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ABSTRACT: This study investigates erosion dynamics of the past 90 years in three small semi-arid watersheds with histories of
grazing and vegetation change. Activity of 137Cs and excess 210Pb from 18 cores collected from sedimentation ponds were measured
using a gamma spectrometer. The sediment was dated using a constant rate of supply (CRS) model. This study represents the first time
that reservoir sediment accumulation rates determined from fallout isotopes have been verified by direct volumetric measurements of
aggradation based on topographic surveys. Measured sedimentation in the ponds ranged between 1.9 and 2.3 cm y�1, representing
average sediment delivery rates from the watersheds of between 0.6 and 2.0 t ha�1 y�1. These sediment delivery rates were in
agreement with those established by other methods for similar catchments in the region. Past variations in sedimentation rates were
identified and correlated with recorded history of anthropogenic disturbance. 137Cs and 210Pb methods are suitable for use in arid
environments and can complement each other to increase reliability of erosion rate estimates. The abundance of stock ponds in
southwestern USA presents an opportunity to quantify historic erosion and sediment transfer dynamics in areas that have not been
well studied or instrumented. Published 2016. This article is a U.S. Government work and is in the public domain in the USA
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Introduction

The semi-arid environment is characterized by high magnitude,
low frequency rainfalls that produce highly variable soil
erosion rates (Osterkamp and Friedman, 2000; Coppus and
Imeson, 2002). Watersheds in this environment typically have
well developed channel networks with complex storage and
transport mechanisms. The relatively few sediment-producing
runoff events may result in relatively low average annual
sediment yields (Cohen and Laronne, 2005) which are difficult
to estimate without long-term observations (Nearing et al.,
2007; Polyakov et al., 2010a). Scarcity of data on erosion rates
and the nature of watershed storage and delivery processes
impede soil conservation decision making.
Sediments stored in depressions contain a record of

long-term landscape erosion as well as evidence of major
natural and anthropogenic disturbances. Accurate sediment
chronologies are critical for interpreting these records. In the
southwestern United States stock ponds are commonly
constructed on rangelands to harvest water for irrigation,
livestock, and flood control. These ponds present a unique
opportunity for measuring sediment accumulation and erosion
rates on contributing watersheds. Until now this was
accomplished on selected locations through long-term repeti-
tive topographic surveys of aggradation (Nichols, 2006). In this
work we aimed at expanding the tools available for this

purpose by applying isotopic chronostratigraphic techniques
to small artificial rangeland ponds.

An isotope of lead 210Pb (half-life 22.3 years) is commonly
used for dating recent sediment. It originates from the decay
of 226Ra through short lived gaseous 222Rn (half-life 3.8 days).
In a closed system 210Pb remains in equilibrium with its in situ
226Ra source and is called ‘supported’. 210Pb produced from
222Rn that escapes into the atmosphere and precipitates to the
Earth surface is referred to as ‘excess’. Therefore, the soil
surface and more recent sediments exposed to atmospheric
fallout typically contain elevated amounts of 210Pb. When
sediments are buried by new material the excess lead (210Pbex)
in those sediments is no longer replenished from the
atmosphere and decays over time, which reflects the age of
the buried deposit.

A variety of conversion models that derive sediment age from
radiometric data are based on a basic equation formulated by
Krishnaswami et al. (1971) that relates sedimentation rate with
210Pb activity at the point of interest, its excess flux, and isotope
decay rate. Among the most commonly used forms of the
equation are constant initial concentration (CIC), constant flux
constant sedimentation (CFCS) (Appleby, 1998, 2008), and sed-
iment isotope tomography (SIT) models (Carroll et al., 1999).
Mixing and re-deposition of sediment due to hydrological or
biological processes or changes in sediment supply might
violate some of the model’s assumptions. Hence the dates need
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to be validated whenever possible by independent age markers
(Appleby, 2001).

