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CQESTR Simulated Changes in Soil Organic Carbon under
Residue Management Practices in Continuous Corn Systems

Brian J. Wienhold1
& Marty R. Schmer1 & Virginia L. Jin1

& Gary E. Varvel2 &

Hero Gollany3

# Springer Science+Business Media New York (outside the USA) 2015

Abstract Soil organic carbon (SOC) is an important soil
property and is strongly influenced by management.
Changes in SOC stocks are difficult to measure through
direct sampling, requiring both long time periods and inten-
sive sampling to detect small changes in the large, highly
variable pool. Models have the potential to predict
management-induced changes in SOC stocks, but require
long-term data sets for validation. CQESTR is a processed-
based C model that uses site weather, management, and
crop data to estimate changes in SOC stocks. Crop residue

removal for livestock feed or future biofuel feedstock use is
a management practice that potentially affects SOC stocks.
Simulated changes in SOC using CQESTR were compared
to measured SOC changes over 10 years for two contrasting
residue removal studies in eastern Nebraska. The rainfed
study compared SOC changes in no-tillage continuous corn
grown under two N fertilizer rates (120 or 180 kg N ha−1)
and two residue removal rates (0 or 50 %). The irrigated
study compared SOC changes in continuous corn grown
under no-tillage or disk tillage and three residue removal
rates (0, 35, or 70 %). After 10 years under these manage-
ment scenarios, CQESTR-estimated SOC stocks agreed
well with the measured SOC stocks at both sites (r2=
0.93 at the rainfed site and r2=0.82 at the irrigated site).
These results are consistent with other CQESTR validation
studies and demonstrate that this process-based model can
be a suitable tool for supporting current management and
long-term planning decisions.

Keywords Maize . Nebraska . Feedstock . Soil quality .

Irrigation . Tillage . N fertilization

Abbreviations
SOC Soil organic carbon
MSD Mean squared deviation

Introduction

Demand for food, feed, fiber, and energy is increasing to sup-
port the growing human population. Meeting these demands
will require intensification in management as well as genetic
improvements in the crops that we grow [1–3]. Over the long
term, the sustainability of crop production will require that
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changes in management do not degrade the soil resource.
Management can impact numerous soil properties which af-
fect soil fertility and crop productivity. Process-based models
that accurately predict future management-induced changes in
soil properties are needed to guide current agronomic deci-
sions. A computer model that simultaneously predicts man-
agement impacts on the physical, chemical, and biological soil
properties affecting crop production, however, does not exist,
so sampling and measurement will continue to be necessary.
Nonetheless, there is a general consensus that soil organic
carbon (SOC) is a critical indicator of soil quality and linked
to many agroecosystem functions [4, 5]. The importance of
SOC in affecting soil physical properties (e.g., structure and
bulk density), chemical properties (e.g., nutrient availability
and storage), and biological properties (e.g., energy and nutri-
ent availability for soil biota) is well documented. In addition,
SOC is responsive to management [6, 7]. Unfortunately,
management-induced changes to SOC are difficult to mea-
sure, often requiring long-time periods to detect small changes
in a large and spatially variable SOC pool [8].

Process-based SOC models have potential as planning and
assessment tools. Models can be used to compare manage-
ment scenarios for their impact on SOC stocks. It is important
that models be validated across a range of management prac-
tices and environmental conditions to ensure that they accu-
rately predict the properties of interest. CQESTR is a process-
based SOC model that relates crop residue additions and ag-
ronomic management to changes in SOC [9, 10]. CQESTR
has been validated using long-term data (20 to >100 years)
from a number of locations (Illinois, Missouri, Nebraska, Col-
orado, Saskatchewan, and Alberta) in North America [9, 11,
12]. CQESTR’s ability to estimate residue removal impacts on
SOC in tilled systems has also been validated [11, 13]. Previ-
ous validation of CQESTR has been limited to a maximum
depth of 60 cm, but management effects on SOC stocks that
are deeper in the soil profile have been documented [14, 15]
suggesting validation using data for greater soil depths is
needed. Irrigation results in increased productivity and de-
composition rates when compared to rainfed systems [16,
17], but CQESTR has not been validated in irrigated systems.
There is a need for further validation to include management
practices such as no-tillage, irrigation, and residue removal in
other regions of the USA.

