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Introduction

Most wildlife populations exhibit contact 
heterogeneity, especially populations where 
territorial, dominance or other social grouping 
behaviors are common. Contact heterogeneity 

can alter disease dynamics, changing the tim-
ing and peak numbers of infectious individuals 
(Bansal et  al. 2007). The importance of contact 
heterogeneities in disease transmission has led 
to a flurry of research to quantitate contact in 
wildlife populations using a variety of methods 
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(Cross et al. 2012, Lavelle et al. 2014, Long et al. 
2014). Global positioning system (GPS) devices 
and ultra-high-frequency proximity loggers (PL) 
are two of the most commonly used technologies 
for quantitating contact in wildlife. Both devices 
are used to quantitate contact rates, social net-
works, factors driving contact heterogeneities 
and impacts of contact heterogeneities on dis-
ease transmission and management (e.g., Cross 
et al. 2012, Hamede et al. 2012, Drewe et al. 2013, 
Lavelle et  al. 2014, Long et  al. 2014, Podgorski 
et al. 2014, Williams et al. 2014).

Networks are one method for analyzing contact 
heterogeneities using GPS or PL data from wild-
life populations. Network properties that describe 
contact heterogeneities (e.g., degree, transitivity 
and connectedness) can be quantitated, and their 
effects on disease transmission can be studied us-
ing disease transmission models (e.g., Bansal et al. 
2007, Ames et al. 2011). Degree is the number of 
individuals to which an individual is connected. 
Variability in degree distribution affects epidemi-
ological progression by increasing rates of disease 
spread early during an epidemic and decreasing 
it later on, relative to a randomly mixing popu-
lation (Bansal et  al. 2007). Networks with some 
high-degree individuals termed “superspreaders” 
can reach peak numbers of cases faster and have 
higher probability of pathogen extinction before 
an epidemic starts (Lloyd-Smith et al. 2005). Net-
work transitivity describes the proportion of the 
network that contains individuals whose contacts 
are interconnected (forming closed triangles: A 
contacts B and C, and B and C contact each other). 
Global transitivity can reduce disease transmission 
because redundancy in local connections leads to 
local depletion of susceptible individuals (Eames 
and Keeling 2003). Connectedness describes how 
completely a network is connected, for example, 
unconnected networks include one to several dis-
crete clusters with no possibility for disease trans-
mission between them. Realistic representations 
of contact heterogeneities in wildlife populations 
can be used to optimize disease management in 
terms of when and where to increase surveillance 
and implement controls (Hamede et al. 2012).

Feral swine: data-poor disease threats
Feral swine (Sus scrofa) are a highly socially 

structured species that are globally distributed 
and pose a threat to human and livestock health 

in many countries. They have been implicated 
in the spillover of economically devastating 
livestock pathogens such as classical and African 
swine fever viruses and Brucella abortus (Penrith 
et al. 2011, Costard et al. 2013, Kreizinger et al. 
2014), as well as zoonotic pathogens such as 
hepatitis E virus and influenza A virus (Feng 
et  al. 2014, Caruso et  al. 2015). Although the 
ecological capacity of wild pig populations to 
maintain pathogens or spark outbreaks is un-
certain, population density and social structure 
are thought to be important due to their effects 
on contact between individuals (Cowled and 
Garner 2008, Penrith et  al. 2011, Costard et  al. 
2013).

To our knowledge, only a single study in one 
location (Poland) has attempted to quantitate 
contact heterogeneities of feral swine (or wild 
boar; Podgorski et al. 2014). The study found sig-
nificant clustering of individuals and sex-based 
differences in the duration of associations. In 
addition, it is well-accepted that dominant boars 
generally occur alone, while reproductively ac-
tive sows and their offspring occur in groups 
called sounders (Mayer and Brisbin 2009). Indi-
viduals in the same sounder likely contact each 
other more frequently than individuals from 
different sounders, but the relative difference in 
contact rates within and between sounders, and 
contact structure among sounders is unknown.

