whichcauses

a direct impact on Rn and therefore influences the total energy

available tobepartitioned intofluxesof energyandmoisture [7].

The albedo of an agricultural ecosystem is closely tied to

phenology, canopy architecture, and field row spacing. Plant

specific processes and characteristics such as leaf angle and the

development of reproductive structures can influence plants'
radiative properties and alter the surface albedo. However, the

interplay between crop management and crop phenology may

have a larger influence on the annual balance of Rn [14,46].

With emergence and an increase in LAI, the fraction of soil

exposed to direct radiation decreases, and overall surface al-

bedo increases (Fig. 4) [47]. Using the Midwestern US as an

example, there is a stark contrast in Rn between areas planted

with row-crops and areas dominated by deciduous trees. This

contrast is particularly strong during and after snow events in

late Fall to early Springwhen relatively dark bare trees present

a brown, lower albedo surface to incoming radiation than the

barren, snow-covered, high albedo surface of row-crop fields.

This leads to forested areas absorbing ~40% more radiation

during the winter [48]. The barren crop fields absorbing

significantly less energy during the winter can potentially

lower H in the SEB (Equation (2)) and cool the local air.

After plants reach maturity, the LAI and albedo tend to

decrease as leaves senesce. Many of the promising bioenergy

crops for the region, including perennial grasses, have longer

growingseasons than traditional crops (e.g.maizeandsoybean).

The grasses emerge before traditional crops, and are harvested

later in theyear, possiblyafter snoweventshave likelyoccurred.

This may lead to significant annual radiative differences be-

tween traditional and advanced energy crops, although addi-

tionalwork isneeded toquantify themagnitudeof these effects.

Water use also varies due to plant development and

phenology. Because of rooting depth differences, annual crops

at their early stages of development typically transpire less

water relative to a mature perennial crop and potentially

retain more soil moisture. Consequently, because of peren-

nials' ability to tap into available water reservoirs at greater

depths below the surface, larger fluxes of moisture are

expected for perennial grasses relative to that of annual crops,

with important implications for the spatial distribution of

surface heating (Fig. 4). Longer growing seasons also

contribute to greater fluxes of water [49,50].

Several field-scale studies have highlighted the influence

that planting bioenergy cropsmay have on Rn and the SEB. For

example, recent work over Brazil used satellite data to

examine the impact of vegetation on influencing temperature,

L, and albedo over land transitioning from natural cerrado

(i.e., savanna) to a pasture/crop mix to sugarcane [12]. The

transition of pasture to sugarcane led to a small increase in

albedo, an increase in ET, and a decrease in local temperature

highlighting the influence that adoption of bioenergy crops

may have on regional climate. Similarly, on an annual basis,

important field-scale differences were observed between

traditional annual crops and advanced energy crops in the

Midwest US, with miscanthus and switchgrass transpiring

more water over a growing season thanmaize largely due to a

longer season [18,50].

Historical and empirical knowledge of crops currently

being studied for utilization as advanced bioenergy feedstocks

is lacking relative to many traditional agro-ecosystems. As a

result there remain many important plant-field scale ques-

tions that require examination including: (1) How do the dy-

namics of SEB change based on transitioning from one species

to another, including factors that extend beyond the growing

season such as residue cover and standing biomass? (2) How

do extreme events impact bioenergy crops and their associ-

ated feedbacks on climate? (3) How does climate dictate the

phenological stage of a bioenergy crop, and how will plant

development change with increasing greenhouse gasses? (4)

To what extent do smaller scale leafeclimate interactions

express themselves at the plant-field scale? (5) Howmay plant

engineering influence the suitability and climate feedbacks of

a bioenergy crop for a region?

4.3. Regional scale

At the regional scale the interplay between climate and land

cover is complex and intertwined with natural climate oscil-

lations, as well as changes in regional temperature and pre-

cipitation associatedwith increased GHG emissions. However,

recent research has identified several key connections be-

tween surface land cover and regional climate that are rele-

vant for changing land use associated with bioenergy

expansion.