Crop residues (e.g., corn [Zea mays L.] stover and wheat
[Triticum aestivum L.] straw) have been identified as the larg-
est current source of feedstock for biofuel production [18] and
are currently used extensively for livestock feed and bedding
[19]. In response to concerns about large-scale removal of
crop residue for these uses [20], levels of residue retention
needed for soil conservation have been proposed [20–22]
and amelioration practices have been identified [11, 23]. Un-
fortunately, soil response to management is site-specific or
even subfield-specific [24] and general recommendations for

residue removal rates are of limited use [25]. Because the
magnitude and direction of SOC stocks change will likely be
affected by the level of biomass inputs, type of residue, cli-
mate, and initial SOC content of the site [26, 27], a process-
based model that accurately predicts soil response to manage-
ment across a range of conditions and practices is needed to
guide agronomic decisions related to residue management.

The objective of this study was to use contrasting crop
production and management data from two ongoing residue
removal studies in eastern Nebraska (NE) to compare CQES
TR-simulated SOC changes to measured changes after
10 years. The rainfed no-tillage site [14] included residue re-
moval rate and N fertilization rate as treatment variables while
the irrigated site [28] included residue removal rate and tillage
intensity as treatment variables. Testing CQESTR at these two
sites increases the range ofmanagement practices under which
the model has been assessed to include irrigation, residue re-
moval rates, tillage intensity, and differences in initial SOC
stocks.

Materials and Methods

Two field sites located at the University of Nebraska Agricul-
tural Research and Development Center near Ithaca, NE were
used in this study. At this location (1981–2010), mean annual
precipitation is 740 mm and mean annual temperature is
9.8 °C.

The experiment at the rainfed site was no-tillage continu-
ous corn established in 1998 with residue removal treatments
beginning in 2001 [14, 29]. The site was previously in sor-
ghum [Sorghum bicolor (L.) Moench] and soybean [Glycine
max (L.) Merr.] crop rotation under conventional disk-tillage
practices. Soils at the site are Yutan silty clay loam (fine-silty,
mixed, superactive, mesic, Mollic Hapludalf) and Tomek silt
loam (fine, smectitic, mesic, Pachic Argiudoll). The experi-
ment was arranged in a randomized blocks (N=3) split plot
design where N fertilizer rate (60, 120, or 180 kg N ha−1) was
the main plot and residue removal rate (0 or 50 %) was the
subplot. The 0 % removal rate was used as a no-residue re-
moval control and the 50 % rate represents the maximum
amount of residue that can be removed with a flail chopper
without disturbing the soil. Results from only 120 and
180 kg N ha−1 treatments are presented here as representative
of local producer practice. Glyphosate-tolerant hybrids
adapted to the region were sown at 47,700 seeds ha−1 in
0.76 cm rows. Fertilizer N was surface applied as ammonium
nitrate (NH4NO3) at the beginning of the growing season until
2007, after which N was applied at V6 as urea (46-00-00)
knifed in at a depth of 10–15 cm in subsequent years. At
physiological maturity (September to early October), grain
was combine harvested. In the stover removal subplot, residue
was removed using a flail chopper with a weigh wagon. The
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chopper was set at a height of 10 cm to maximize residue
removal and minimize soil surface disturbance.

The experiment at the irrigated site was continuous corn
established in 2001 in a field under rainfed corn the previous
year [28]. Soils at this site are a Tomek silt loam (fine, smec-
titic, mesic Pachic Argiudoll) and a Filbert silt loam (fine,
smectitic, mesic Vertic Argialboll). The experiment was ar-
ranged in a randomized blocks (N=6) split-plot design where
tillage treatment (no-tillage vs disk tillage to a depth of 20 cm)
was the main plot and residue removal rate (0, 35, and 70 %)
was the subplot. Residue in high production irrigated corn
systems interferes with planting and stand establishment in
subsequent years. The 0 % removal rate was selected as a
no-residue removal control, the 35 % removal rate was select-
ed as a treatment that would reduce the potential for interfering
with planting and stand establishment, and the 70 % removal
rate was selected as the maximum amount of residue that can
be removed with a flail chopper without disturbing the soil.
Glyphosate-tolerant corn hybrids adapted to the region were
sown at 74,000 seeds ha−1 in 0.76 cm rows. Fertilizer N was
surface applied as NH4NO3 at the beginning of the growing
season until 2007, after which N was applied at V6 as urea
knifed in at a depth of 10–15 cm in subsequent years. Irriga-
tion was provided using a solid set system in 2001 and
through a linear-move system from 2002 to present. Irrigation
averaged 12.5±7.0 cm from 2001 to 2010. At physiological
maturity (September to early October), grain was combine
harvested. Stover was removed using a flail chopper with a
weigh wagon. The chopper was set at a height of 10 cm to
maximize residue removal and minimize soil surface distur-
bance. The 70 % removal rate being achieved by harvesting
all rows and the 35 % removal rate being achieved by harvest-
ing every other two rows in alternating years (i.e., unharvested
rows in one year were harvested the subsequent year).