210Pb has been successfully used to determine the age of
recent (100 years) deposits in a variety of marine (Carroll
et al., 1999; Alvarez-Iglesias et al., 2007; Van Eaton et al.,
2010), lacustrine (Turner and Delorme, 1996; Appleby, 2001),
and flood plain (Terry et al., 2011; Aalto and Nittrouer, 2012)
environments. The method has proved to be useful in providing
information on erosion rates and its historic variability on
watersheds contributing to reservoirs (Wren and Davidson,
2011) and is applicable across a wide range of watershed sizes
(12 and 5× 107) and precipitation regimes (340–2500mm y�1)
(Appleby, 2008).
Arid environments present a challenge for the application of

the method due to low rainfall resulting in reduced atmospheric
210Pb flux. However, the method was successfully used in
desert lakes in Chile (Jenny et al., 2002), Egypt (Flower et al.,
2006), and China (Liu et al., 2012). Accumulation rates as
low as 5mm y�1 were measured. Sedimentation processes in
arid stock ponds resemble those in lacustrine environments;
however, accumulation of sediment is intermittent, seasonal,
and defined by episodic flood events. The 210Pb fallout is also
sporadic due to monsoon climate and occasional high rainfall
years. These challenges, however, may be addressed by the
use of independent age markers such as 137Cs (Appleby,
1997; Kirchner, 2011) alongside 210Pb measurements.
The objectives of the study were to: (a) investigate the

applicability of fallout isotope method for chronostratigrapgy
in small, monitored semi-arid ponds; (b) estimate historic
soil erosion and sedimentation rates on selected watersheds;
(c) determine the effect of management and hydrologic regime
on the sedimentation and erosion processes. This study is the
first to apply this method to reservoirs that have been monitored
long-term for runoff and sediment accumulation.

Methods

Location and watershed characteristics

Three watersheds selected for the study were located on the
Walnut Gulch Experimental Watershed (WGEW), which is a

part of upper San Pedro River basin in southeastern Arizona,
USA (Figure 1). The climate in the area is semi-arid, dominated
by North American Monsoon (Sheppard et al., 2002) with
annual precipitation of 270mm y�1 (Table I). The precipitation
is highly spatially and temporally variable with a pronounced
peak in July through mid-September, which accounts for 60%
of annual rainfall. Mean daily temperatures are 24 °C in July
and 10 °C in January.

The soils on watersheds were formed on alluvial fans and are
characterized by shallow A horizon underlain by deep argillic
and calcic horizon. Vegetation is dominated by whitethorn aca-
cia, creosote bush, tarbush, black grama, and curly mesquite.

Each of the three watersheds, numbered 201, 208, and 214,
drains into a stock pond with the same number. Stock ponds
are excavated across the main drainage channel and contained
by an earthen dam with spillway. Water depth in the ponds is
monitored using a stilling well equipped with a float and water
level recorder. Sediment accumulation was measured through
periodic topographic surveys of the surface of each stock pond
when the ponds were dry. This allowed accurate monitoring of
the trapped sediment volume change. Sediment lost through
spillway was estimated from stage records via standard weir
formula, and concentration estimated from depth integrated
sampler. For details about these measurements, their analysis,
and pond instrumentation see Nichols (2006) and Nichols
et al. (2014). Three automated rain gages are located in close
proximity to ponds.

The watersheds are under continuous grazing, although its
intensity is not documented. In June 1971, brush was removed
from Watershed 201 and the watershed was seeded to
Bouteioua curtipendula and gracilis. However, mesquite,
whitethorn and creosote bush have since re-established
throughout the treated area. Sediment dredging was conducted
in pond 201 in 1966 and 1969 totaling 330m3. However, the
spatial distribution of this operation as well as the fate of
the dredged sediment were not documented.

Sample collection and isotope analysis

Profile samples were collected in May–July 2014. One transect
was laid out across the middle of each pond. An access trench

Figure 1. Location of the study sites on Walnut Gulch Experimental Watershed. [Colour figure can be viewed at wileyonlinelibrary.com]
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was excavated along each transect to the depth of 1.5 to 3m all
the way through the depositional layer, as approximately
identified by color and texture.
The samples were collected from the wall of the trench along

vertical profile at 15 cm depth increments. Individual profiles
were located along the trench 3 to 5m apart depending on
the pond. Seven profiles were sampled on watershed 201, six
on 208, and five on 214, with a total of 237 samples (Table I).
Sediment samples were dried and ground to <2mm fraction,
placed into 170mL polypropylene jars with air-tight lid, and
incubated for >25days to achieve secular equilibrium in the
226Ra – 210Pb decay chain.
The analyses for 137Cs and 210Pb was performed at the