To begin addressing these knowledge gaps, we 
analyzed GPS data from 207 individual pigs (104 
males, 103 females) from 11 populations across 
the United States (Gaston et  al. 2008, Campbell 
and Long 2010, Cooper et al. 2010, Wyckoff et al. 
2012, Hartley et  al. 2015; and unpublished data; 
Supplement S1: Table S1). All except for one 
study included individuals from different sound-
ers allowing us to focus on variation in between-
sounder contact rates; the scale of contact that is 
likely most heterogeneous, and potentially lim-
iting disease transmission most strongly. Goals 
of the above studies were to estimate contact 
rates with domestic livestock or quantitate pig 
movement behavior and territoriality. Thus, our 
analyses of the data should not be taken as abso-
lute measures of contact rates or heterogeneities. 
Our goals were to: (1) explore potential causes of 
contact heterogeneities in feral swine; (2) exam-
ine the relationship between contact and spatial 
distribution of home ranges; (3) provide insight 
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for experimental design of contact studies; and 
(4) evaluate the effects of missing data on contact 
structure.

Methods

We calculated pairwise co-location rates for 
all pairs of individuals co-monitored for ≥7  d, 
with home range centroids less than 10  km 
apart. Home range centroids were the median 
latitude and longitude during co-monitoring. 
Of the 207 individuals (812 unique pairs), only 
3 (three unique pairs) were from the same 
sounder, thus our analyses focused on contact 
rates among sounders. Daily co-location rates 
were calculated as the number of co-locations 
in a 24-h period between individuals A and 
B within time interval T and distance D (fixed 
at 10  m; distance criterion for co-location):

� (1)

where dj,k is the distance between location j 
for individual A and location k for individual 
B; and tj,k is the time between location j for 
individual A and location k for individual B 
(nj is the total number of locations for indi-
vidual A and nk is the total number of locations 
for individual B). Tx was the time interval be-
tween co-locations, where x = 1 week or 15 min. 
These intervals were chosen because they reflect 
the most frequent time interval that GPS loca-
tions were taken (“direct contact”  =  15  min 
between co-locations) and realistic persistence 
times for bacterial and viral pathogens outside 
the host (“indirect contact”  =  1  week between 
co-locations). In addition, the mean number of 
daily locations (location intensity) and duration 
of monitoring were calculated to account for 
sampling effort variation. Location intensity was 
calculated from the mean total locations for 
sounders A and B throughout the entire period 
of monitoring (i.e., nj  +  nk/2), divided by the 
number of days they were monitored (i.e., 
[nj  +  nk/2]/days of overlap).

For statistical analyses we used linear mixed 
effects models implemented via “lme4” package 
(R software, R Core Team 2013), using maximum 
likelihood for parameter estimation. Because 
we were only interested in factors explaining 

variation in contact rates for pairs that made con-
tact at least once, we excluded the pairs that never 
made contact (i.e., zeros) in all statistical analyses. 
To account for error correlation within individ-
uals, two random effects were included: unique 
identifiers for each of collar A (interactor) and col-
lar B (interactee). Our conceptual approach to an-
alyzing fixed effects was hierarchical because we 
expected that factors intrinsic to the study design 
(i.e., location intensity and duration of monitor-
ing) would explain significant variation in contact 
rates, yet we were not interested in their effects. 
Thus, first we investigated the effects of inherent 
factors with the goal of removing variation from 
these factors prior to examining effects of factors 
we were interested in. Duration of monitoring 
did not improve AIC over an intercept-only mod-
el (Table 1), thus we did not consider this covari-
ate further. In contrast, location intensity signifi-
cantly improved AIC, thus we used the residuals 
from the location intensity model as the response 
in models with covariates such as distance be-
tween home range centroids, sex, age class (adult 
vs. juvenile/subadult) and sounder membership 
(Table 1). In addition, because distance between 
home range centroids is another factor that is in-
trinsic to the study design, we looked at the ef-
fects of sex, age and sounder membership both 
before and after accounting for effects of distance 
between home range centroids (i.e., response was 
residuals from a model with just location intensi-
ty vs. residuals from a model with location inten-
sity and distance between home range centroids; 
Table 1). The distance between home range cen-
troids, sex, age class and sounder membership 
covariates were examined in separate, univari-
ate models because each variable had different 
amounts of missing data and we were trying to 
maximize the amount of data used to examine 
each factor. Although some of the data sets dis-
tinguished three age classes (juvenile, subadult 
and adult), others only distinguished juvenile and 
adult. Also, there was a lot of missing age-class 
data. As we were most interested in the age class-
es that represent pre- and postdispersal, we ag-
gregated the data to make two age classes: adult 
vs. younger than adult. For models with contact 
rate data as the response, the response was log-
transformed. For all fitted models, the residuals 
were normally distributed as evidenced by nor-
mal quantile plots of the residuals. We calculated 

�

∑nj

j=1

∑nk
k=1 [(dj,k ≤D)&(tj,k ≤Tx)]

�

Number of days overlap
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P-values using the t statistics generated by the 
“lmer” function (lme4 package, R Software), as-
suming that the t-distribution converges to the z 
distribution at large sample size. We assessed ex-
plained variation in the models (absolute good-
ness of fit) with squared correlation coefficients of 
observed and model-predicted data.

