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Concentrations of the biomarker pentosidine have been shown to be useful measures of age for a number of avian and
mammalian species. However, no study has examined its usefulness as an age marker in a long-lived ectotherm despite
the fact that such a marker could prove useful in understanding age distributions of populations subject to conservation
programmes. Therefore, we evaluated pentosidine concentrations in the interdigital webbing of 117 female yellow mud
turtles (Kinosternon flavescens) at a 35 year study site in western Nebraska where nearly all turtles are of known age.
Pentosidine concentrations were extraordinarily low and positively correlated with age in this turtle, but concentrations
were too variable to permit precise estimates of age for turtles of unknown age. These results may reflect the remarkable
physiological adaptations of this turtle to low temperatures and oxygen deprivation in a highly seasonal environment
requiring prolonged hibernation. Whether pentosidine concentrations in other ectotherms occupying less seasonal envir-
onments would be more highly correlated with age remains to be determined. However, our results suggest that patterns
of accumulation of pentosidine in ectotherms may be fundamentally different from those in endotherms.
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This extended longevity complicates our ability to assess
the demographic status of natural populations without long-
term mark-recapture studies, which are expensive both in
time and money and infeasible for application to conserva-
tion programmes that cannot wait decades for demographic
data to appear. For many populations, there may not be suf-
ficient time left to undertake such studies before their dis-
appearance. Furthermore, because age and size are not

Introduction

Turtles (Order Testudines) are among the longest living of
all vertebrate groups (Gibbons, 1987), and their life-history
traits (e.g. delayed maturity, high adult survivorship,
extended iteroparity) have co-evolved with that longevity.
Unfortunately, this life-history strategy makes turtles particu-
larly vulnerable to direct (e.g. harvest, accidental mortality)

and indirect human impacts (e.g. habitat loss, climate
change, invasive predators and competitors). Indeed, more
than half of the world’s turtle species are threatened with
extinction (Turtle Taxonomy Working Group, 2014).

necessarily correlated in turtles (e.g. Congdon ez al., 2001;
Bury et al., 2010), turtle populations may appear to be
robust, with seemingly high adult densities, but in reality
may be heavily skewed toward old individuals and suffering
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from severe reductions in recruitment. Thus, although a turtle
population might appear healthy, its impending extirpation
may be inevitable (e.g. Thompson, 1983; Germano and Bury,
2001; Browne and Hecnar, 2007). The ability to construct
age-class distributions for natural populations is essential for
evaluating their demographic status and for modelling their
future survival probability, but current methods for ageing
turtles (e.g. scute annuli and skeletochronology) have limited
value (Bjorndal et al., 1998; Wilson et al., 2003).

Pentosidine is a metabolic byproduct of the Maillard reac-
tion, specifically the non-enzymatic glycosylation of collagen
(Chaney et al., 2003; Cooey et al., 2010). Given that it is
metabolically stable (Monnier, 1989; Sells and Monnier,
1989) and accumulates in a number of easily accessible tis-
sues throughout the lifetime of an individual, it has been
shown to be a useful biomarker for age in a number of
domestic and wild bird and mammal species (Sell er al.,
1996; Fallon et al., 2006; Cooey et al., 2010; but see Rattiste
et al., 2015). Hence, the concentration of pentosidine in tis-
sues of living endotherms has shown great promise for age-
ing other species non-destructively and without long-term
monitoring. However, to date, this relationship has not been
examined in any ectotherm. We sought to correct this defi-
ciency by examining pentosidine levels in the skin—follow-
ing the practice of Sells and Monnier (1989), Chaney et al.
(2003), Cooey et al. (2010) and others—of a very long-lived
turtle species, the yellow mud turtle (Kinosternon flavescens;
YMT), to determine whether they correlate with the known
ages of these turtles from a long-term (35 year) mark-recapture
study at a field site in western Nebraska.