Soil samples were collected at the initiation of each exper-
iment and again after 10 years for determination of texture,
bulk density, and organic C concentration. At the rainfed site,
cores were segmented into 0 to 10, 10 to 30, 30 to 60, 60 to 90,
and 90 to 120 cm increments. At the irrigated site, cores were
segmented into 0 to 15, 15 to 30, 30 to 60, 60 to 90, and 90 to
120 cm increments. For each depth increment, soil bulk den-
sity was determined using the sample volume and oven dry
(105 °C) mass of soil [30]. A subsample of field moist soil was
passed through a 2 mm sieve, dried at 55 °C, ground to pass a
150-μm sieve, and C and N concentration determined by dry
combustion [31]. Soil organic C content was calculated using
measured bulk density, C concentration, and soil depth incre-
ment thickness and then summed over all layers. Follett et al.
[14] found no difference in SOC stocks which were non-
adjusted or adjusted for equivalent soil mass due to high field
variability at the rainfed site. Because variability at the irrigat-
ed site was comparably high, non-adjusted Mg C per hectare
was also used at the irrigated site [28]. To allow comparison

between modeled results and previously published results,
non-adjusted SOC were also used in this study. While both
studies are ongoing, validation of CQESTR was limited to the
time period corresponding to previously published weather,
management data, and measured changes in SOC [14, 28].

Changes in SOC stocks were predicted with CQESTR by
creating Revised Universal Soil Loss Equation (RUSLE, Ver-
sion 1, [32]) C-factor crop management files using grain and
biomass yields, residue removal rates previously reported [14,
28, 29], and management information described above. Soil
data files were created with texture and initial C concentration
for depth increments corresponding to those described above.
A simulation period of 20 years was used, and the model
output for the 10-year period from years 5 to 15 was used to
assess management effects on SOC stocks. The spin-up pro-
cedure, allowing the model to run for several years before
beginning the assessment, is a common practice that ensures
SOC pools are established and model artifacts are avoided
[33, 34].

Model output was validated by regressing CQESTR simu-
lated SOC and measured SOC reported by Follett et al. [14]
and Schmer et al. [28] and decomposing the mean squared
deviation (MSD) into squared bias, non-unity slope, and lack
of correlation components [35]. The MSD is proposed to di-
rectly measure predictive success of a model, where the sum
of the three component values equals the MSD: squared bias
evaluates “translation” of the regression (i.e., slope b=1 and
intercept a≠0), non-unity slope evaluates “rotation” of the
regression (i.e., slope b≠1), and lack of correlation evaluates
“scatter” about the regression (i.e., r2≠1). Validated model
output was analyzed using a general linear model (SAS;
PROC GLIMMIX) appropriate for a split-plot design [36].
This analysis was done to assess if treatment comparisons of
simulated data agreed with those reported for the measured
data [14, 28]. At the rainfed site, fertilizer N rate (main plot)
and residue removal (sub-plot) were considered fixed effects,
block a random effect, and year a repeated measure. At the
irrigated site, tillage (main plot) and residue removal (sub-
plot) were considered fixed effects, block a random effect,
and year a repeated measure. The analysis of variance was
run for simulated SOC by soil layer and by cumulative soil
depth. Treatment effects and interactions were assessed using
least-square means at P<0.05.

Results

At both sites, CQESTR-simulated SOC content agreed well
with measured SOC content after ten years (Fig. 1). At the
rainfed site, 66 % of the MSD was attributed to lack of corre-
lation due to scatter and 33 % was attributed to squared bias
due to lack of translation (Fig. 2). At the irrigated site, over
95 % of the MSD was attributed to lack of correlation due to
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scatter and 4 % to non-unity slope due to rotation (Fig. 2). For
the irrigated site, a large number of the points that are
displaced from the regression line represent samples from
the 30 to 60 and 60 to 90 cm depth increments. Measured
initial SOC in these two depth increments exhibited greater
variation than other depth increments. Hence, variation in

initial values (used by the model) contributed to variation in
modeled final results.