We calculated network properties (mean degree, 
global transitivity and number of independent 
clusters) using the “igraph” package in R (Csar-
di and Nepusz 2006). Network properties were 
based on undirected, unweighted graphs (i.e., bi-
nary adjacency matrices), except we additionally 
calculated transitivity from weighted graphs to 
examine how contact rate heterogeneity affected 
this property. Mean degree was the average num-
ber of edges per node. Global transitivity for the 
unweighted networks was the ratio of triangles to 

triplets in the network (Csardi and Nepusz 2006). 
A triangle was defined as a closed triplet (three 
nodes connected by three edges), whereas a trip-
let was defined as three nodes connected by either 
two or three edges (thus a triangle is a special case 
of a triplet). Global transitivity for the weighted 
networks was calculated using the “clustering_w” 
function in the “tnet” package in R, and assuming 
the geometric mean method for averaging weights, 
as defined in Opsahl and Panzarasa (2009). The 
equation for calculating global transitivity of the 
weighted networks is equivalent to the ratio of tri-
angles to triplets when an unweighted network is 
used. The number of independent clusters was the 
total number of either single or subgoups of con-
nected nodes that were completely unconnected 
to the rest of the network. The number of indepen-
dent clusters was calculated using the “clusters” 

Table 1. Results of statistical analyses. All models included two random effects: unique identifiers for each of 
interactor A and interactee B. The response and the number of data points differ for Models 5 to 11 thus AIC 
is not applicable (NA).† 

Response
Fixed 
effect

Direct contact (within 15 min) Indirect contact (within 1 week)

∆AIC‡ N β ± SE P
abs 

GOF ∆AIC‡ N β ± SE P
abs 

GOF

Test for effects of intrinsic factors
0 Log contact 

rate
Int 0 118 −1.31 ± 0.29 <0.0001 0.97 0 193 0.13 ± 0.34 0.69 0.82

1 Log contact 
rate

LI −4 118 0.032 ± 0.013 0.013 0.96 −7.9 193 0.05 ± 0.015 0.001 0.80

2 Log contact 
rate

DM 1.9 118 −0.0014 ± 0.006 0.81 0.97 2 193 −0.002 ± 0.007 0.80 0.82

3 Log contact 
rate

Dist −27.5 118 −0.96 ± 0.16 <0.0001 0.97 −35.7 193 −1.43 ± 0.22 <0.0001 0.82

4 Log contact 
rate

LI + Dist −33.9 118 0.034 ± 0.011 
−0.97 ± 0.15

0.0029 
<0.0001

0.97 −56.1 193 0.067 ± 0.013 
−1.59 ± 0.21

<0.0001 
<0.0001

0.82

Test for effects of ecological variables after accounting for effects of intrinsic factors
5 Res of 1 Dist NA 118 −0.17 ± 0.04 <0.0001 0.12 NA 193 −0.73 ± 0.12 <0.0001
6 Res of 1 Sex NA 114 −0.19 ± 0.12 

−0.22 ± 0.13
0.12 
0.088

0.03 NA 181 −0.43 ± 0.35 
−0.30 ± 0.38

0.20 
0.43

7 Res of 4 Sex NA 114 −0.055 ± 0.12 
−0.13 ± 0.12

0.64 
0.30

0.01 NA 181 −0.15 ± 0.30 
−0.06 ± 0.33

0.61 
0.86

8 Res of 1 Age NA 70 −0.21 ± 0.15 
0.049 ± 0.21

0.16 
0.82

0.04 NA 117 −0.90 ± 0.43 
−0.28 ± 0.52

0.036 
0.60

9 Res of 4 Age NA 70 −0.17 ± 0.14 
0.009 ± 0.20

0.23 
0.96

0.02 NA 117 −0.65 ± 0.37 
−0.097 ± 0.44

0.076 
0.83

10 Res of 1 Mem NA 11 0.65 ± 0.16 <0.0001 0.94 NA 20 1.83 ± 0.68 0.007
11 Res of 4 Mem NA 11 0.93 ± 0.08 <0.0001 0.98 NA 20 1.28 ± 0.42 0.0023