Southwest Watershed Research Center using a gamma ray
spectrometry system consisting of two high-purity germanium
detectors (Canberra BE5030) with >30% relative efficiency
andmulti-channel analyzer (Lynx). The detectors were enclosed
in 100mm thick lead shields. The system was calibrated using
mixed radionuclide reference material IAEA-447 (Shakhashiro
et al., 2012) certified by the International Atomic EnergyAgency.
The gamma emission spectrum was obtained over 0–2MeV
range with resolution of 0.24 keV (8192 channels). Measure-
ment and spectrum analysis was conducted using Genie-2000
Spectroscopy software (Canberra, 2009). The samples were
counted for at least 160 000 s or until <5% peak area uncer-
tainty was achieved. Activity of 137Cs was calculated directly
from the 661.6 keV photopeak and 210Pbex was calculated as
the difference between 210Pbtotal and 214Pb at equilibrium.
Background gamma activity was determined using container
blanks. The analysis included correction for self-attenuation
due to variation of sample density (Quindos et al., 2006).

Calculation of sedimentation and erosion rates

Due to non-monotonic variation of the 210Pbex concentration
with depth, we chose to use the CRS (constant rate of supply)
conversion model (Appleby and Oldfield, 1978) to determine
sediment accumulation rates in the ponds:

t i ¼ 1
λ
ln

A 0ð Þ
Ai

� �

where ti is the age of sediment at depth i, λ is radioactive
decay constant of 210Pb (0.03114 y�1), and A(0) and Ai are
unsupported 210Pb inventory at depth 0 and i , respectively.

The CRS model is based on the following assumptions:
(a) the rate of deposition of 210Pbex from the atmosphere is
constant; (b) 210Pbex is quickly adsorbed to particulate matter;
and (c) the initial concentration in any sediment layer will thus
vary in inverse proportion to the sedimentation rate. The CRS
model has been tested and validated in lakes with variable
accumulation rates with good results (Turner and Delorme,
1996; Appleby, 2008; Ahn et al., 2010).

Accuracy of sediment dating by the CRS model, particularly
deeper layers, is greatly influenced by the estimate of total
inventory A(0)obtained via integration of the 210Pb profile.
Although the exact date of stock ponds construction is
unknown, it is less than 90 years (approximately 4.5 210Pb
half-lives). This means that 210Pb concentration at the lowest
sediment layer just above the original (excavated) bottom of
the pond is not at equilibrium constituting a case of incomplete
inventory. To correct A(0) a reference depth for each profile was
determined from 137Cs peak depth, which corresponds to
1963. The 210Pb inventory below that depth was calculated as:

Ai ¼ ΔA
etiλ � 1

where ΔA is 210Pb ex inventory above depth i, and ti is the age
of the reference level.

Results and discussion

Radionuclide activity profiles and inventories

Figures 2 and 3 show 137Cs and excess 210Pb activity in
selected sediment profiles from the three ponds. All of the
profiles (except 201–1) had a characteristic steady increase of
137Cs activity with depth and a pronounced peak followed by
sharp decline below. Profile 201–1 was sampled only to the
peak depth and 137Cs behavior below that depth was not
identified.

In the absence of physical disturbance peak 137Cs activity in
deposits corresponds to 1963, which is the year of its maximum
atmospheric fallout, while the deepest point with detectable
activity corresponds to 1954, which is the beginning of
atmospheric fallout. The diffusion and downward migration
of 137Cs through the profile has reported convection velocities
of 0 to 3.5mm y�1 (Likar et al., 2001; Almgren and Isaksson,
2006; Legarda et al., 2011) and is very slow in comparison
with observed annual sedimentation rates. Hence, severe

Table I. Watershed and stock pond characteristics (Nichols, 2006 unless otherwise indicated).

Stock pond / watershed ID 201 208 214

Average annual precipitation, mm 277 269 277
Watershed area, ha 44.0 92.2 150.5
Elevation at pond, m 1252 1400 1441
Average channel slope 0.021 0.026 0.019
Soil texture gravelly sandy loam gravelly fine sandy loam very gravelly loam
Soil series1 Luckyhills McNeal McAllister-Stronghold Stronghold-Bernardino
Dominant vegetation Whitethorn, creosote, tarbush Black grama, curly mesquite Black grama, curly mesquite
Sediment record start 1967 1973 1957
Average runoff, mm y�1 11.0 13.4 16.8
Pond capacity in 2004, m3 5300 7600 17900
Sediment accumulation (from record start), m3 870 1090 11015
Trap efficiency, % 90.5 76.1 92.2
Sediment yield (survey), t ha�1 y�1 0.9 0.6 2.1
Sediment yield2 , t ha�1 y�1 0.8 0.8 2.3
Average mass accumulated, t y�1 34 43 285