We sought to determine the value of using pentosidine as a
non-invasive biomarker for the rapid assessment of age-class
distributions in turtles populations and for ageing confiscated
animals of threatened species intended for captive-breeding
recovery programmes. We expected that the long lifespans of
turtles should allow for a sufficient span of time to detect pat-
terns in pentosidine accumulation.

Materials and methods

Our field site is located in the western Sandhills region of
Nebraska on the Crescent Lake National Wildlife Refuge,
adjacent to the Gimlet Lake wetland complex (41° 45’ 22"N;
102° 26’ 12"W). Turtles (including the YMT) have been
under study at this site by J.B.I. since 1981 (Iverson, 1991;
Iverson and Smith, 1993; Iverson et al., 1997; Converse
et al., 2005). Most individual YMTs are now of known age.
In addition, those older than 35 years were assigned esti-
mated ages based on counts of growth annuli (Germano and
Bury, 1988) when turtles were first caught as juveniles in the
early 1980s. Several individuals first caught as adults at that
time were given minimal age estimates based on the minimal
number of plastral growth annuli present. The annual depos-
ition of an annulus has been confirmed in our population
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(J.B.I., unpublished observations), although separate annuli
cannot be distinguished in years of little or no growth
(Iverson, 2001). Hence, some older individuals are known to
be older than 55 years (i.e. had at least 20 countable annuli
when first captured in 1981). For our work, turtle age is the
number of winters post-hatching.

Turtles (117 females ranging in age from 1 to 53 winters)
were sampled (primarily at drift fences; see Iverson, 1991 for
details) in June 2015 during the nesting season. Skin samples
were excised from the interdigital membrane (webbing) of
the clawless (lateral) digit of the right hindfoot. Wounds
rarely bled, but we closed them with antibacterial skin glue
as a precaution against infection. Recaptures of sampled
individuals demonstrated rapid healing and no signs of infec-
tion. Skin samples were frozen at approximately —15°C in
vials of distilled water immediately after removal and
remained frozen until analysis.

All samples were processed and analysed within 5§ months
of collection. Tissue preparation and determination of pen-
tosidine (Ps) and hydroxyproline (HYP) concentrations fol-
lowed the techniques described below. Hydroxyproline was
measured to estimate the collagen content in the tissue sam-
ple, reported in milligrams, referenced to a calf-skin colla-
gen sample (Rousselot Peptan B 5000 HD) with a known
HYP concentration of 11.5% (see also Chaney et al., 2003;
Fallon ef al., 2006; Cooey et al., 2010). Hydroxyproline is
not expected to vary with age (Maekawa ez al., 1970). The
Ps concentration was determined relative to the mass of col-
lagen estimated to be present in the sample (in picomoles of
pentosidine per milligram of collagen).

Samples were extracted in 2 ml of 2:1 chloroform/metha-
nol (MeOH) to remove the lipid fraction (Folch et al., 1957;
Hamilton et al., 1992). The solvent was decanted and the
remaining sample dried at 60°C for 10 min after rinsing with
2ml of MeOH, then acid hydrolysed in 4ml of 6 N HCI
with a CEM Discover SPD microwave digestor. Samples
were digested in a 10 ml quartz tube. Temperature was main-
tained at 185°C for 15 min, after ramping from ambient
over 5 min. Samples were exposed to a maximal microwave
energy of 300 W and digested at a maximal pressure of
200 psi. Samples were continuously stirred with a magnetic
stir bar during digestion. The acid hydrolysate was dried
under vacuum at 60°C with a Rotovap. The sample was
reconstituted in 1.0 ml of 25% MeOH in water containing
0.1% heptafluorobutyric acid.