† Abbreviations are: Res, residuals; LI, location intensity; DM, duration of monitoring; Dist, distance between home range 
centroids; Age, age class with three factors (immature–immature, immature–adult, adult–adult); Sex, includes three factors 
(female–female, male–female, male–male); Mem, sounder membership (indicator for belonging to the same sounder);  
SE, standard error of the estimate; abs GOF, absolute goodness of fit; squared correlation coefficient between observed and 
predicted values.

‡ ΔAIC’s are relative to the null model with no fixed effects; negative values of >2 represent a significant improvement over 
the null model.



March 2016 v Volume 7(3) v Article e012305 v www.esajournals.org

PEPIN ET AL.

function in the “igraph” package. For the network 
analyses, we only included three studies with 
the most individuals (N = 20, 18 and 13). We also 
dropped different amounts of data (from 1 point 
up to 50% of points) from the networks and re-
calculated the network properties to investigate 
effects of missing data. For each number of data 
points excluded, nodes were dropped at random 
and the procedure was repeated 100 times.

Results and Discussion

Heterogeneity in co-location rates
The maximum daily contact rates among sound-

ers were 45 times higher for indirect relative to 
direct contact. Direct contact rates did not change 
with the duration of monitoring (Fig.  1a, c), but 
did increase significantly with the number of 
locations recorded per day (P  =  0.013 for direct 
contact and P  =  0.001 for indirect contact; 
Fig.  1b,  d, Models 1 and 2 in Table  1). This 
emphasizes that when using GPS-type data for 
quantitating contact rates, the interval between 
locations should approximate the minimum time 
between the start and end of a perceived disease-
relevant contact. For example, if a pathogen requires 
5  min of contact for a high probability of trans-
mission, then to quantitate disease-relevant contact 
rates recording locations at least every 5 min would 
be important. Furthermore, variability from the 
duration of monitoring may be weak or insignif-
icant except when durations are very short (<7  d 
in our case). Additional studies, which include 
long-term monitoring should be undertaken to 
determine if contact rates change seasonally, which 
could obscure the potential importance of moni-
toring duration on quantitation of contact rates.

Effects of distance between home range centroids 
on contact rates

As previous work has shown that wild pig 
home ranges are relatively small, we expected 
that distance between pig home range centroids 
would be a strong predictor of contact rates. 
Indeed, contact rates decreased significantly 
with distance between home range centroids 
(Fig.  2a; considering pairs with at least one 
contact only: P  <  0.0001 for direct and indirect 
contact, Model 3 in Table  1), and this relation-
ship remained significant even after variation 
from location intensity was removed (P < 0.0001 

for direct and indirect contact, Model 5 in 
Table 1). Contacts were rare between individuals 
in different sounders whose home range cen-
troids were >2  km, despite there being many 
data points from pairs of sounders with home 
range centroids separated by further distances 
(up to ~10  km; Fig.  2a). There were very few 
contacts for pairs with home range centroids 
separated by 2–6  km and none for pairs at 
distances >6  km. Thus, direct disease transmis-
sion is likely to be rare between sounders 
ranging further than 2  km and non-existent 
between sounders separated by 6  km, unless 
a significant amount of long-distance dispersal 
occurs during persistence of a given disease.