1NRCS (2003), 2 Lane et al. (1997)
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overestimation of the deposition time using this chronological
marker is unlikely.
At all locations 137Cs peak was deeper in the middle of the

pond (130 cm in 208 and 170 cm in 201 and 214) and
shallower in the periphery, suggesting a lens-like depositional
pattern with sediment layer tapering towards the edges. Pond
208 showed the greatest 137Cs activity at peak (53 Bq kg�1),
approximately twice as high as in 201 and 214 (26 and
33Bq kg�1, respectively). The total 137Cs inventory for ponds
201, 208, and 214 were 26,100, 54,300, and 41 900Bqm�2.
High peak concentration of 137Cs and its shallow location in

208 suggests domination of sheet processes and lower erosion
rates in comparison with the other two watersheds. Upon the
fallout the very surface of the soil containing elevated level of
nuclide was eroded without being diluted with underlying
material. Further, this difference could have been amplified
by the fact that watershed 208 has the finest soil (fine sandy
loam) among the three locations, which enables better
adsorption and increased nuclide retention (Li et al., 2004).
The activities of 210Pbex in all profiles overall steadily

declined with depth (Figure 3). Some deviation from exponen-
tial decline curve was observed. This is indicative of variable

deposition rate accompanied by either dilution or concentra-
tion of nuclide in sediments. High activities indicate low
accumulation rate periods and vice versa (Appleby, 2008).
Considering the small size of the ponds and seasonal, flash-
flood type of hydrological regime of the contributing
watersheds such deposition behavior is very likely. In addition,
some of the variability could be attributed to physical or
biological mixing of sediment layers.

The maximum 210Pbex activity in most cases was found in
the surface sediment layer with values varying between 63
and 96Bq kg�1 in ponds 201 and 214, and between 110 and
154Bq kg�1 in pond 208. Detectable 210Pbex was found at
greater depths in profiles near the center of ponds than in
peripheral locations, a spatial pattern similar to that exhibited
by 137Cs.

The 210Pb activity in the deepest samples in 201 and 208 was
near secular equilibrium with 226Ra. Considering that the age of
the ponds is approximately 4 210Pb half-lives, these bottom
samples were extracted from the original (old) alluvium. In
pond 214, however, the deepest samples contained between
4 and 27Bq kg�1 of 210Pbex, indicating either incomplete
profile sampling or a considerable degree of perturbation
in the early years of deposition. Total 210Pbex inventory
for ponds 201, 208, and 214 were 58 700, 135 200, and
115 800Bqm�2.

Sedimentation chronology

Ponds 201 and 208 were not identifiable landscape features on
1935 aerial photos and most likely were built in the late 1930s.
Pond 214 was constructed around 1918 (ADWR, 2015) and is
present on 1935 aerial photos. Its documented age is
corroborated by 210Pbex found at depths well beyond the depth
of 1963 137Cs peak (Figure 3).

The overall non-monotonic 210Pb concentration pattern in
most of the profiles (Figure 3) as described in previous section
suggested use of the CRS model for sediment dating. The antic-
ipated maximum age of pond deposits required correction of
210Pbex chronology with an independent age marker 137Cs.
The CRS model without correction for incomplete inventory
was found to have overestimated sediment age for older
deposits, in addition, the overestimation increased with depth
(Appleby, 2008). The first appearance of 137Cs in the deposition
profile corresponds to 1954. Nuclide activity of 137Cs at this
depth was very low, close to the detection limit; hence a more
reliable age reference was 137Cs peak concentration
corresponding to 1963.

The estimated age of the sediments across the transects in
ponds 201, 208, and 214 is shown in Figure 4. All three
ponds exhibited lens-like deposition patterns, greater in the
center and tapering towards the periphery. While in ponds
208, 214 the isochrones are continuous with older deposits
located in the middle, pond 201 exhibits some perturbations.
Its central deeper area (9 to 12m of the transect) lacks
sediments from 1935–1955 (Figure 4(A)). This is despite the
fact that sampled profiles penetrated through the entire
deposition layer to the parent material, as is evident from
both isotopic analysis and physical characteristics of the
samples. At the same time there was an accumulation of
similarly aged material (1960–1970) observed at 24m of the
transect (Figure 4(A)). This anomaly could be attributed to
pond dredging efforts conducted in 1966 and 1969. It is
likely that early sediments were not removed or partially
removed from the pond and were instead pushed to the pond
boundary and mixed in the process. Consequently all were
covered by newer deposits.