At the rainfed site, simulated SOC content increased from
1998 to 2007 in the 0 to 10 cm increment (Table 1). Over this
time period, there were greater increases in the high N treat-
ment than the low N treatment (significant N-rate by year
interaction) and greater increases with no residue removal
than with residue removal (significant removal by year inter-
action). There were no changes in SOC content in the 10 to
30 cm increment. In the 30 to 60 cm increment, SOC content
decreased with greater losses in the low N treatment than in
the high N treatment (significant N rate by year interaction).
There was no change in SOC content in the 60 to 90 and 90 to
120 cm increments.

At the rainfed site, cumulative changes in simulated SOC
content with depth all exhibited a significant removal by year
interaction (Table 1). As noted above, increases in SOC con-
tent in the 0 to 10 cm increment were greater with no residue
removal than with residue removal. A similar response was
observed for cumulative SOC content from 0 to 30 cm. Cu-
mulative SOC content from 0 to 60, 0 to 90, or 0 to 120 cm
exhibited small increases with no residue removal and no
change over 10 years with residue removal.

At the irrigated site, simulated SOC content increased from
2001 to 2010 in the 0 to 15 cm increment (Table 2). Over this
time period, increases were greater with no-tillage than with
disk tillage. Within tillage treatments, less increase in SOC
content were predicted with increasing rates of residue remov-
al (significant tillage by residue removal by year effect). In the
15 to 30 cm increment, SOC content decreased to a greater
extent in no-tillage with 0 or 70 % removal than in disk tillage
with 0 or 70 % removal, but SOC losses were greater in disk
tillage with 35 % removal than in no-tillage with 35% remov-
al (very significant tillage by residue removal by year interac-
tion). In the 30 to 60, 60 to 90, and 90 to 120 cm depth
increments, there was a decrease in SOC content from 2001
to 2010 with no differences among treatments (significant
year effect).

At the irrigated site, cumulative changes with depth in
simulated SOC content exhibited significant tillage treat-
ment by residue removal by year interactions (Table 2).
Changes in SOC content in the 0 to 15 cm increment were
described above. With disk tillage, SOC content did not
change in the 0 to 30 cm increment, while with no-tillage
SOC content increased in the following order of residue
removal rates: 70 %<0 %<35 %. In the 0 to 60, 0 to 90,
and 0 to 120 cm increments, SOC content decreased from
2001 to 2010 under disk tillage with similar decreases
across residue removal rates. In the 0 to 60 cm increment
under no-tillage, there was a slight change in SOC content
from 2001 to 2010 with residue removal. The SOC con-
tent increased by 0.9 Mg ha−1 without residue removal
while it decreased by 0.9 Mg ha−1 with 70 % residue

Fig. 1 Relationship between CQESTR simulated and measured soil
organic C (SOC) after 10 years at two sites in eastern Nebraska. Each
dot represents SOC for a depth increment of a treatment plot

Fig. 2 Mean squared deviation (MSD) for the relationship between
CQESTR simulated and measured soil organic C (SOC) after 10 years
at two sites in eastern Nebraska. Total bar height represents the MSD
which proposed to directly measure predictive success of a model. The
bar segments decompose the MSD into squared bias (translation of the
regression, i.e., slope b=1, intercept a≠0), non-unity slope (rotation of the
regression, i.e., slope b≠1), and lack of correlation (scatter about the
regression, i.e., r2≠1) components [35]
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removal. An increase of 2.9 Mg ha−1 SOC was simulated
with 35 % removal. In the 0 to 90 cm increment under no-
tillage, there was no change in SOC content with no res-
idue removal, an increase with 35 % residue removal, and
a decrease with 70 % residue removal. In the 0 to 120 cm
increment under no-tillage, there was a decrease in SOC
content with 0 or 70 % residue removal and no change
with 35 % residue removal.