Pentosidine was determined in the hydrosylate using a high-
performance liquid chromatography method based on that of
Bank et al. (1997) following centrifuge filtration of the extract
using a Durapore Polyvinylidene fluoride 0.45 pm filter
(Millipore). Chromatography was performed using an
Agilent 1100 Liquid Chromatograph with a fluorescence
detector. A 3 pl sample was injected onto an Agilent XDB-C8
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3mm X 150 mm, 3.5 pm column. Pentosidine was eluted in a
gradient starting at 90%/10% water/MeOH and ramping to
75%125% water/MeOH containing 0.1% heptafluorobutyric
acid at 11 min at a constant flow rate of 0.9 ml/min. The
MeOH was ramped to 60% at 8.4 min and then to 100% at
13 min and held constant for 4 min to flush the column. The
column was re-equilibrated for 3 min before the next injection.
The column was maintained at 60.0°C. Pentosidine was
detected by fluorescence, with excitation at 328 nm and moni-
toring for fluorescence emission at 378 nm. The pentosidine
concentration was determined using an external standard
curve covering the concentration range of 0-25 pmol/ml pre-
pared from a primary standard acquired from Polypeptide
(Strasbourg, France). Pentosidine eluted at ~8.9 min in these
chromatographic conditions. The pentosidine concentration is
reported in picomoles per milligram of collagen.

The collagen content in the tissues was estimated by deter-
mining the concentration of HYP in the hydrosylate.
Hydroxyproline determination was based on the secondary-
amine derivatization method of Hutson ef al. (2003). To
summarize this method, primary amines are derivitized with
o-pthalaldehyde, and then secondary amines are derivitized
with fluorenylmethyloxycarbonyl chloride. We adapted this
method by diluting 0.05ml of our extract with 0.2ml of
0.25 M boric acid, pH 9.5, and 0.05 ml of a 200 ppm sarcosine
internal standard in 0.70 ml of water. We followed the rest of
the derivitization procedure as published. Concentrations were
determined with an external standard curve over the range of
0-25.0 ppm HYP using a primary standard (Sigma-Aldrich).
Concentration values for micrograms of hydroxyproline per
milligram of lipid-free sample are reported.

We injected 1pl of the derivitized solution on a Luna
C18 (2) 3mm X 75 mm, 3 pm column and used a gradient
separation with an Agilent 1100 Liquid Chromatograph
with a fluorescence detector to quantify the amount of HYP
present. The mobile phase started with a composition of 3%
acetic acid (pH 4.3)/acetonitrile 75%/25% and was ramped
to 25/75% from 2 to 10 min post-injection at a flow rate of
0.3 ml/min. This composition was maintained for 3 min, after
which the column was re-equilibrated for 7 min before the
next injection. The fluorenylmethyloxycarbonyl chloride-
derivitized HYP and sarcosine were excited at 265 nm, and
fluorescence emission was detected at 330 nm. Separation was
performed at a column temperature of 40°C. Hydroxyproline
eluted at ~7.7 min, whereas sarcosine eluted at 10.3 min.
Hydroxyproline values were visually assessed for normality
using a Q-Q plot (Dalgaard, 2002), and a summary distribu-
tion of values using a box-and-whiskers plot was used to iden-
tify extreme outliers. Three values were confirmed as outliers
using the Tietjen—Moore test (Tietjen and Moore, 1972) and
excluded from subsequent analyses.

Linear regression models were developed to evaluate the
relationship of Ps and HYP concentrations in the tissue

samples vs. the known ages of the turtles. The effect of sub-
population (each having differing growth rates, age to
maturity, reproductive output and activity-season length;
J.B.L, unpublished observations) within the study wetlands
on the relationship between Ps concentration and age was
evaluated using a multivariate regression model, with subpo-
pulation as a class parameter for samples collected across the
three panmictic subpopulations (labelled herein as D, M and
Z., with the first two from permanent wetlands and the last
from an ephemeral wetland).

Decadal means and standard deviations for Ps concen-
tration were also calculated for the entire population, and
a one-way ANOVA (followed by a pairwise #-test with
Bonferroni correction to calculate significance) was performed
on the entire data set to determine whether differences were
statistically significant. Pairwise #-tests were then performed to
identify the decadal means that were contributing to the
ANOVA result. Means were also compared using a post hoc
least-significant difference (LSD) test with Bonferroni correc-
tion. Statistical analyses were conducted using R (cran-r-
project.org) version 3.3.1.

