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ABSTRACT
Given a chemical reaction going from reactant (R) to the product (P) on a potential energy surface (PES) and a collective variable (CV)
discriminating between R and P, we define the free-energy profile (FEP) as the logarithm of the marginal Boltzmann distribution of the
CV. This FEP is not a true free energy. Nevertheless, it is common to treat the FEP as the “free-energy” analog of the minimum potential
energy path and to take the activation free energy, ΔF‡

RP, as the difference between the maximum at the transition state and the minimum
at R. We show that this approximation can result in large errors. The FEP depends on the CV and is, therefore, not unique. For the same
reaction, different discriminating CVs can yield different ΔF‡

RP. We derive an exact expression for the activation free energy that avoids this
ambiguity. We find ΔF‡

RP to be a combination of the probability of the system being in the reactant state, the probability density on the
dividing surface, and the thermal de Broglie wavelength associated with the transition. We apply our formalism to simple analytic models
and realistic chemical systems and show that the FEP-based approximation applies only at low temperatures for CVs with a small effective
mass. Most chemical reactions occur on complex, high-dimensional PES that cannot be treated analytically and pose the added challenge of
choosing a good CV. We study the influence of that choice and find that, while the reaction free energy is largely unaffected, ΔF‡

RP is quite
sensitive.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0102075

I. INTRODUCTION

Computer simulations of chemical systems are valuable for the
explanation of their experimental counterparts. In the case of chem-
ical reactions, the quantities of primary interest are equilibrium
constants and reaction rate constants or quantities directly related
to these, i.e., the reaction free energy ΔFRP (difference between free
energies of products and reactants) and the activation free energy
ΔF‡

RP (the difference between free energies of transition state and
reactants). Indeed, the computation of such free energy differences
has a long history.1–7

The kinetics of a chemical reaction can be modeled as a transi-
tion from a reactant well (R) on the potential energy surface (PES) to

a product well (P). The two local minima are separated by a potential
energy barrier that must be overcome as the atomic configuration
changes and the reaction progresses. The total configuration space
is partitioned into (hyper) volumes corresponding to R and P by a
dividing (hyper) surface, the separatrix. The atomic rearrangement
is described by a collective variable (CV) (or reaction coordinate),
which is a function of some subset of Cartesian coordinates that
gives the degree of reaction progress (e.g., 0 at R and 1 at P). In order
to describe a reaction well, one needs to choose a “good” CV, i.e.,
one that distinguishes properly between configurations of R and P.
The CV is chosen so that it has two nonoverlapping domains that
correspond to the domains of R and P. It is practically impossible
to find the optimal CV for a complex realistic system.8 One must,
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therefore, base the choice of CV either on chemical intuition or on
recently developed machine learning-based methods.9–13

The free-energy profile (FEP)14 (also referred to as the potential
of mean force) is defined, up to a scaling constant, as the logarithm of
the marginal Boltzmann distribution of the CV (Fig. 1). The FEP is
determined in practice by molecular dynamics (MD) or Monte Carlo
simulations. Because R and P are often separated by high poten-
tial energy barriers that are not overcome on simulation timescales,
special simulation techniques, such as importance-sampling algo-
rithms, must often be employed to sample configuration space
properly.15–22 These algorithms usually directly yield the FEP.

Contrary to what its name implies, the FEP is not a true
Helmholtz or Gibbs free energy.23 Treating the FEP as if it were a
free-energy analog of the minimum energy path is pervasive in the
field and rarely acknowledged explicitly as the approximation that
it is. Differences in the FEP between local extrema are then misin-
terpreted as reaction and activation free energies (see red highlight
in Fig. 1). We have recently shown that this misconception leads to
significant errors in reaction free energies, ΔFRP.23 The choice of
the CV has a large influence on the FEP. In fact, the FEP has no
meaning independent of the CV23–25 and the structure of the FEP
(e.g., the breadth and depth of local extrema or even their existence)
depends on the CV. Thus, a treatment that relies solely on the shape
of the FEP yields CV-dependent activation free energies. Moreover,
kinetic quantities (e.g., ΔF‡

RP) derived from the FEP, which depends
solely on the PES and does not account for particle masses, must
be approximations. The rigorous formula for ΔF‡

RP derived here (see
green highlight of Fig. 1 and Sec. II E) is independent of the precise
mathematical form of the CV, as long as it discriminates between R
and P. We show below that a poor choice of CV has an even bigger
impact on ΔF‡

RP than on ΔFRP.
The remainder of this article is organized as follows: In Sec. II,

we first derive an expression for the rate constant kR→P. Then, using
the Eyring equation, we derive the connection between ΔF‡

RP and
kR→P. The physical interpretation of the components that constitute
the correct activation free energy is discussed. In Sec. III, we employ
simple analytic models to assess the error incurred by the common
practice of taking ΔF‡

RP to be the difference between the values of
the FEP at the maximum (transition state) and the minimum at R.
Section IV is devoted to an analysis of the sensitivity of ΔFRP and

FIG. 1. Schematic summary of the present work showing an FEP with minima cor-
responding to reactant (R) and product (P) separated by a maximum. Commonly
assumed, but incorrect, expression for activation free energy highlighted in red.
The expression derived in this work is highlighted in green.

ΔF‡
RP to the choice of the CV. To emphasize the errors that can

result from estimating ΔF‡
RP directly from the FEP, we examine in

Sec. V a numerical one-dimensional model and two realistic chemi-
cal processes. Section VI consists of a summary of our findings and
a discussion of open questions on the computation of the activation
free energy. Our conclusions are summarized in Sec. VII.

II. THEORY
A. Description of the system

The interconversion of R and P is represented by the chemical
reaction

R ÐÐ⇀↽ÐÐP. (1)

State α(=R,P) is defined by the region of configuration space it occu-
pies, designated by Ωα. Thus, we define the configuration integral
associated with the state α by

Zα = ∫
Ωα

dx e−βU(x). (2)

Here, x = (x1, x2, . . . , x3N)
T denotes the column vector of Cartesian

coordinates that specify the atomic configuration; dx =∏3N
i=1 dxi is

the 3N-dimensional volume element; U(x) is the potential energy
surface (PES), and β ≡ 1/kBT. Only those configurations x that
belong to Ωα contribute to Zα, which is the effective volume of con-
figuration space occupied by state α. We assume that ΩR and ΩP
constitute the whole configuration space available to the system and
they are separated by a (3N − 1)-dimensional dividing (hyper) sur-
face, normally taken to contain the ridge of the barrier of the PES
between the minima corresponding to R and P.

The course of the reaction can be monitored by a (scalar) CV
(or reaction coordinate), ξ(x), which is a function of a subset of
the atomic coordinates that gives a measure of the progress of the
reaction. The CV is chosen such that ΩR and ΩP correspond to
nonoverlapping domains of the CV. Ideally, the gradient of ξ(x)
should be normal to the dividing surface, on which the CV assumes
a particular value zTS. In this case, the CV discriminates properly
between R and P.