Discussion

Good agreement between CQESTR-simulated SOC content
and measured SOC content over time has been documented in
a number of other studies [9, 11, 13, 34, 37]. However, none of
these studies have evaluated CQESTR under irrigated condi-
tions, and only Gollany et al. [11, 13] evaluated the effect of
residue removal. Liang et al. [9] validated CQESTR using soil
C data from 13 experiments ranging from 20 to >100 years in
duration and found that for 10 of the sites, lack of correlation
(scatter) accounted for the largest percentage of MSD. The
present study used SOC content data from two sites where
treatments had been in place for 10 years. Over this time

period, changes in SOC content were relatively small but sim-
ulated results agree well with measured changes in SOC con-
tent. For both sites, lack of correlation accounted for the larg-
est percentage of MSD consistent with previous work. The
present study differs from previous work in that soils were
analyzed to 120 cm, while previous studies were limited to
30 to 60 cm maximum depths.

The main objective of this study was to validate CQESTR
in continuous corn systems over a range of management prac-
tices that included residue removal. For the rainfed site, Follett
et al. [14] reported cumulative changes in SOC content for the
0 to 30 and 0 to 120 cm increments. For the 0 to 30 cm
increment, they reported increases in SOC content from
1998 to 2007, with greater increases when no residue was
removed than with residue removal and greater increases in
SOC content at 180 than 120 kg N ha−1. Changes in simulated
SOC content using CQESTR followed similar patterns in tem-
poral and treatment responses (Table 1). For the 0 to 120 cm
increment, Follett et al. [14] reported increases in cumulative
SOC content for the 180 kg N ha−1 treatment but no increase
for the 120 kg N ha−1 treatment for both residue removal
treatments. Similarly, CQESTR-simulated SOC content did
not change from 1998 to 2007 in the 120 kg N ha−1 treatment

Table 1 CQESTR-simulated initial and final soil organic carbon (SOC) content (mean±SEM) by nitrogen (N) and residue removal treatments for a
rainfed continuous corn site in eastern Nebraska

N rate
(kg ha−1)

Residue removed (%) Year

Soil depth increment (cm)

0 to 10 10 to 30 30 to 60 60 to 90 90 to 120 0 to 30 0 to 60 0 to 90 0 to 120

Soil organic carbon (Mg C ha−1)

120 0 % 1998 19.4±2.5 30.5±3.8 33.2±18.3 26.2±15.8 18.9±12.3 49.9±6.4 83.1±23.5 109.2±39.2 128.2±51.5

2007 26.0±2.4 29.8±3.6 31.5±17.3 24.7±14.9 17.8±11.6 55.8±6.0 87.3±22.1 112.0±37.0 129.8±48.5

% Δ 25.6 −2.6 −5.4 −6.0 −6.1 10.6 4.8 2.4 1.3

50 % 1998 19.4±2.5 30.5±3.8 33.2±18.3 26.2±15.8 18.9±12.3 49.9±6.4 83.1±23.5 109.2±39.2 128.2±51.5

2007 22.8±2.4 29.8±3.6 31.5±17.3 24.7±14.9 17.8±11.6 52.6±6.0 84.1±22.1 108.8±37.0 126.6±48.5

% Δ 15.2 −2.6 −5.4 −6.0 −6.1 5.1 1.2 −0.4 −1.2
180 0 % 1998 15.5±2.5 28.0±5.0 25.3±13.4 20.0±8.8 12.3±4.8 43.6±7.4 68.8±20.5 88.8±28.9 101.1±33.8

2007 22.5±2.3 27.4±4.7 24.0±12.6 18.9±8.3 11.6±4.6 49.9±7.0 73.9±19.3 92.8±27.2 104.4±31.8

% Δ 31.0 −2.3 −5.2 −6.0 −6.1 12.7 6.9 4.3 3.1

50 % 1998 15.5±2.5 28.0±5.0 25.3±13.4 19.4±9.2 12.2±4.9 43.6±7.4 68.8±20.5 88.2±29.2 100.4±34.0

2007 19.1±2.3 27.4±4.7 24.0±12.6 18.3±8.7 11.5±4.6 46.5±7.0 70.6±19.3 88.8±27.5 100.4±32.1

% Δ 18.8 −2.3 −5.2 −6.0 −6.1 6.4 2.5 0.7 −0.1
Treatment P value

Fertilizer N rate (N) 0.2907 0.6198 0.2528 0.4570 0.4632 0.4558 0.1721 0.2022 0.2713

Residue removal (R) <0.0001 0.9650 0.9933 0.1860 0.7150 <0.0001 <0.0001 <0.0001 <0.0001