Regional climate and vegetation are linked through surface

fluxes of energy, moisture, and carbon in the atmospheric

boundary layer. Large-scale shifts in vegetation, such as that

potentially associated with bioenergy crop adoption, can

result in regional redistribution of the H and L components of

energy fluxes between the land surface and the atmosphere

(Fig. 4). These shifts in surface fluxes directly perturb the state

of the atmospheric boundary layer and subsequently regional

climate. For example, potential bioenergy crops are expected

to increase albedo and transpiration relative to existing

vegetation in the Midwestern US. This has been projected to

lead to regional decreases in surface air temperature of 1e2 �C
[5]. Additionally a cooler, moister boundary layer may lead to

perturbations in the regional hydrological cycle through
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changes in soilmoisture, precipitation, and the suppression or

enhancement of clouds [13,14,51e55]. Finally, expansion of

bioenergy agro-ecosystems may lead to regional changes in

the use of irrigation. Multiple studies have illustrated the

impact that irrigation has on surface energy budgets and

regional climate (e.g. Refs. [56e58]).

Differential heating due to regional contrasts in land use

associated with agricultural management decisions (e.g.,

irrigated agriculture with greater ET relative to dry-land agri-

culture) can initiate mesoscale (1e100 km) atmospheric cir-

culations similar to sea breezes [59,60]. Such circulations form

narrow updraft zones, transport moist air from adjacent

patches, and can result in increased local convective rainfall

(e.g. [61]). The magnitude and distribution of vegetation have

consequences for direct transport of heat and energy into the

atmosphere, the triggering of organized convection (and

potentially, enhancement of existing systems), and modifi-

cation of larger-scale atmospheric dynamics [62].

An important indicator of regional land-atmosphere

coupling is the rainfall recycling ratio, or the fraction of pre-

cipitationwithin a region that evaporated off the earth's surface
within the region itself. The strength of land-atmosphere

coupling and the magnitude of the rainfall recycling ratio are

influenced bymany factors, including circulation, atmospheric

stability, and regional vegetation [35,63]. As described above,

heterogeneous patterns of vegetation can alter atmospheric

stability and preferentially initiate precipitation over particular

regions. Also, altering regional cover may perturb the L of a

region and modify the regional recycling ratio. For example, in

the Great Plains of the United States portions of land cover

consist of irrigated cropswith high L. Great Plains irrigationwas

shown to lead to increased regional precipitation and increased

regional recycling ratios [64]. Replacing these crops with more

water efficient bioenergy crops not requiring irrigation could

lower L and alter rainfall recycling in the region.However, these

feedbacks are regionally dependent on mesoscale atmospheric

dynamics, and in some regions increasing L may inversely in-

fluence precipitation (e.g. Refs. [51,52,65e68]).

Extreme hydrological conditions associated with drought

and flood are typically considered regional-scale phenomena.

Understanding the resilience of bioenergy crops to changes in

the frequencies of these conditions will be vital for under-

standing the climate benefits and long-term sustainability of a

feedstock for a given region. Additional questions that need to

be regionally addressed include: (1) To what extent can land

use modify regional temperatures, moisture transport and

storage in the soil and atmosphere, and atmospheric stability?

(2) In a given region are perturbations to the hydrological cycle

important to maintaining sustainable surface water balance?

(3) How will changes in climate due to GHG's alter the suit-

ability of a region for a given bioenergy crop? (4) How do fluxes

of moisture, carbon, and energy between bioenergy crops and

the atmospheric boundary layer respond to future climate,

and will the biophysical impacts of bioenergy crop expansion

improve or degrade regional growing conditions?

4.4. Global scale

At the global scale, the climate andwater systems are largely a

closed system. As such, biophysical perturbations associated

with land use changemay have global-scale non-local effects.

Such effects can occur through changing atmospheric or

oceanic circulation and indirect effects associated with cloud

formation [69,70]. However, the impacts of bioenergy expan-

sion on a global-scale are likely to be dominated by biogeo-

chemical processes that influence the atmospheric GHG

concentrations. One of the primary motivations for the

expansion of advanced bioenergy agroecosystems is the po-

tential for reductions in GHG emissions relative to current

liquid fuel options. Therefore a fundamental question that

must be addressed at the global-scale is: Can large-scale

establishment of bioenergy agro-ecosystems mitigate

changes in climate due to GHG emissions while maintaining

necessary food production and minimizing environmental

degradation? Additionally, there is a question of time rele-

vance. As land is converted to bioenergy crops an initial pulse

of GHG emissions usually, although not always, occurs

[31,71e75]. For some landscapes it has been estimated that

balancing this initial GHG pulse through mitigated emissions

could take >100 years [72,74]. At what timescale is the payback

of this initial GHG pulse throughmitigated emissions useful to

society and to what extent can biophysical influences of land

cover change reduce or extend this payback time through

changes in albedo and surface energy partitioning? Finally,

what techniques and what combinations of bioenergy crops

and existing ecosystems can be utilized tominimize the initial

GHG pulse associated with establishing a new crop?