Figure 2. Distribution of 137Cs in sediments in the central (deepest)
profile of the ponds.

Figure 3. Distribution of 210Pbex in sediments in the central (deepest)
profile of the ponds.
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Sediment accumulation and watershed erosion
rates

The average sediment accumulation rates over the period
analyzed were 2.1, 1.9, and 2.3mm y�1 for ponds 201, 208,
and 214, respectively (Table II). This translates into long-term
average sediment yield of 0.89, 0.57, and 1.99 t ha�1 y�1 on
the corresponding watersheds based on the size of the ponds
and sediment densities. These values compare well with the

rates (Table I) obtained by direct topographic measurements
of the ponds (Nichols, 2006) and other methods (Lane et al.,
1997). They are also within the range of values (0.06 to
5.7 t ha�1 y�1) reported for small watersheds in the area (Lane
et al., 1997; Lane and Kidwell, 2003; Nearing et al., 2007).

All ponds showed different deposition rate behavior during
the observation period. Pond 201 exhibited a sharp increase
(94%) in sedimentation rate between 1960 and 1980, followed
by a decrease to the initial rate of 1.6 cm y�1 (Figure 5). There
wasn’t an increase in rainfall or runoff (Figure 6) during
1960–1980 that would explain such dramatic changes in
sedimentation rate. It is plausible that this deposition peak is
associated with the brush treatment. While mesquite removal
typically leads to reestablishment of grasses and erosion
mitigation (Osborn et al., 1978; Martin and Morton, 1993; Lane
and Kidwell, 2003) the removal process itself is very intrusive
and might have initially dislodged a large amount of sediment.

Sediment displaced by rainfall is characterized by residence
time on the watershed. This residence time is variable and can
be significant. Channel networks in arid watersheds have large
storage capacity for the eroded material that increases in the
downstream direction, in part due to transmission losses and
reduction of flow as the water moves downstream (Osterkamp
and Toy, 1997). This material can remain intact within a
watershed for extended periods of time (Nichols, 2006) and
then be released during future flow events (Polyakov et al.,
2010b). As a result large rainfall events or a wet year may not
necessarily produce immediate sedimentation peak in the stock
pond. The sedimentation rate in pond 208 remained relatively
steady, increasing from 1.5 cm y�1 in 1940 to 2.3 cm y�1 in
2014, while pond 214, the largest among the three, showed
steady increase from 0.6 cm y�1 in 1918 to 3.2 cm y�1 in 2014
(Figure 5).

Nichols (2006) studied the same ponds and reported a
significant relationship between runoff and sediment yield for
watershed 208, and lack of this relationship for watersheds
201 and 214. In our investigation relationships between
sedimentation and runoff or precipitation could not be
established. This might be partially due to the integrative nature
of profile sampling. A single 15 cm increment combined
sediments deposited during several (3 to 10) years and an even
greater number of runoff events. Hence, high yield years were

Figure 4. Age of the sediments along the transects in ponds 201 (A),
208 (B), and 214 (C). Dashed line represents the location and maximum
depth of sampled profiles.

Table II. Estimated sediment accumulation in the stock ponds and
sediment yield from the contributing watersheds based on isotopic
analysis.

Pond ID 201 208 214

Accumulation period 1935–2014 1935–2014 1918–2014
Accumulated sediment
volume, m3 2190 2470 20280

Trap efficiency
(Nichols, 2006) 0.91 0.76 0.92

Total sediment
volume, m3 2420 3250 20340

Pond average sedimentation rate, cm y�1

average 2.1 1.9 2.3
maximum 3.8 2.4 3.3
minimum 1.1 1.3 0.8

Watershed sediment
yield, t ha�1 y�1 0.89 0.57 1.99 Figure 5. Sedimentation rate dynamics on watersheds 201, 208, and