It is convenient to introduce mass-weighted coordinates

x̃ =M1/2x, (3)

where M stands for the 3N × 3N diagonal matrix of atomic masses.
In terms of mass-weighted coordinates, the Hamiltonian is

H = 1
2

3N

∑

i=1
p̃2

i +U(̃x1, x̃2, . . . , x̃3N)

=
1
2

p̃ Tp̃ +U(̃x), (4)

where p̃i = ˙̃xi is the momentum conjugate to the coordinate x̃i.
Henceforth, we employ the condensed notation of the second line
of Eq. (4), where p̃ stands for the column vector of momenta.

B. Curvilinear coordinates
The treatment of the reaction rate is facilitated by employ-

ment of a special set of coordinates, one of which is the CV. Hence,
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we transform from mass-weighted coordinates to a complete set of
curvilinear coordinates, q = q(̃x), of which we take q1(̃x) = ξ(̃x).
From the inverse transformation x̃ = x̃(q), we obtain

˙̃x = Jq̇, (5)

where [J]ij = ∂x̃i
∂qj

is an element of the Jacobian. The momentum
conjugate to q is

p =Mqq̇, (6)

where

Mq = JTJ, (7)

the mass matrix in curvilinear coordinates, is also referred to as the
mass-metric tensor (see, for example, Refs. 2 and 26–28). In gen-
eral, Mq is a full matrix. The Hamiltonian is given in curvilinear
coordinates by

H = 1
2

pTM−1
q p +U(q). (8)

From Eq. (7), we deduce the following expression for the effective
inverse mass matrix:

[M−1
q ]ij =

3N

∑

k=1
[J−1
]ik[J

−1T
]kj

= (∇x̃ qi)
T
(∇x̃qj), (9)

where we employ [J−1
]ik =

∂qi
∂x̃k

and (∇x̃ qi)
T
= (∂qi/∂x̃1,∂qi/∂x̃2,

. . . ,∂qi/∂x̃3N) is the 3N-dimensional mass-weighted gradient.
Using Eq. (3), we get the following from Eq. (9):

[M−1
q ]ij = (∇xqi)

TM−1
(∇xqj). (10)

Note the distinction between ∇x for the Cartesian gradient and ∇x̃
for the gradient with respect to mass-weighted coordinates.

C. Reaction rate constant
We assume the system to be in thermodynamic equilibrium.

Then, the rate of the forward reaction equals the rate of the backward
reaction,

kR→PP(R) = kP→RP(P), (11)

where kR→P and kP→R are the forward and backward rate constants,
respectively, and P(R) and P(P) are the respective probabilities of
observing R and P. The rate can also be expressed in terms of the
frequency ν of crossing the dividing surface in either the forward or
backward direction [i.e., of the number of times per unit time that
ξ(̃x) − zTS changes sign]. Since the forward and backward rates are
equal, either rate must equal ν/2. Thus, focusing on the forward rate,
we have from Eq. (11) that

kR→P =
ν

2P(R)
. (12)

The following alternative expression for the rate constant is
frequently used:29–34

kR→P =
⟨ξ̇ Θ(ξ̇) δ(ξ(̃x) − zTS)⟩p,q

⟨Θ(zTS − ξ(̃x))⟩p,q
. (13)

Here ⟨ ⟩p,q denotes the ensemble average over all of phase
space, δ the Dirac delta function, Θ the Heaviside function, and
ξ̇ the time derivative of the CV. The equivalency of the two
expressions is proven in the supplementary material.

D. Frequency of crossing the dividing surface
The frequency of crossing the dividing surface can be expressed

formally as the time average of the frequency with which ξ(̃x) − zTS
changes sign,35

ν = lim
τ→∞

1
τ∫

τ

0
dt∣

d
dt

Θ[ξ(̃x(t)) − zTS]∣

= lim
τ→∞

1
τ∫

τ

0
dt ∣( ˙̃x (t))T

∇x̃ξ(̃x(t))∣δ(ξ(̃x(t)) − zTS). (14)

A proof of this expression is provided in the supplementary material.
Assuming the system to be ergodic, we can recast the time average
as an ensemble average,

ν = ∫
dx̃ ∫ dp̃ e−βH

∣ ˙̃x T
∇x̃ξ(̃x)∣δ(ξ(̃x) − zTS)

∫ dx̃ ∫ dp̃ e−βH , (15)

where H is given by Eq. (4). We next transform from mass-weighted
to curvilinear coordinates. From Eqs. (5)–(7), we get

˙̃x T
∇x̃ξ = pTJ−1

∇x̃ξ =
3N

∑

i=1
pi(∇x̃ qi)

T
∇x̃ξ, (16)

where the second equality invokes the definition of the inverse Jaco-
bian. Substitution of Eq. (16) into Eq. (15) and transformation to
curvilinear coordinates yield

ν = ∫
dq e−βU(q)

∫ dp e−
β
2 pT M−1

q p
∣∑

3N
i=1 pi(∇x̃ qi)

T
∇x̃ξ∣δ(ξ(q) − zTS)

∫ dq e−βU(q)
∫ dp e−

β
2 pT M−1

q p
.

(17)
To simplify this expression, we exploit the freedom afforded by
curvilinear coordinates. While the “first” is chosen to be the CV,
the remaining 3N − 1 are as yet unspecified. Hence, we require
that q2, q3, . . . , q3N be orthogonal to q1 = ξ, which constraint is
expressed by

(∇x̃ qi)
T
∇x̃ξ = 0, i = 2, 3, . . . , 3N. (18)

In general, the construction of the orthogonal set can be achieved in
a variety of ways.16

Invoking Eq. (18), we can express the kinetic energy as

1
2

pTM−1
q p =

1
2

3N

∑

i=1

3N

∑

j=1
pi(∇x̃ qi)

T
(∇x̃qj)pj

=
1
2
∣∇x̃ξ∣2p2

1 +
3N

∑

i=2

3N

∑

j=2
pi(∇x̃ qi)

T
(∇x̃qj)pj

=
1
2
∣∇x̃ξ∣2p2

1 +
1
2

p′TM′−1p′, (19)

where in analogy to Eq. (9) we define the (3N − 1) × (3N − 1)
inverse mass matrix M′−1 and the (3N − 1)-dimensional momen-
tum vector p′ = (p2, p3, . . . , p3N)

T. Likewise, we can simplify Eq. (16)
as follows:
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3N

∑

i=1
pi(∇x̃ qi)

T
∇x̃ξ = ∣∇x̃ξ∣2p1. (20)

Plugging Eqs. (19) and (20) into Eq. (17), we get

ν =
∫ dq e−βU(q) δ(ξ(q) − zTS) (∫

∞

−∞
dp1 ∣p1∣e−

β∣∇̃x ξ∣2p2
1

2 ∣∇x̃ξ∣2) ∫ dp′ e−
β
2 p′TM′−1p′

∫ dq e−βU(q)
∫ dp e−

β
2 pTM−1

q p
. (21)

Performing the integration on p1 gives

ν = 2kBT ∫
dq e−βU(q) δ(ξ(q) − zTS) ⋅ 1 ⋅ ∫ dp′ e−

β
2 p′TM′−1p′

∫ dq e−βU(q)
∫ dp e−

β
2 pTM−1

q p
.