N × R 0.2360 0.9221 0.9850 0.1861 0.7150 0.6746 0.6806 0.1876 0.2678

Year (Y) 0.0005 0.0884 0.2502 0.2087 0.2113 0.0058 0.1387 0.4771 0.7740

N × Y 0.0136 0.2435 0.0053 0.3910 0.0792 0.0811 0.0011 0.0319 0.0331

R × Y <0.0001 0.9650 0.9933 0.9670 0.9913 <0.0001 <0.0001 <0.0001 0.0004

N × R × Y 0.2360 0.9221 0.9850 0.9668 0.9912 0.6746 0.6806 0.9065 0.9328
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with or without reside removal and also did not change with
residue removal in the 180 kg N ha−1 treatment. In contrast,
simulated SOC contents increased without residue removal in
the 180 kg N ha−1 treatment compared to measured SOC
contents (Table 1). At this site, conclusions regarding SOC
content response to management based on CQESTR agree
with those reported by Follett et al. [14]. This site is capable
of supporting residue removal without reducing grain yield,
and SOC increased with adequate fertilization and no-tillage.

For the irrigated site, Schmer et al. [28] reported year and
residue removal differences in SOC content in the 0 to 30 cm
increment, a tillage by residue removal by year interaction for
SOC content in the 0 to 60 cm increment, and no differences
in SOC content for the 0 to 90 and 0 to 120 cm increments. In
the 0 to 30 cm increment, there was a loss of SOC from 2001
to 2010 and losses increased with residue removal. In the 0 to
60 cm increment, there was a loss of SOC in all residue

removal treatments under disk tillage, little or no loss of
SOC with medium or no residue removal, and loss of SOC
under high residue removal under no-tillage. Detecting differ-
ences in SOC for the 0 to 90 or 0 to 120 cm increments is
challenging due to high variability [8]. CQESTR simulated
changes in SOC followed similar patterns, but there was less
variation in the model results than in the measured values
resulting in more differences being statistically significant.
This also explains why a larger percentage of the MSD was
attributed to a lack of correlation in the irrigated experiment
than in the rainfed experiment. Conclusions drawn from the
CQESTR simulation results are similar to those reported by
Schmer et al. [28]. Under no-tillage, grain yields were reduced
unless a portion of the residue was removed, and SOC in-
creased with medium or no residue removal. Under disk till-
age, grain yields were similar under all residue removal treat-
ments, and SOC content decreased overall.

Table 2 CQESTR-simulated initial and final soil organic carbon (SOC) content (mean±SEM) by tillage and residue removal treatments for an
irrigated continuous corn site in eastern Nebraska

Tillage Residue removed (%) Year

Soil depth increment (cm)

0 to 15 15 to 30 30 to 60 60 to 90 90 to 120 0 to 30 0 to 60 0 to 90 0 to 120

Soil organic carbon (Mg C ha−1)

Disk 0 % 2001 40.4±0.7 39.9±0.3 60.7±2.4 31.7±2.0 18.6±0.7 80.4±0.8 141.1±2.7 172.8±4.3 191.5±4.8

2010 42.7±0.6 38.7±0.3 57.6±2.3 29.9±1.9 17.6±0.7 81.4±0.8 139.0±2.5 168.9±4.1 186.5±4.5

% Δ 5.4 −3.4 −5.4 −6.0 −6.1 1.3 −1.5 −2.3 −2.7
35 % 2001 41.6±0.5 40.1±1.1 61.4±2.6 40.2±4.0 24.2±2.8 81.7±1.2 143.1±3.2 183.3±7.0 207.5±9.7

2010 43.5±0.5 38.8±1.0 58.2±2.5 38.0±3.8 22.8±2.6 82.3±1.1 140.6±3.0 178.5±6.6 201.3±9.1

% Δ 4.4 −3.3 −5.4 −6.0 −6.1 0.8 −1.8 −2.7 −3.1
70 % 2001 39.4±1.0 39.7±1.2 59.0±3.3 37.0±4.8 22.1±2.7 79.1±2.1 138.1±4.8 175.1±8.8 197.2±11.4

2010 41.0±0.9 38.5±1.1 56.0±3.1 34.9±4.5 20.8±2.5 79.5±2.0 135.5±4.5 170.4±8.3 191.2±10.7

% Δ 4.0 −3.2 −5.4 −6.0 −6.1 0.5 −1.9 −2.8 −3.1
No-till 0 % 2001 40.4±1.3 41.9±1.4 63.7±3.5 36.1±4.2 22.9±2.2 82.4±2.0 146.1±3.3 182.2±6.5 205.1±8.6