214 during the observed period.
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averaged with low yield years, potentially masking the effect of
large events. In addition, the channel transport system has
buffering capacity, deposition is driven by biological
perturbations and sediment focusing caused by multiple
channel entry points into the ponds. As a result, under current
pond management and sampling approach only multiyear
trends could be identified.
A number of large runoff events (or close sequence of events)

resulted in pond spillover causing underestimation of sedimen-
tation rate. In contrast, small runoff events were captured
entirely with all sediment volume being retained. During the
rainy season the pond is more likely to overflow due to
relatively large storm size and higher frequency (pond being
partially filled from preceding events). Hence, trapping
efficiency has two overlapping trends. It decreases over the
long term due to reservoir fillup, and it is effectively higher
during winter storms and lower during monsoon season.
Although in our case spillover losses were accounted for, care
should be taken when applying isotope-derived sediment
chronology on non-instrumented stock ponds. Long-term
sedimentation patterns suggest that sediment yields were not
entirely related to historical rainfall or runoff trends (Figure 6).
There may be a complex interaction that involved long-term
plant cover changes, soil degradation, and evolution of
channel networks. Further research that includes measures of
the size and density of the drainage system in each watershed,
and vegetation and grazing history as well as watershed-wide
isotopic sampling are needed to help further interpret
deposition patterns.

Conclusion

In this study erosion and sedimentation rates in three artificial
ponds fed by small watersheds were determined using isotopes
210Pb and 137Cs. This is the first time the results of isotopic
analysis of sediment profiles in arid reservoirs were compared
with direct repetitive measurements of aggradation. The top
15 cm of sediment in the studied ponds contained between
63 and 154Bq kg�1 of 210Pbex. Its activity steadily declined
with depth in all profiles. Both the overall level and distribution
trend of 210Pbex indicated good potential for isotopic
chronostratigraphy. Observed deviation of the concentration
profile from the exponential distribution curve was indicative
of the environment with intermittent, flood driven depositional
processes.
Due to the relatively short total age of accumulation in at

least two of the ponds (201 and 208) 210Pbex profiles were
incomplete. This is a common feature of recently constructed

(less than 3 to 4 210Pb half-lives) artificial reservoirs. Hence a
remedial technique, namely, the use of an independent age
marker, was employed. 137Cs proved to be a reliable tool for
this purpose. It had clearly identifiable starts and peaks of
accumulation corresponding to 1954 and 1963, respectively,
and was present in all profiles in concentrations sufficient for
reliable analysis.

A Constant Rate of Supply model was used to convert
210Pbex activity from 237 samples in 18 vertical profiles and
three transects into sedimentation rates. The mean sedimenta-
tion rates ranged from 0.8 to 3.8 cm y�1 and compared well
with data obtained from topographic surveys (Nichols, 2006).
These rates translate to sediment yields of 0.9, 0.6, and
2.0 t ha�1 y�1 on watersheds 208, 201, and 214, respectively,
which is consistent with values obtained on instrumented
watersheds of similar size in WGEW (Nearing et al., 2007).
Sedimentation rates varied greatly over short distances (several
meters) with more deposition occurring in the central (initially
deeper) area of the ponds. The differences between adjacent
profiles located just 4 to 7m apart highlight the importance of
extensive sampling (obtaining multiple profile) to characterize
a reservoir. In our study sampled profiles were located along
single transects. Considering the observed spatial variability, a
grid pattern may provide better quantification of the sedimenta-
tion process. This approach, however, is limited by the time
and cost of the isotopic analysis.

Documented management practices such as mesquite
treatment and dredging (pond 201), as well as long-term trends
could be identified in the chronosequence. Short-term (single
event or seasonal) deposition increases that might have
occurred could not be resolved given our sampling intensity
of approximately 5 years of deposition per sample. In addition,
biological perturbations (mixing by the hoof action of cattle)
would have lessened those peaks. Greater vertical sampling
resolution is necessary to resolve such variations.

Overall 210Pb technique can be a useful tool for estimation of
erosion rates on small arid watersheds with ponds if the
latter satisfy criteria such as good trapping efficiency,
minimal disturbance and sufficient amount of accumulated
sediment. There are >28 000 stock ponds in Arizona alone,
hence providing a huge potential to estimate historic erosion
dynamics in areas that have not been well studied or
instrumented.

Acknowledgments—The authors wish to express their appreciation to
the Southwest Watershed Research Center staff, particularly
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Figure 6. Precipitation and runoff on watersheds 201, 208, and 214. Runoff data for watershed 208 between 1986 and 1996 is not available.
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