(22)

Inserting the identity 1 = ∣∇x̃ξ∣(2πkBT)−1/2
∫

∞

−∞
dp1 e−

β∣∇̃x ξ∣2p2
1

2 into
Eq. (22) at the place indicated, we obtain

ν =

√

2kBT
π
∫ dq e−βU(q)

∫ dp e−
β
2 pTM−1

q p
∣∇x̃ξ∣ δ(ξ(q) − zTS)

∫ dq e−βU(q)
∫ dp e−

β
2 pTM−1

q p
.

(23)
Transforming back to Cartesian coordinates yields

ν =

√

2kBT
π
⟨δ(ξ(x) − zTS) ∣∇x̃ξ∣⟩, (24)

where ⟨ ⟩ indicates the ensemble average over configuration space.
Using the fact that

ρ(z) = ⟨δ(ξ(x) − z)⟩ = Z−1
∫ dx δ(ξ(x) − z) e−βU(x) (25)

is the normalized probability density of observing an atomic
configuration x such that ξ(x) = z, we can recast Eq. (24) as

ν =

√

2kBT
π

ρ(zTS)⟨∣∇x̃ξ∣⟩zTS

=

√

2kBT
π

ρ(zTS)⟨

√

(∇xξ)TM−1
(∇xξ)⟩

zTS

= ⟨

¿

Á
ÁÀ

2kBT
πmξ

⟩

zTS

ρ(zTS), (26)

where ⟨ ⟩zTS
signifies an average over the dividing surface. The

second line of Eq. (26) follows from Eq. (3); the third line implic-
itly defines mξ , which we interpret as the effective mass of the
pseudo-particle associated with the coordinate ξ(x),

m−1
ξ = (∇xξ)TM−1

(∇xξ) = [M−1
q ]11

, (27)

which is the 1,1 element of the inverse mass-metric tensor [see
Eq. (10)].2,26–28 Finally, combining Eqs. (12) and (26), we obtain

kR→P = ⟨

¿

Á
ÁÀ

kBT
2πmξ

⟩

zTS

ρ(zTS)

P(R)
. (28)

E. Free energy of activation
Eyring’s equation relates the rate constant to a free energy

of activation by defining a modified equilibrium constant for the
formation of activated complex from reactant R (see, for example,
Ref. 36). In the present notation, the equation is

kR→P =
kBT

h
e−βΔF‡

RP , (29)

where h is the Planck constant. We use the symbol F for the
Helmholtz free energy in order to distinguish it from the free-
energy profile denoted by A [see Eq. (32)]. We solve Eq. (29) for the
activation free energy and combine the result with Eq. (28) to get

ΔF‡
RP = −kBT ln

ρ(zTS)⟨λξ⟩zTS

P(R)
, (30)

where λξ ≡
√

h2
/2πmξkBT. We interpret λξ as the de Broglie thermal

wavelength of the pseudo-particle associated with the CV.
By expanding the logarithm in Eq. (30), we can recast the

“exact” expression for the activation free energy as

ΔF‡
RP = −kBT ln ρ(zTS) + kBT lnP(R) − kBT ln ⟨λξ⟩zTS

= A(zTS) + kBT ln∫
ΩR

dz ρ(z) − kBT ln ⟨λξ⟩zTS
. (31)

The second line of Eq. (31) depends on the definition of the free-
energy profile (FEP),16,23

A(z) = −kBT ln ρ(z), (32)

and on the relation23

P(R) = ∫
ΩR

dz ρ(z). (33)

A frequently employed procedure is to set the activation free energy
equal to the difference between the maximum of the FEP at zTS and
the minimum at zR,min,

ΔF̃‡
RP = A(zTS) − A(zR,min). (34)

We place a tilde on this formula to distinguish it from the “exact”
one in Eq. (30). Thus, ΔF̃‡

RP can be viewed as an approximation.
For example, if the density is strongly peaked about zR,min, then
kBT lnP(R) ≈ −A(zR,min), according to Eqs. (32) and (33). Under
this condition, the approximate formula agrees with the exact, except
for the term −kBT ln ⟨λξ⟩zTS

. Therefore, the influence of distortions
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of the coordinate system induced by ξ(x) is ignored by ΔF̃‡
RP, as is

the influence of mass [see Eq. (27)].
An alternative recasting of the exact formula for the activation

free energy, Eq. (30), is instructive. Invoking the relations23

qR =
ZR

Λ
(35)

and

P(R) = ZR

Z
, (36)

where qR is the molecular partition function of R and
Λ ≡∏3N

i=1

√

h2
/2πmikBT (the product of all Cartesian de Broglie

wavelengths), we rewrite the exact expression as

ΔF‡
RP = −kBT ln[

Zρ(zTS) ⟨λξ⟩zTS

Λ qR
]

= −kBT ln[Zρ(zTS)
⟨λξ⟩zTS

Λ
] + kBT ln qR. (37)

The second term on the right-hand side of Eq. (37) is the negative of

the free energy of R.23 Likewise, if we regard q‡
≡ Zρ(zTS)

⟨λξ⟩zTS
Λ as

the effective partition function with z fixed at zTS, then the first term
is the free energy of the constrained system. That q‡ has the stated
character can be demonstrated explicitly in the case the curvilinear
coordinates form a complete orthogonal set. Then, we can rewrite
Eq. (37) as

ΔF‡
RP = −kBT ln q‡

+ kBT ln qR

= F‡
− FR. (38)

This form of ΔF‡
RP is very intuitive: The activation free energy is the

difference between the free energy of the system constrained to the
dividing surface, F‡, and the free energy of the reactant, FR. More-
over, it is noteworthy that Eq. (38) assumes the same form as the
corresponding expression derived by conventional transition state
theory.36

III. IMPACT OF APPROXIMATING THE ACTIVATION
FREE ENERGY

In order to gauge the error incurred by approximating the acti-
vation free energy ΔF̃‡

RP [Eq. (34)] in comparison to the “exact”
ΔF‡

RP [Eq. (30)], we study the behavior of two analytically treat-
able models. Each consists of a single particle of mass m moving
in one dimension. The PESs are meant to represent a system with
two minima, which are approximated either by square wells (SW)
or by parabolic (harmonic oscillator) wells (HO). Their detailed
treatment is presented in the supplementary material. We take the
difference between approximate and “exact” activation free energy
as a correction term, which we derive to be

corrSW = ΔF‡
SW − ΔF̃ ‡

= kBT ln[
√

2πkBTmL2
R/h2
], (39)

corrHO = ΔF‡
HO − ΔF̃ ‡

= kBT ln[
√

(2π)2k2
BT2m/h2k]. (40)

In Eq. (39), LR denotes the width of the reactant square well. In
Eq. (40), k is the force constant of the harmonic well.

We note that ΔF̃ ‡ does not depend on particle mass (m) (as it
is only derived from a marginal Boltzmann distribution), and in the
one-dimensional case, it depends neither on temperature (T) nor on
the parameters of the PES (LR and k). Thus, we regard the difference
as a correction of ΔF̃ ‡ that accounts for the influence of these para-
meters. Though the corrections for the two models exhibit different
dependencies on the parameters, they can nevertheless be correlated.
We note directly, for example, that both corrections increase at the
same rate with increasing m. Further, both increase with increas-
ing T, although corrHO increases more rapidly. Concerning the PES
parameters, we observe that corrSW increases with increasing LR,
whereas corrHO increases with increasing k−1. This is expected, since
as k decreases, the harmonic potential broadens, allowing the parti-
cle to move in an effectively larger domain of R, just as an increase
in LR does.