2010 46.6±1.3 40.4±1.4 60.4±3.3 34.1±3.9 21.6±2.1 87.0±1.9 147.4±3.1 181.5±6.1 203.0±8.1

% Δ 13.2 −3.7 −5.5 −6.0 −6.1 5.3 0.9 −0.4 −1.0
35 % 2001 39.2±1.3 37.4±0.7 57.1±2.0 35.3±4.6 20.7±2.4 76.5±1.6 133.6±2.9 169.0±7.4 189.7±9.3

2010 47.2±1.2 36.2±0.7 54.2±1.9 33.3±4.4 19.5±2.2 83.4±1.5 137.6±2.7 170.9±7.0 190.4±8.8

% Δ 16.9 −3.1 −5.4 −6.0 −6.1 8.2 2.9 1.1 0.4

70 % 2001 40.2±0.5 40.3±0.7 63.3±2.5 40.7±4.2 21.9±1.2 80.5±1.1 143.8±3.2 184.5±7.0 206.4±7.9

2010 43.5±0.5 39.0±0.7 60.0±2.3 38.4±4.0 20.6±1.1 82.5±1.1 142.6±3.0 180.9±6.6 201.5±7.5

% Δ 7.7 −3.4 −5.4 −6.0 −6.1 2.5 −0.9 −2.0 −2.4
Treatment P value

Tillage (T) 0.0593 0.9220 0.5032 0.6770 0.9024 0.3535 0.3547 0.3985 0.4916

Residue removal (R) 0.1015 0.1041 0.3427 0.2634 0.6059 0.2262 0.1580 0.8906 0.9115

T × R 0.7415 0.0644 0.0573 0.2644 0.0954 0.1191 0.0211 0.0481 0.0537

Year (Y) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

T × Y <0.0001 0.2795 0.5546 0.7448 0.9208 <0.0001 <0.0001 <0.0001 <0.0001

R × Y <0.0001 0.0042 0.4619 0.4635 0.7267 <0.0001 <0.0001 <0.0001 <0.0001

T × R × Y <0.0001 0.0100 0.2302 0.4540 0.2106 <0.0001 <0.0001 <0.0001 <0.0001
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The response to residue removal at the irrigated and rainfed
sites was somewhat unexpected. We hypothesized that higher
production under irrigation would allow for residue removal
without negatively effecting yields or SOC stocks. Kochsiek
et al. [16] compared decomposition of maize litter compo-
nents in irrigated and rainfed systems for 3 years in eastern
NE. They found that irrigation increased litter inputs, changed
litter tissue quality, but not C allocation, and increased decom-
position rate. After 3 years, irrigated and rainfed systems had
similar (110 g Cm−1) amounts of litter C remaining. Enhanced
soil moisture under irrigation increases ecosystem respiration,
eliminating any benefit of increased gross primary productiv-
ity and resulting in similar values for growing season net eco-
system productivity (NEP) between irrigated and rainfed
fields [17]. Estimated NEP for irrigated corn was 441 g C
m−2 year−1 compared to 454 g C m−2 year−1 for rainfed corn
even though yields under irrigation (12.9Mg ha−1) were great-
er than for rainfed (8.2Mg ha−1) conditions [17]. Results from
the current study suggest that CQESTR accurately accounts
for the effect of soil moisture on soil processes affecting SOC
changes.

At the irrigated site, high production levels required some
type of residue management through stover removal or tillage
to avoid yield reductions in subsequent years. However, high
levels of residue removal under no-tillage or disk tillage across
all residue treatments resulted in losses of SOC in the 0 to
60 cm depth increment. Our findings agree with those of
[38] who compared changes in SOC stocks in irrigated corn
under conventional or no-tillage in eastern Colorado and con-
cluded that in that region, irrigation had a low potential for
sequestering C especially under conventional tillage.

In this study, CQESTR accurately simulated SOC under a
wide range of management practices. Use of process-based
models such as CQESTR to evaluate management effects will
be essential for sustaining the soil resource. As demand for
food, feed, fiber, and feedstock increases, the need for predic-
tive models that can guide soil management decisions will
also increase.

Ethics Statement This research was conducted using appropriated
USDA-ARS funds. Authors have no conflict of interest to report. There
were no human or animal subjects used in this research.
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