Effects of sex and age class on contact rates
No significant effects of sex on either direct 

(Fig.  2b) or indirect contact were apparent 
(Models 6 and 7, Table  1) after accounting for 
intrinsic factors, suggesting that any potential 
sex-based differences may be mostly explained 
by intrinsic factors. Effects of age class were 
significant on indirect contact but not direct 
contact (Fig.  2c), after variation from location 
intensity was accounted for (Model 8 in Table 1), 
but not after variation from both location in-
tensity and distance was considered (Model 9 
in Table 1). Specifically, indirect contacts between 
different age classes were significantly lower 
than indirect contacts between like age classes. 
The age class results suggest that although age-
based differences in contact rates may explain 
some variation in indirect contact rates among 
sounders, it may be less significant for explain-
ing variation in direct contact rates. Also, the 
variation in contact rates among sounders that 
was explained by age class was very small 
(explained variation  =  0.04) and when distance 
between home range centroids was accounted 
for, the age class effect became insignificant 
(variation explained was reduced by 50%), sug-
gesting that potential heterogeneities due to age 
class could be mostly explained by other factors 
such as distance between home range centroids. 
Although it should be noted that age class data 
were missing in some studies and ages were 
defined using different methods across studies, 
emphasizing that effects of age class should be 
tested more rigorously in a study that uses a 
standardized measure of age for all individuals 
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and designed to decipher the relative contribu-
tions of age-based differences in contact rates 
compared with home range locations.

Effects of sounder membership on contact rates
Although only three individuals in one study 

(SC) were from the same sounder, sounder mem-
bership explained a significant amount of variation 
in both direct (Fig.  2d) and indirect contact rates 
even after location intensity and distance between 
home range centroids were accounted for (Models 
10 and 11 in Table  1). Fig.  2d shows a >20-fold 
difference in contact rates for pairs from the same 
vs. adjacent sounders. This difference was roughly 
fivefold for indirect contact.

Taken together, our results emphasize that het-
erogeneities in contact rates are substantial in fe-
ral swine populations. Most of the variation can 
be explained by individual, location intensity, dis-

tance between home range centroids and sound-
er membership. Although sex was not significant 
and age class only explained a tiny amount of 
variation, it may be worth testing effects of these 
factors in future studies that are specifically de-
signed to measure contact rates. The random ef-
fects for interactor A and interactee B explained 
the largest proportion of variation (compare 
absGOF for Model 0 to Models 1–4), highlighting 
that some individuals are inherently more like-
ly to interact with others. After accounting for 
location intensity, distance between home range 
centroids and sounder membership were the two 
most important factors explaining variation in 
contact rates after individual-level behavior.

Contact structure
In all three of the studies for which we cal-

culated network properties (FL, TX4 and TX6), 

Fig. 1. Co-locations for each dyad in all studies. Only pairs that had at least one contact are shown. Points are 
coded by different markers and colors to distinguish studies in all plots. (a, c) Log daily contact rates plotted 
against the number of days that pairs were monitored. (b, d) Log daily contact rates plotted against the daily 
frequency of recording locations (location intensity). (a, b) direct contact; and (c, d) indirect contact.

(a) (b)

(c) (d)
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average degree (G) and connectedness (C) in-
creases (meaning the value of C decreases) as 
the time between contacts increases (meaning 
contact is more indirect, Fig.  3), highlighting 
that consideration of indirect contacts increases 
opportunity for disease transmission through 
increased connectedness between individuals 
(or, here, sounders; Drewe et al. 2013). Network 
properties differed across studies and contact 
type (direct vs. indirect) despite the relatively 
stable pattern in average distance between home 
range centroids (d, Fig.  3), suggesting that net-
work structure may describe contact heteroge-
neities in addition to those imposed by spatial 
relationships.

Global transitivity for the unweighted net-
works decreased with increasing time between 

contacts in two of the studies (FL and TX4), but it 
showed an inconsistent pattern in the third study 
(TX6, see T values Fig. 3). This inconsistency may 
partly be due to the very weak connectedness of 
these highly disconnected networks (up to nine 
distinct clusters), i.e., transitivity levels likely 
vary between distinct clusters and thus global 
effects from addition of connections strongly de-
pend on which connections are added. It is also 
noteworthy that transitivity was very high (≥0.67 
for all networks) and connectedness very low in 
all three networks from geographically distinct 
populations. When transitivity was calculated by 
considering contact rate heterogeneities, it was 
even higher at ≥0.95 for all networks, suggesting 
that high transitivity may be a common charac-
teristic in wild pig populations. This hypothesis 

Fig. 2. Factors affecting co-location rates between sounders. Direct contact rates. X-axes are: distance between 
home range centroids in km (a, d) sex of the individuals in a pair (b: FF, female–female; MF, male–female; MM, 
male–male), age class of the individuals in a pair (c: JJ, juvenile–juvenile; JA, juvenile–adult; AA, adult–adult; 
note – “juvenile” includes subadults). Points are color-coded by study and scaled to the numbers of days that the 
pair was monitored. (a, d) Size of points is scaled to the location intensity. (b, c) Size of points is correlated with 
the number of pairs. Numbers along the top show the total number of pairs in each category. Error bars are the 
standard deviations of the mean contact rates on a linear scale.