The one-dimensional HO model can be roughly correlated with
realistic multidimensional systems. We observe that νR =

√

k/m/2π
is the frequency of oscillation of the particle about the minimum
xR,min. Hence, we can recast the correction given by Eq. (40) as

corrHO = kBT ln(kBT/hνR). (41)

For reactions carried out around room temperature T○ = 300 K,
a reference frequency ν○ = kBT○/h ≈ 6.0 × 1012 s−1 can be defined.
Thus, for molecular vibrations around this frequency, the correc-
tion is negligible. In the typical case, where the masses of constituent
atoms (e.g., H, C, and O) are small, and the bonds are stiff, νR → ν○
and the correction is small. On the other hand, for reactions involv-
ing more massive atoms and “soft” degrees of freedom, νR < ν○ and
we expect substantial corrections.

IV. THE INFLUENCE OF THE CHOICE OF CV
The validity of the formulas describing the activation free

energy [Eq. (30)], and the reaction free energy,23

ΔFRP = −kBT ln
P(P)
P(R)

, (42)

depends on the assumption that the CV distinguishes properly
between R and P, as defined by the dividing surface S. Thus, knowl-
edge of S is crucial to the proper choice of CV. For low-dimensional
model systems, the choice is generally clear, but for realistic multi-
dimensional systems, one usually has little or no information about
S and must base their choice on heuristics and chemical intuition.
Such intuitive CVs can lead to significant errors.

In this section, we systematically explore the influence of the
choice of the CV on ΔFRP and ΔF‡

RP. For this purpose, we employ
the following model: a single particle of mass m moving in two
dimensions on the PES given by

U(x, y) = ϵ(y4
+ x4
− bx2

− cx), (43)

a contour plot of which is shown in Fig. 2. The particle coordinates
x and y are given in units of Å and the energy in units of kJ/mol.
The parameters ϵ, b, and c are taken to be 25 kJ mol−1 Å−4, 2 Å2,
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FIG. 2. Contour plot of PES [Eq. (43)] in units of kJ/mol. Red line is the ideal sepa-
ratrix S. Dotted blue line is the “trial” separatrix S(θ) for θ = 45○, angle between
∇ξ (blue arrow) and S.

and 0.25 Å3, respectively. The parameter ϵ effectively controls the
height of the barrier of the PES between R and P; c controls
the difference between the minima of R and P. The values are
chosen to yield realistic free energies (ΔFRP = −12.28 kJ/mol and
ΔF‡

RP = 16.06 kJ/mol, which is roughly the activation free energy of
the internal rotation of butane37). The ideal CV is ξ(x, y) = x and
the dividing surface coincides with the line x = xmax = −0.067 25 (see
Fig. 2). Clearly, ∇ξ ⋅ ∇U vanishes on S, which is the constraint
that should be obeyed by a CV that properly discriminates between
R and P.35

To vary the choice of the CV systematically, we define the
CV by

ξ(x, y) = ax + (1 − a)y (44)

where a is restricted to the interval [0, 1]. We determine the value
of a by specifying the angle θ between ∇ξ and eS, the unit vec-
tor parallel with the true separatrix S (i.e., ey). In other words, a

and, therefore, ξ, are determined by the condition ∇ξ
∣∇ξ∣ ⋅ eS = cos θ.

(Details of the calculation are provided in the supplementary
material.) Corresponding to a given θ (i.e., a given choice of the
CV) is a “trial” separatrix S(θ), which is a line having the equa-
tion y = −a(x − xmax)/(1 − a), where xmax is the x-coordinate of the
saddle point on the PES. When a = 1, θ = 90○. In this limit, S(90○)
coincides with S. As a decreases from 1 to 0, S(θ) rotates counter-
clockwise about the point (xmax, 0). The trial separatrix S(45○) is
shown in Fig. 2. In the limit a = 0, ∇ξ = ey, θ = 0. Hence, S(0○) is
normal to S, which makes ξ(x, y) = y the worst possible choice of
the CV.

For a given θ, we calculate the probability density ρ(z) using
Eq. (25). As shown in the supplementary material, the evaluation
of the required double integrals is facilitated by transforming from
Cartesian to orthogonal coordinates q1 = ξ(x, y) and q2 = (a − 1)
x + ay. We obtain the FEP using Eq. (32). Illustrative plots of ρ(z)
and A(z) are shown in Figs. 3(a)–3(c) for three CV choices. The local
maximum of the FEP, zmax, defines the domains of R and P. We note,
however, that the FEPs for θ < 32○ lack any such local maximum.
We henceforth ignore these choices, as the CV cannot distinguish R
from P at all.

As a measure of the quality of the chosen CV, we adopt a
modification of the procedure introduced previously,23 which was
to monitor the quantity D(z) = ⟨∣∇ξ(x) ⋅ ∇U(x)∣⟩z . We note that
D(zTS) is exactly zero on S for the ideal CV (i.e., the one that dis-
criminates perfectly between R and P). However, away from S, or
in case the choice of CV is not ideal, D(z) is difficult to inter-
pret, because it depends so strongly on the local gradient of the
PES. To ameliorate this defect, we propose a scaled, dimensionless
orthogonality measure defined by

Ds(z) = ⟨∣
∇ξ(x)
∣∇ξ(x)∣

⋅
∇U(x)
∣∇U(x)∣

∣⟩

z
, (45)

where we replace the gradients of U and ξ with their corresponding
unit vectors. Thus, Ds(zTS) is zero on S for the ideal CV, where the

FIG. 3. Top panel, plots of probabil-
ity density (right ordinate, orange curve)
and FEP (left ordinate, blue curve),
and bottom panel D(z) (left ordinate,
blue curve) and Ds(z) (right ordinate,
orange curve) for three choices of CV: (a)
θ = 90○, (b) θ = 48○ [maximum in
Fig. 4(c)], and (c) θ = 32○, last value for
which the FEP still has a detectable local
maximum.
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gradients of U and ξ are perpendicular, and unity where they are
parallel.

One can see in Fig. 3(d) that for the ideal CV ξ(x, y) = x, D and
Ds have very sharp roots at zTS, indicating that the CV is orthogo-
nal to the separatrix. Because of the symmetry of the PES, the two
measures have two additional roots located at the minima of reac-
tant and product. Ds does not actually reach zero on account of the
finite numerical resolution of our computation. However, the sharp
minima are still visible. Figures 3(e) and 3(f) show the orthogonality
measure for nonideal CVs. The shape of the D-measures changes
drastically. Most significantly, the sharp root or minimum at the
maximum of the FEP turns into a local maximum for both D and
Ds, which is an unmistakable sign that results for these CVs cannot
be trusted (see the dependence of the ΔF‡

RP on θ in Fig. 4).
Using the numerically computed ρ(z), we calculate the reaction

free energy and activation free energy, which are given, respectively,
by Eqs. (42) and (30), where we set zTS = zmax. In Fig. 4, we plot
ΔFRP, ΔF‡

RP, D(zmax), and Ds(zmax) as functions of θ. Figure 4(d)
shows clearly how sensitive Ds(zmax) is to the choice of CV. At
θ = 90○ Ds(zmax) vanishes, since the chosen CV coincides with the
ideal one. But, as θ decreases, Ds(zmax) rises sharply over a narrow
interval of about 10○. That is, for large θ, ∇U and ∇ξ are almost
orthogonal, whereas with decreasing θ, they become nearly parallel.
The fall off of Ds(zmax) as θ decreases from about 45○ is due to the
interference of force vectors that are almost isotropically distributed,
and result in essentially randomized alignment of the force and CV
gradient vectors.