Advanced bioenergy agroecosystemswill be developed in a

continuously changing climate, with increasing atmospheric

[CO2], as well as other greenhouse gases, temperature, and

hydrological variability likely. Modified atmospheric compo-

sition may redefine the viable spatial extent of a given bio-

energy crop, but also the risk associated with extreme climate

andweather, plant disease, and pests. Determining how these

risks change with time will be vital to sustainable bioenergy

development.

5. Tools needed to address climate
feedbacks in bioenergy agro-ecosystems

As described in the previous section the net feedback between

climate and vegetation is the result of varied effects over a

large range of spatial and temporal scales. This limits the

usefulness of any single tool for assessing the biophysical

climatic impact of converting land to a bioenergy agro-

ecosystem. Instead, a variety of observational techniques

and computational models have been developed to under-

stand the impacts of land use change.

5.1. Common tools currently in use

5.1.1. Brief history of advances
Early pioneering work assessing albedo-induced impacts of

desertification in the Sahel found considerable reduction in

cloud cover and associated rainfall that could occur from

excessive overgrazing [76]. The tools utilized, in their early

stages of development, paved the way for more sophisticated

representation of land surface processes while also
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emphasizing the critical need for remotely sensed monitoring

of relevant biophysical properties.

Initial representation of sensible (H) and latent (L) heating

in first-generation land surface models (LSMs), was treated as

a quasi-diffusive process. G was omitted, and repartitioning

into H and L was idealized via usage of a constant soil water-

holding capacity (the so-called “bucket model” parameteri-

zation), wherein exceeding a prescribed limit in the bucket

was treated as runoff [77]. 2nd generation models improved

upon the passive first-generation approach by accounting for

soil and vegetative treatment, incorporating spatial albedo

variability and accounting for the dependency of canopy

insolation absorption upon differential wavelengths (i.e.,

different absorption spectra for photosynthetically active ra-

diation relative to the near-infrared) [77]. A further advance-

ment was the improved representation of evapotranspiration

through dependence on stomatal conductance (Equation (7))

and the inclusion of key biophysical parameter control (e.g.,

LAI) on ET. Treatment of soil moisture processes added

complexity via vertical transfer through the soil column and

inclusion of soil texture dependent characteristics (e.g., hy-

draulic conductivity). Finally, development of third-

generation models was greatly enhanced by recognizing the

importance of CO2 assimilation, allowing for the representa-

tion of plant carbon uptake and simulation of the carbon cycle

[6,77].

5.1.2. Model implementation
Spatially explicit, seasonally varying green vegetation fraction

and LAI are necessary inputs for modern-day LSMs. Satellite-

derived metrics impose boundary conditions that have

become instrumental for proper treatment of the SEB in LSMs

[78], which have played a central role toward improved un-

derstanding of land-atmosphere interactions. For example,

Weaver and Avissar [79], used observations and a LSM coupled

to an atmospheric model to show that thermally induced

circulations, driven by landscape heterogeneity owing to

agricultural practices, produce diurnal circulations whose

impacts extend beyond local scales.

Advances in the modeling of land-atmosphere coupling,

improved representation of physical land surface processes,

increased computing resources and associated resolution

enhancement have led to considerable recent progress in the

utility of both offline [11] and coupled LSM-atmospheric

models [6,13,54,80] for the examination of hydroclimatic

consequences owing to biofuel expansion. Much of this work

has relied on in-situ observations for the parameterization of

crop types within a numerical modeling framework, high-

lighting the dual importance of process-based modeling and

field measurements.