(a) (b)

(c) (d)
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should be validated with a study that is specifically 
designed to measure contact networks because 
disease dynamics in disconnected, clustered pop-
ulations are predicted to be very different from 
those in fully connected, unclustered ones and 
disease management is most effective when based 
on knowledge of contact structure (Eames and 
Keeling 2003, Hamede et al. 2012). One biological 
explanation for the high transitivity could be that 
sounders are more dynamic, frequently swapping 
members between sounders with closely related 
individuals, than is traditionally believed. To ver-
ify this hypothesis, all individuals from multiple 
adjacent sounders need to be monitored for con-
tact, a study that remains to be done.

The networks we presented are based on a 
small number of sounders (13–20), undoubtedly 

with missing data (i.e., not all sounders within 
the area of the sampled individuals were includ-
ed). We explored the effects of such missing data 
on network properties by dropping up to 50% 
of the sounders and recalculating the network 
properties (Fig. 4). Degree decreased significant-
ly when 50% of nodes were dropped (Fig.  4). 
Transitivity was relatively stable with up to 50% 
missing data for the networks with indirect con-
tacts, but changed in different directions in the 
direct-contact networks (which were much more 
clustered). The number of independent clusters 
was also more sensitive to missing data in the 
direct-contact networks relative to those with in-
direct contacts. Thus, networks of wild pig social 
structure based on indirect contacts may be rel-
atively robust to inherent difficulties with field 

Fig. 3. Spatial networks for three studies: FL (green), TX4 (red), TX6 (black). All networks were scaled to a 
10 × 10 km grid; scaling is shown in the lower right plot. Networks are plotted for three different types of contact: 
direct (within 15 min), indirect (within 1 week), and indirect (within 1 month). Data in the plots are: d = mean 
distance (±1SD) between connected nodes, G = degree (±1SD), Ru = global transitivity for unweighted networks, 
Rw = global transitivity for weighted networks, C = number of independent clusters.
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study design. Nevertheless, to quantitate contact 
structure every effort should be made to sample 
all adjacent sounders within the target spatial 
area.

Conclusion

The 45-fold variation in direct vs. indirect 
contact rates, and differences in network prop-
erties, highlight that appropriately defining 
disease-specific direct and indirect contact is 
a crucial first step for designing studies to 
measure contact rates. To quantitate contact 
rates in absolute terms for predicting rates 
of disease spread, a second important con-
sideration is to record locations at a frequency 
that approximates the minimum time of an 
effective contact. As expected, within-sounder 
contact rates appear to be much higher than 
between-sounder rates (>20 times in our 
study), but studies with larger sample sizes 
are needed to quantitate the magnitude of 

these differences. Between-sounder contact 
rates strongly depended on home range lo-
cation, suggesting that between-sounder con-
tact heterogeneities can be partly described 
using knowledge of wild pig movement ecol-
ogy. Specifically, we expect disease transmis-
sion to be reduced between sounders separated 
by >2  km and negligible between sounders 
separated by >6 km. It should be noted, how-
ever, that densities of the populations sampled 
are unknown, and lower density populations 
could show increased contact across greater 
distances—a relationship that remains to be 
studied. In addition to space, other factors 
causing high clustering may be at play (e.g., 
access to water, baiting). Studies designed to 
identify and quantitate these factors, as well 
as potential seasonality, are imperative for 
planning effective management of disease 
threats from feral swine because they directly 
impact the timing, severity and spatial spread 
of outbreaks.

Fig. 4. Effects of missing data on network properties. The three studies with the most connections are shown. 
Points are scaled by the number of nodes (FL = 18, TX4 = 13, TX6 = 20). Rows: mean connections per node, global 
transitivity (based on unweighted network), and number of independent clusters. Columns are types of contact: 
direct (within 15  min), indirect (within 1  week), and indirect (within 1  month). Error bars are 2 SDs of 100 
replicates. Stars show values where 50% of nodes are dropped: 9 – FL, 6.5 – TX4, 10 – TX6).
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