Since ρ(z) is strongly peaked around the minima of R and P
(see Fig. 3), the choices of CV in the range of 45○–90○ separate the
minima well. As a consequence, ΔFRP is essentially independent of
the choice in this range [see Fig. 4(a)]. In other words, over this range
of choices, one obtains an accurate value of the reaction free energy.
Only for θ < 45○, where the CV begins to fail to discriminate between
R and P, does the error in ΔFRP set in rapidly.

FIG. 4. Plots of (a) reaction free energy ΔFRP, (b) activation free energy ΔF‡
RP,

(c) orthogonality criterion D(zmax), and (d) scaled criterion Ds(zmax) vs θ. Orange
dashed line indicates θ = 45○. Gray dashed line in (b) guides the eye to 0 kJ/mol.

As seen in Fig. 4(b), the activation free energy is dramatically
more sensitive than ΔFRP to the choice of CV. It deviates from
the correct value by more than “chemical accuracy” (1 kcal/mol)
at θ ≈ 60○. For θ < 40○, ΔF‡

RP even becomes negative. If this were
correct, the rate of reaction would decrease with increasing tem-
perature. This apparent sensitivity can be reasoned as follows: All
points on the true separatrix have very low likelihood. A trial separa-
trix with θ < 90○ includes more likely configurations and, therefore,
overestimates ρ(zTS). Since the true ρ(zTS) is very small, the relative
error is large. For large probabilities, e.g., P(R), the same absolute
error would incur a much smaller relative error. The relative error in
the density directly translates to an absolute error in the activation
free energy because of the logarithm of ρ(zTS) [see Eq. (31)].

The fact that ΔFRP is largely unaffected by the choice of the CV
explains why CVs based purely on chemical intuition can yield reac-
tion free energies comparable with experiment. However, ΔFRP is
expected to become somewhat more sensitive to the choice of CV
for more complex PES. Compared with the reaction free energy, the
activation free energy is generally more sensitive. Hence, to achieve
the same accuracy for ΔF‡

RP and ΔFRP, one must choose the CV with
a great deal of care.

V. PITFALLS IN THE ESTIMATION OF THE ACTIVATION
FREE ENERGY FROM THE FEP

To further illustrate the errors that one may incur by estimat-
ing ΔF‡

RP directly from the FEP alone [i.e., by invoking Eq. (34)], we
consider first a simple one-dimensional model that can be treated
for the most part analytically and then models of two real chemical
processes.

A. One-dimensional model
We consider a single particle of mass m moving in one

dimension on the PES given by

U(x) = ϵ (
b

x + 5
+ e−ax2

−
b

x − 5
), (46)

where ϵ, which controls the steepness of the potential barrier, has
units of kJ/mol. The parameter a, which controls the width of the
barrier, is set to 1 Å−2 and b = 1 Å. The PES, plotted in Fig. 5(a) for
the case ϵ = 5 kJ/mol, has two equal minima separated by a max-
imum at x = 0. Because U(x) diverges as x approaches −5 or 5,
the particle is confined to the domain −5 < x < 5. R and P corre-
spond, respectively, to the domains −5 < x < 0 and 0 < x < 5. The
symmetry of the PES dictates that P(R) = P(P) = 0.5. Therefore,
from Eq. (12), we get

kR→P = ν/2P(R) = ν = kP→R, (47)

where ν is the crossing frequency. From Eqs. (29) and (47), we
deduce the following expression:

ΔF‡
RP = −kBT ln(hν/kBT). (48)

We compute ν by molecular dynamics (MD) simulation, as detailed
in the supplementary material. MD simulations were carried out at
five temperatures in the range of 100–1000 K and for five different
particle masses in the range of 1–100 amu.
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FIG. 5. (a) PES U(x) with ϵ = 5 kJ/mol [Eq. (46)]; (b) FEP for CV ξ = x [Eq. (49)];
(c) FEP for CV ξ = 1

x+5
[Eq. (50)].

We consider two CVs: ξ1(x) = x and ξ2(x) = 1/(x + 5). Using
Eq. (32), we obtain the corresponding FEPs,

A1(z) = U(z) + kBT ln Z, (49)

A2(z) = U(z−1
− 5) + 2kBT ln z + kBT ln Z. (50)

Setting ϵ = 5 kJ/mol ensures that even the most massive particle
considered crosses the dividing surface at the lowest temperature
during the 10 ns time interval of the MD simulation. Figures 5(b)
and 5(c) show plots of the FEPs based on Eqs. (49) and (50). We
note the strong distortion of configuration space induced by ξ2(x).
The domains of R and P are reversed, the minima are not equal, and

the maximum of the barrier between R and P does not occur pre-
cisely at z = 0.2, the inverse of the position of the maximum of the
barrier of the PES at x = 0.

Approximate activation free energies obtained according to
Eq. (34) are listed in Table I, along with “exact” values ΔF‡

RP obtained
from Eq. (30), which yields exactly the same result for both CVs,
and from Eq. (48) via MD. The excellent agreement between the
values obtained from Eqs. (30) and (48) is gratifying. According to
Eq. (49), ΔF̃‡

1 should be independent of both temperature and parti-
cle mass. Likewise, ΔF̃‡

2 should depend on temperature, but we note
that by definition ΔF̃‡

2 is independent of mass. Table I bears out these
expectations.

The dominant impression of Table I is the severe lack of agree-
ment between approximate and exact activation free energies. The
impact of the loss of the symmetry of the PES by ξ2 is particularly
evident. Since zTS ≈ zmax, the results in columns a and b, which cor-
respond to the forward reaction, agree quite well, as do those of
columns c and d for the backward reaction. However, the magni-
tudes of the forward and backward activation free energies differ
greatly. Even more noteworthy is the contrary dependence of the
activation free energy on temperature. For the forward reaction, it
decreases with T, whereas for the backward reaction it increases
markedly with T.

Examination of the exact data reveals the following general
trends. At fixed T, ΔF‡

RP increases with particle mass m; the higher
the value of T, the greater the increase. At fixed m, ΔF‡

RP increases
with T; the greater the value of m, the greater the increase. Those are
the same trends observed for the analytical models in Sec. III.

To see the influence of the parameter ϵ, we set ϵ = 50 kJ/mol.
Unbiased molecular dynamics simulations were not performed for
this choice of ϵ as no barrier crossings would be observed within
the previously employed simulation time. Figure S2 of the supple-
mentary material displays plots of the PES and FEPs and Table II
lists approximate and exact free energies of activation. In this case,
the immediate impression from Table II is the greatly improved
agreement between approximate and “exact” results. Though the
symmetry is still lost by ξ2, the distortion is relatively less severe,
so that forward and backward activation energies differ less. The
contrary dependence of forward and reverse activation energy on
T persists, but it is relatively weaker.