5.2. Limitations of current tools; key uncertainties
introduced

5.2.1. Diagnostic vs. prognostic parameterizations
Significant progress has been made toward understanding

the implications of land use change on climate. However,

limitations inherent in the representation of fundamental

processes in earth system models remain. One key example

is the inability to resolve the physiological and phenological

responses to anomalous environmental conditions. The

current generation of LSMs used in climate models typically

requires that the development of LAI, the onset of growth,

and senescence (i.e. phenology) be prescribed as set param-

eters in the model, based on historical observations or slight

modifications to these observations (e.g. Ref. [5]). However,

the onset of growth and senescence is a factor that can vary

interannually. Another limitation of prescribing vegetative

characteristics such as LAI, root biomass and rooting depth

is that anomalous conditions (e.g. drought, heat wave,

flooding) can significantly alter canopy carbon uptake and

development through physiological response, which can

consequently modify the value of these important parame-

ters for canopyeatmosphere exchange. Finally, most LSM's
currently only include one or two generic crop types that do

not necessarily represent the unique properties that many

bioenergy crops exhibit. This often limits their usefulness in

assessing crop-specific biophysical impacts on moisture and

energy fluxes.

The limitations of LSM's to represent biophysical impacts

of land use on water and climate have been recently illus-

trated in the Land-Use and Climate, Identification of Robust

Impacts (LUCID) project [81,82]. This project was designed to

test the magnitude of impact that past land use change has

had on climate, and used a series of seven coupled land-

atmosphere models with similarly imposed land use change.

Initial results were inconclusive with minimal consistency

between the model's partitioning of the surface energy bal-

ance at specific times [81]. They concluded that this incon-

sistency was due in large part to differing parameterizations

of albedo, crop phenology, and evapotranspiration, and

pointed to the need for improved evaluation of LSMs [82].

5.2.2. Uncertainties in response to environmental variability
Global change factors (increasing temperature, CO2 and O3,

and shifts in precipitation regimes) are likely to have a sig-

nificant impact on feedbacks between land use change and

climate. Experiments at Free Air CO2 Enrichment (FACE) sites

have tested the impacts of these global change factors on crop

growth. These experiments have found that growth at

elevated CO2 and O3 has been shown to alter the exchange of

carbon and energy from crop canopies (e.g. Refs. [83,84]), a

factor that is rarely included in land-use-change studies [85]

especially at regional scales [48]. This is further complicated

by the varied response of plant species to changing climate

and pollutant concentrations. Differences in vegeta-

tioneclimate interactions among plant species may be dras-

tically different in a future climate. Increasing temperature

can alter carbon uptake by crops [86] as well as vapor pressure

deficit if not met by complementary increases in specific hu-

midity. A full review of FACE results are beyond the scope of

this study, and has been reviewed previously [87].

Because future bioenergy production is expected to occur

on sub-optimal land [21], it will also be crucial to understand

the impacts of small-scale variation in soil quality and land

surface slope on canopyeatmosphere exchange [88]. Another

factor that can have a major influence on land surface prop-

erties and exchange is management. The timing of planting

and harvest as well as tillage and irrigation regimes can have a

profound effect on carbon and energy fluxes [17] [89].
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5.2.3. Model evaluation with measurements
Resolving the impact of uncertainties on the representation of

climate-land use change feedbacks will require a network of

measurements of key multi-scale processes at a range of lo-

cations. Measurements of L, H, and Rn coupled with subsur-

face runoff and atmospheric boundary layer observations of

temperature and humidity are necessary to constrain model

predictions across the soil-vegetation-atmosphere contin-

uum. Leaf level measurements are also required, as processes

at this scale are the major drivers for the fluxes that impact

vegetation-climate feedbacks. Also, satellite products can play

increasingly important roles in assessing vegetation-climate

feedbacks as new sensors and algorithms allow for previ-

ously unavailable large-scale analysis of key biophysical pa-

rameters [90]. In addition to covering the range of spatial

scales and processes listed here, it is important that obser-

vations are taken in a wide enough range of environmental

conditions (e.g. soil type and climate variations) to ensure

simulations are able to represent observations across the full

range of variation. This level of high quality observations will

be necessary for each feedstock type and growing region to

properly quantify the role of land use change for bioenergy on

influencing the vegetation-water-climate feedback system.