TABLE I. Activation free energies (kJ mol−1) for one-dimensional model PES U [Eq. (46)] with ϵ = 5 kJ/mol for selections of temperatures (Kelvin) and particle masses (amu).
ΔF̃‡

1 = A1(zTS) − A1(zR,min). Letters above columns specify following differences: (a) A2(zTS) − A2(zR,min), (b) A2(zmax) − A2(zR,min), (c) A2(zTS) − A2(zP,min), and (d)
A2(zmax) − A2(zP,min). Numbers above columns specify particle masses.

ΔF̃‡
2 ΔF‡ [Eq. (30)] ΔF‡ [Eq. (48)]a

T (K) ΔF̃‡
1 a b c d 1 9 25 49 100 1 9 25 49 100

100 4.53 3.77 3.78 5.09 5.10 4.50 5.41 5.84 6.12 6.42 4.49 ± 0.10 5.48 ± 0.13 5.90 ± 0.29 6.12 ± 0.27 6.22 ± 0.26
200 4.53 3.10 3.13 5.70 5.72 5.56 7.39 8.24 8.80 9.39 5.57 ± 0.09 7.39 ± 0.10 8.24 ± 0.11 8.78 ± 0.11 9.29 ± 0.17
300 4.53 2.50 2.55 6.35 6.40 6.98 9.72 11.00 11.84 12.73 6.97 ± 0.08 9.67 ± 0.06 11.02 ± 0.12 11.83 ± 0.06 12.79 ± 0.16
500 4.53 1.43 1.58 7.79 7.94 10.39 14.96 17.08 18.48 19.97 10.35 ± 0.08 14.96 ± 0.05 17.08 ± 0.08 18.47 ± 0.10 19.93 ± 0.10
1000 4.53 0.00 0.67 11.91 12.58 20.55 29.69 33.93 36.73 39.70 20.47 ± 0.11 29.63 ± 0.16 33.97 ± 0.18 36.74 ± 0.19 39.60 ± 0.17
aν obtained from MD by means of Heaviside function (see the supplementary material). Number after ±-sign is the standard deviation.

J. Chem. Phys. 157, 084113 (2022); doi: 10.1063/5.0102075 157, 084113-8

© Author(s) 2022

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0102075
https://www.scitation.org/doi/suppl/10.1063/5.0102075
https://www.scitation.org/doi/suppl/10.1063/5.0102075


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE II. Activation free energies (kJ mol−1) for one-dimensional model PES U1 [Eq. (46)] with ϵ = 50 kJ/mol for selections
of temperatures (Kelvin) and particle masses (amu). ΔF̃‡

1 = A1(zTS) − A1(zR,min). Letters above columns specify following
differences: (a) A2(zmax) − A2(zR,min) and (b) A2(zmax) − A2(zP,min). Numbers above columns specify particle masses.

ΔF̃‡
2 ΔF‡ [Eq. (30)]

T (K) ΔF̃‡
1 a b 1 9 25 49 100

100 45.30 44.48 45.85 44.32 45.23 45.66 45.94 46.23
200 45.30 43.68 46.40 44.50 46.33 47.18 47.74 48.33
300 45.30 42.90 46.96 45.12 47.86 49.14 49.98 50.87
500 45.30 41.38 48.09 47.12 51.69 53.81 55.21 56.70
1000 45.30 37.77 51.00 54.58 63.72 67.96 70.76 73.73

The trends in ΔF‡
RP noted above for the case ϵ = 5 kJ/mol hold

for ϵ = 50 kJ/mol, but the observed variations are relatively smaller.
For example, whereas the change in ΔF‡

RP for ϵ = 5 kJ/mol at T = 300
K is about 80% over the range of particle mass considered, it is only
13% for ϵ = 50 kJ/mol. A similar observation holds for variations of
ΔF‡

RP with T at fixed m.
We stress that since both CVs perfectly distinguish between R

and P, the computed “exact” activation free energy is identical for
either, even though the CVs are very dissimilar.

B. Chemically realistic model—Mobility
of Cu+ in Cu-chabazite

We consider the realistic three-dimensional model system pic-
tured in Fig. 6(a): a [Cu(NH3)2]

+-complex migrating between
cavities (A and B) in chabazite, a mixed crystal of the family of zeo-
lites. This process is of importance in the deactivation of nitrogen
oxides where copper-exchanged zeolites are used as catalysts.38–42

The migration can be regarded as a “chemical reaction,” in which the
Cu-complex in cavity A or B is the “reactant” or “product,” respec-
tively. The reaction consists of the complex diffusing out of cavity A
through the eight-ring (eight silicon sites) window and into cavity B.
Millan et al.43 have simulated this system by means of ab initio MD
combined with umbrella sampling (for details, see Ref. 43). The CV
they employ, which is depicted in Fig. 6(b), is defined with respect
to the eight-ring window that separates the cavities. It is the projec-
tion of the vector position of the Cu atom onto the normal to the
“average” plane of the central four Si and two O atoms of the ring
that remain nearly in the same plane.

FIG. 6. (a) Migration of Cu(NH3)
+
2 complex from cavity A through eight-ring

window into cavity B. (b) Depiction of the CV.

Our primary purpose is to analyze the data of Millan et al.43 in
order to determine the exact values of the reaction free energy and
activation free energy for the migration reaction described above.
We are especially interested in the effect of mass on the activation
free energy. The authors of Ref. 43 supplied the coordinates of the
trajectories and the bias used for the umbrella sampling for every
frame. We implemented the CV in pyTorch44 to gain easy access
to ∇ξ and, consequently, m−1

ξ [see Eq. (27)], through the automatic
differentiation in Torch. We computed the weights of every frame
with an in-house implementation of MBAR.45 The weights were
used to recompute the FEP and compare it with the result of Mil-
lan et al.,43 as well as to compute the conditional ensemble average
of m−1

ξ needed for the calculation of ⟨λξ⟩zTS
[see Eq. (30)].

The FEPs are plotted in Fig. 7, which shows that the agreement
of our FEP with that of Millan et al.43 is excellent. The probabil-
ity densities are normalized according to ∫

4
−4 dz e−βA(z)

= 1. Millan
et al.43 take the maximum of A(z), located at z = 0.35 Å, to be the
position of the TS. According to the definition of the CV, the TS
should be at z = 0.0 Å. We computed exact and approximate reac-
tion and activation free energies for both choices of the TS. Table III
shows very clearly the large influence of mass on the activation free
energy. Further, the approximate free energies (ΔF̃AB and ΔF̃‡

AB)
obtained by us agree well with those of Millan et al.43 The precise
choice of zTS has little effect on the activation free energies, because
the FEP is quite flat around z = 0.

Since Millan et al.43 used the same CV for all of the systems
they simulated, the correction of the activation free energy should
be about the same for all. Therefore, the correction should not affect

FIG. 7. Comparison of FEP for the reaction and CV depicted in Fig. 6 obtained in
the present study with that reported in Ref. 43.
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TABLE III. Comparison of approximate and exact free energies (kJ mol−1) for
migration of Cu(NH3)2 complex in chabazite..

zTS (Å) ΔFAB ΔF̃AB ΔF‡
AB ΔF̃‡

AB

Reference 43 0.35 ⋅ ⋅ ⋅ 1.5 ⋅ ⋅ ⋅ 17
Present study 0.35 2.8 1.6 26.2 18.1
Present study 0.00 2.8 1.6 25.8 17.6

the ordering of the barriers (ΔF̃‡
AB) they determined approximately.

However, we would expect any comparison with experimental acti-
vation barriers to depend strongly on the difference between the
approximate and exact treatments.

C. Chemically realistic model—Radical cyclization
As a second chemical example, we consider the intramolecular

cyclization of the 5-hexenyl radical (see Fig. 8), a radical clock reac-
tion.46 The forward reaction involves the formation of a new single
bond and the conversion of a C–C double bond to a single bond.
Carbon single bonds are usually stiff and have high activation bar-
riers, as reflected in the experimental activation free energy for the
cyclization, ΔF‡

exp(300 K) = 42 ± 4 kJ/mol.47 Hence, we expect the
approximate relation in Eq. (34) to hold.

As CV, we choose the distance between the two carbon atoms
(C1 and C5) that form a new bond, ξ = d(C1 − C5). The associated
mass mξ is constant and equal to the reduced mass of the two carbon
atoms (i.e., 6 amu).

The system was simulated at 300 K by means of ab initio MD
at the ωB97M-V/def2-TZVP48,49 level of theory and solvated in ben-
zene with the COSMO continuum solvation model.50 We employed
WTM-eABF51–53 as enhanced sampling algorithm. The unbiased
weights were recovered with the recently developed combination
of eABF and MBAR.54 Details of the simulation are given in the
supplementary material.

The FEP [Fig. 9(a)] shows one deep minimum for P (methyl-
cyclopentane radical) and three shallow minima for R (5-hexenyl
radical). We take all configurations with z > 2.2 Å to belong to R.

The scaled orthogonality measure Ds [Eq. (45), Fig. 9(b)] is
lower than 0.25 for almost the entire range of z values, rising sharply
only at the ends of the simulated range. The plot of Ds shows a clear
local minimum near the local maximum of the FEP, indicating that
it is a good CV.

In Table IV, we can see that the exact reaction and activation
free energies obtained from Eqs. (42) and (30), respectively, agree
well with the approximate ones.

FIG. 8. Scheme of the intramolecular cyclization of the reactant 5-hexenyl radical
to the product methylcyclopentane radical.

FIG. 9. (a) Free-energy profile for the reaction shown in Fig. 8. (b) Orthogonality
measure Ds(z).

TABLE IV. Comparison of approximate and exact free energies (in kJ mol−1) for the
reaction shown in Fig. 8.

ΔFRP ΔF̃RP ΔF‡
RP ΔF̃‡

RP ΔF‡
PR ΔF̃‡

PR

−49.1 −51.1 44.9 46.4 94.0 97.5

Hence, this example confirms that Eq. (34) does hold in cases of
high barriers, low temperatures, light CVs, and narrow wells about
the minima of R and P on the PES.

VI. DISCUSSION AND CONNECTION TO PRIOR WORK
This study is not the first work to present expressions for the

rate constant and activation free energy based on transition state
theory.29–34,55 However, previous work often lacks a stepwise deriva-
tion of their expression for the rate constant. Further, Refs. 55
and 34, which also present equations for the activation free energy,
still include local differences of the FEP in their final expressions,
which can thus be interpreted as corrections to the approximate
treatment. Because of complex notation, it is difficult to verify
whether their expressions are equivalent to our Eq. (30). It is per-
haps due to the complexity of the equations and lack of physical
interpretability that their expressions have not been widely adopted.
Therefore, we are motivated to present a meticulous and straight-
forward derivation of the exact formula [Eq. (30)] for the activation
free energy ΔF‡

RP for the two-state process from a reactant R to a
product P in a novel form. The formula involves three key quanti-
ties having clear physical interpretations. Two of these, ρ(zTS) and
P(R) = ∫ΩR

dz ρ(z), depend only on ρ(z), the marginal probability
density that the CV ξ(x) takes the value z. The third, ⟨λξ⟩zTS

, can be
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rewritten as
√

h2
/2πkBT⟨

√

m−1
ξ ⟩zTS

to indicate explicitly the depen-

dence on the effective mass of the pseudo-particle associated with the
CV. The three clearly defined terms also facilitate implementation.

The presence of the factor ⟨
√

m−1
ξ ⟩zTS

in the exact formula for

kR→P [Eq. (28)] shows that knowledge of ρ(z) [or alternatively A(z)]
alone is insufficient to determine the rate constant kR→P. We note
that in the “conventional” transition state theory,36 the rate constant
is expressed in terms of canonical partition functions for reactant
and activated complex [minus that associated with the CV (reac-
tion coordinate)] and the discrete masses of the atoms enter into
them. In the present treatment, the effective mass mξ depends not
only on the discrete masses of atoms but also on the gradient of the
CV [see Eq. (27)]. If the CV is linear in the Cartesian coordinates,
then ⟨

√

m−1
ξ ⟩zTS

is readily expressible explicitly in terms of the dis-

crete masses.56 In general, however, the CV-conditioned ensemble
average must be computed.

The “gauge-independent geometric” free-energy profile,
given by

AG
(z) = −kBT ln[ρ(z)⟨∣∇x̃ξ∣⟩z]

= −kBT ln[ρ(z)⟨
√

m−1
ξ ⟩z
], (51)

has been proposed24,25 as an alternative to the “standard” FEP
[Eq. (32)]. Since the geometric FEP at the transition point is related
to ΔF‡

RP according to

AG
(zTS) − kBT ln

√

h2

2πkBT
= −kBT ln[ρ(zTS)⟨λξ⟩TS]

= ΔF‡
RP − kBT lnP(R), (52)

it is also referred to as the “kinetic” free-energy profile.57 On one
hand, like A(z), AG

(z) cannot alone provide ΔF‡
RP. On the other,

unlike A(z), AG
(z) cannot alone furnish ΔFRP. The essential reason

is that e−βAG
(z) is generally not a probability density, whereas e−βA(z)

always is.
We remark on an apparent inconsistency in the dimensions of

terms in Eq. (31), as noted in Ref. 57. We observe that the dimen-
sions of ρ(z) are those of ξ−1 and the dimensions of ⟨λξ⟩ are those of
ξ. The argument of the logarithm is, therefore, dimensionless, as it
should be. Thus, there is no inconsistency. It appears only because of
the tendency to overlook that the definition of the FEP includes an
implicit scaling factor, which is unfortunately rarely, if ever, pointed
out. The same remarks apply as well to the geometric FEP.

VII. CONCLUSION
Our applications of the exact formula for the activation free

energy demonstrate how significant errors can arise when ΔF‡
RP is

approximated simply by the difference between the values of the FEP
at the transition state and reactant.

The often employed procedure to obtain ΔF‡
RP solely from the

FEP {by taking the difference between the values at the transition
state and reactant [Eq. (34)]} is an approximation. If ρ(z) is strongly
peaked in the vicinity of the minimum of R (i.e., at low temperature

and small effective mass mξ), then Eq. (34) may be satisfactory (see
Sec. V C). However, it is especially questionable when the tempera-
ture is high, mξ is large, and the barrier of the PES between R and P
is low (see Sec. V B).