The addition of novel observations will help constrain our

understanding of uncertainty in LSMs. However, new tools are

also being developed to synthesize this data into models and

improve the metrics by which these models are evaluated in

order to accelerate model improvements and target observa-

tions needed to reduce model uncertainty [37,91e93]. These

complementary emerging techniques depend on developing

metrics that assess the extent by which parameter uncer-

tainty influences overall model uncertainty, and estimating

the degree by which models are independent of one another.

By incorporating this information into future analyses we will

improve model representations of the land surface and better

characterize the uncertainty associated with modeling feed-

backs between land use and climate.

5.2.4. Moving targets (policy and biotech advances)
The evolving nature of the emerging bioenergy industry also

presents major challenges to accurately quantifying

vegetation-climate feedbacks. Policy at national, state, and

local levels driving bioenergy expansion is likely to be modi-

fied within the life span of a biorefinery (ca. 30 years). Mean-

while, biotechnical advances are likely to produce novel

cultivars or hybrids of feedstocks that could significantly

change the initial predictions of study, with changes in pro-

ductivity intimately tied to canopyeatmosphere exchange.

While there are numerous limitations and challenges associ-

ated with the current state of the science of climate feedbacks

associated with land use change, the body of research con-

ducted to date has laid the foundation for a new generation of

tools and advances that have potential to provide great

insight.

5.3. Necessary tools and expected advances

To perform end-to-end analyses of environmental impacts

and ecosystem services of land use associated with biofuel

production, it is necessary to examine the coupled feedbacks

of the land-atmosphere systemwithin a dynamically evolving

climate model framework. Shared community models are

available (e.g., the Weather Research and Forecasting model

(WRF); [94]) that incorporate well-vetted atmospheric radia-

tion, cloud, and precipitation physics packages. However,

typically lacking in the coupled land-atmosphere models are

physical process representations of crop dynamics, biogeo-

chemical interactions, and water and energy flows through

crops into the surface. These deficiencies must be addressed

to simulate the dynamically coupled effects of land use

change in crop ecosystems. For example, operational LSMs in

WRF do not have plant type representations consistent with

the growing season or biophysical responses of cellulosic

biofuel feedstocks [5,80]. The limited prescription of vegeta-

tion physics in models such as WRF cannot represent the

dynamics of crop senescence associated with hydrologic ex-

tremes [95]. Other regional models have begun to move

beyond static vegetation representations, but these dynamic

vegetation representations are not yet inwide use. In addition,

irrigation and natural lateral flows of surface and ground-

water are also inadequately represented in regional climate

models. The development of such systems with improved

physical processes is needed (e.g. [96e98]).

To assess the coupled nature of landeatmosphere feed-

backs associated with biofuel feedstocks, climate modeling

systems must more accurately represent the vegetation dy-

namics and biogeochemical processes of biofuel and other

natural and agricultural feedstocks, vetted with observational

data of water, energy, greenhouse gas, and nutrient fluxes

(e.g. [99,100]). In addition, hydrologic models in regional

climatemodels require inclusion of surface and below-ground

lateral transports and storage of water [101]. The spatial res-

olution of models used to study these processes must be fine

enough both to accurately simulate clouds and precipitation,

and also represent realistic spatial patterning of land-

atmosphere interaction known to modulate atmospheric

flows, clouds, and rainfall [100,102], on the order of a few ki-

lometers or less. Finally, in addition to expansion of site

measurements, improved remote sensing data and data

assimilation tools must be used for initialization and quanti-

tative evaluation of model improvements (e.g. [103,104]).

6. Outlook

Adopting new bioenergy agro-ecosystems and improving

existing practices will require careful assessment of how po-

tential feedstocks will influence ecosystem services. This

assessment will require advanced knowledge of the biophys-

ical and biogeochemical vegetationeclimate feedbacks that

bioenergy crops experience at a variety of scales. However, as

outlined above there remain open questions that need to be

addressed to improve our understanding of how bioenergy

crops will interact with climate at many scales. Improved

computational and observational tools are necessary in order

to accurately address open questions of vegetation-climate

feedbacks.

Improved understanding of vegetation-climate in-

teractions can lead to enhanced capabilities to optimize the
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selection of a feedstock or variety of feedstocks for a given

region. This will have both political and economic value as

risks associated with developing a nascent bioenergy market

can be reduced, and open questions can be answered to

ensure secure investment and ecologically sustainable

growth.
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