The exact formula for ΔF‡
RP [Eq. (30)] assumes implicitly that

the CV is good (i.e., it is orthogonal to the separatrix). According to
our study of the two-dimensional model PES with a systematically
variable CV, as the CV becomes less good, the reliability of ΔF‡

RP
decreases markedly, while that of the reaction free energy ΔFRP is
only slightly affected. We conclude that one must choose the CV
with considerable caution in order to achieve the same accuracy for
both kinetic and thermodynamic properties.

The exact formulas for ΔF‡
RP [Eq. (30)] and ΔFRP [Eq. (42)]

depend only on CV-conditioned ensemble averages, which are read-
ily available from enhanced sampling simulations via reweighting
techniques.45,54,58–63 Therefore, it should be more convenient to
use these formulas than to resort to alternative special sampling
strategies such as infrequent metadynamics.64,65

In light of the results of the present study and those of our prior
work,23 we recommend less reliance on the FEP alone and more on
the exact formulas, which can be easily evaluated from data provided
by commonly employed advanced-sampling algorithms. The exact
formulas are more reliable and can be clearly related to experimen-
tal data. In this regard, we agree with Ref. 34 that use of the FEP
alone should be discouraged, except we think that ΔF‡

RP is a better
touchstone for comparison between theory and experiment than the
rate constant itself.

SUPPLEMENTARY MATERIAL

The supplementary material contains the following: (1) proof
that Eq. (14) yields the frequency of crossing the dividing surface;
(2) proof of the equivalency of Eqs. (12) and (13); (3) analytical
one-dimensional models of Sec. III; (4) computational details of
Sec. IV; (5) computation of the frequency of crossing the dividing
surface; (6) plots of the FEPs for models of Sec. V A with large ϵ;
and (7) computational details of Sec. V C. A tutorial for the analysis
from Sec. V C can be found at https://github.com/learningmatter-
mit/Tutorial_ActivationFreeEnergy, Ref. 66.

ACKNOWLEDGMENTS
The authors thank Dr. Reisel Millan, who provided full access

to their simulations of chabazite and furnished Fig. 6. J.C.B.D. is
thankful for the support of the Leopoldina Fellowship Program, Ger-
man National Academy of Sciences Leopoldina, Grant No. LPDS
2021-08. C.O. acknowledges financial support by the “Deutsche
Forschungsgemeinschaft” (DFG, German Research Foundation)
within cluster of excellence “e-conversion” (Grant No. EXC 2089/1-
390776260) and Grant No. SFB 1309-325871075 “Chemical Biology
of Epigenetic Modifications” and further support as Max-Planck-
Fellow at the MPI-FKF Stuttgart. R.G.-B. acknowledges support
from the Jeffrey Cheah Career Development Chair.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts of interest to disclose.

J. Chem. Phys. 157, 084113 (2022); doi: 10.1063/5.0102075 157, 084113-11

© Author(s) 2022

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0102075
https://github.com/learningmatter-mit/Tutorial_ActivationFreeEnergy
https://github.com/learningmatter-mit/Tutorial_ActivationFreeEnergy


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Author Contributions

Johannes C. B. Dietschreit: Conceptualization (equal); Data cura-
tion (equal); Investigation (equal); Writing – original draft (equal);
Writing – review & editing (equal). Dennis J. Diestler: Concep-
tualization (equal); Writing – original draft (equal); Writing –
review & editing (equal). Andreas Hulm: Data curation (support-
ing); Writing – original draft (supporting). Christian Ochsenfeld:
Supervision (equal); Writing – review & editing (supporting). Rafael
Gómez-Bombarelli: Supervision (equal); Writing – review & editing
(equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1P. Kollman, Chem. Rev. 93, 2395 (1993).
2Free Energy Calculations, edited by C. Chipot and A. Pohorille (Springer-Verlag,
Berlin, Heidelberg, 2007).
3C. D. Christ, A. E. Mark, and W. F. van Gunsteren, J. Comput. Chem. 31, 1569
(2009).
4C. Chipot, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 71 (2014).
5N. Hansen and W. F. van Gunsteren, J. Chem. Theory Comput. 10, 2632 (2014).
6R. E. Skyner, J. L. McDonagh, C. R. Groom, T. van Mourik, and J. B. O. Mitchell,
Phys. Chem. Chem. Phys. 17, 6174 (2015).
7D. L. Mobley and M. K. Gilson, Annu. Rev. Biophys. 46, 531 (2017).
8P. G. Bolhuis, C. Dellago, and D. Chandler, Proc. Natl. Acad. Sci. U. S. A. 97,
5877 (2000).
9D. Mendels, G. Piccini, and M. Parrinello, J. Phys. Chem. Lett. 9, 2776 (2018).
10Y. Wang, J. M. L. Ribeiro, and P. Tiwary, Nat. Commun. 10, 3573 (2019).
11L. Sun, J. Vandermause, S. Batzner, Y. Xie, D. Clark, W. Chen, and B. Kozinsky,
J. Chem. Theory Comput. 18, 2341 (2022).
12L. Bonati, V. Rizzi, and M. Parrinello, J. Phys. Chem. Lett. 11, 2998 (2020).
13D. Wang and P. Tiwary, J. Chem. Phys. 154, 134111 (2021).
14W. L. Jorgensen, J. Am. Chem. Soc. 111, 3770 (1989).
15G. M. Torrie and J. P. Valleau, J. Comput. Phys. 23, 187 (1977).
16E. Darve and A. Pohorille, J. Chem. Phys. 115, 9169 (2001).
17A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U. S. A. 99, 12562 (2002).
18C. Abrams and G. Bussi, Entropy 16, 163 (2014).
19V. Spiwok, Z. Sucur, and P. Hosek, Biotechnol. Adv. 33, 1130 (2015).
20O. Valsson, P. Tiwary, and M. Parrinello, Annu. Rev. Phys. Chem. 67, 159
(2016).
21P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, Annu. Rev.
Phys. Chem. 53, 291 (2002).
22N. V. Plotnikov, S. C. L. Kamerlin, and A. Warshel, J. Phys. Chem. B 115, 7950
(2011).
23J. C. B. Dietschreit, D. J. Diestler, and C. Ochsenfeld, J. Chem. Phys. 156, 114105
(2022).
24C. Hartmann and C. Schütte, Physica D 228, 59 (2007).
25C. Hartmann, J. C. Latorre, and G. Ciccotti, Eur. Phys. J. Spec. Top. 200, 73
(2011).
26M. Fixman, Proc. Natl. Acad. Sci. U. S. A. 71, 3050 (1974).

27W. K. den Otter, J. Chem. Phys. 112, 7283 (2000).
28W. K. den Otter, J. Chem. Theory Comput. 9, 3861 (2013).
29B. J. Berne, M. Borkovec, and J. E. Straub, J. Phys. Chem. 92, 3711 (1988).
30E. A. Carter, G. Ciccotti, J. T. Hynes, and R. Kapral, Chem. Phys. Lett. 156, 472
(1989).
31P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).
32K. Hinsen and B. Roux, J. Chem. Phys. 106, 3567 (1997).
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