Results

As expected, the measured HYP concentration (in micrograms
per milligram) was not related to age (Fig. 1; HYP =

70.56 — 0.14Age; R? = 0.021, Fyq12 = 2.36; P = 0.13).
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Figure 1: Plot of the hydroxyproline (HYP) concentration (in
micrograms per milligram) vs. turtle age for known-age individuals of
female yellow mud turtles (Kinosternon flavescens) sampled in 2015.
The symbols distinguish the different subpopulations, as follows:
circles are members of subpopulation D; triangles are from
subpopulation M; and plus signs are from subpopulation Z. There is
no significant relationship between age and HYP concentration with
or without the outliers (see main text).
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However, pentosidine concentration (in picomoles per
milligram) was positively correlated with age (Fig. 2;
Ps = 0.350 + 0.012Age; R? = 0.105, Fy1pp = 13.08,
P = 0.0004), although age explained only 10.5% of the vari-
ation in Ps concentration. Comparison of decadal mean Ps
concentrations (Table 1 and Fig. 3) indicated that the means
varied significantly by decade (F = 3.45; P = 0.011), with a
general increase in Ps with decade. However, the pairwise
comparison identified few differences between the means for
the five decade groups (Table 1), and a LSD test indicated no
variation among decadal sample means.

The multivariate linear regression model comparing sub-
populations captured only slightly more of the variance in
the data, with the adjusted R* = 0.116 (Ps = 0.0112Age —
0.174*popM — 0.116*popZ + 0.44*popD, where the popD

1.5+

Ps (pmol/mg)
>
1

0.5

Age (years)

Figure 2: Plot of the pentosidine (Ps) concentration (pmol/mg) vs.
turtle age for known-age individuals of yellow mud turtles (K.
flavescens) sampled in 2015. Subpopulation symbols are as in Fig. 1.
The regression equation for all data (see main text) and the 95th
percentile confidence interval for the equation (dashed lines) and
prediction band for the data set (dotted lines) are also depicted.

Conservation Physiology - Volume 5 2017

[membership = 1; the intercept for the model], popM [mem-
bership = 2] and popZ [membership = 3] parameters reflect
membership in the respective subpopulation; Fs 113 = 6.06,
P = 0.0003). The coefficients for Age (P < 0.0001), popD
(P < 0.00001) and popM (P < 0.00001) were significant,
whereas that for popZ was not (P = 0.36).

Discussion

Considerable research has established the use of pentosidine
concentrations as biomarkers for age in birds and mammals.
Pentosidine concentrations are in general highly correlated with
age in both birds (#* = 0.68-0.93; Chaney et al., 2003; Fallon
et al., 2006; Cooey et al., 2010; but see Rattiste et al., 2015)
and mammals (¥ = 0.57-0.98; Sell et al., 1996). However, to
our knowledge, changes in pentosidine concentrations with
age in an ectothermic vertebrate have not previously been

1.5+
T a

1.0 1
2
3 T a a
£ {
3 -
n a a
o

0.5+ I

0.0-

1 2 3 4 5
decade

Figure 3: Mean pentosidine (Ps) concentrations (pmol/mg) + 1 SD
plotted by decade of age. Least-significant differences were
calculated with a Bonferrroni correction. Lower-case letters denote
means that are significantly different at a value of P < 0.05.

Table 1: Comparison of the mean pentosidine concentrations in all the yellow mud turtle samples grouped by decade of age using a pairwise

t-test; probabilities that means are the same are reported

Pentosidine (pmol/mg;mean + SD)

Pairwise t-test comparisons

Decade 4
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examined. We found a significant but weak correlation
between age and pentosodine concentration in the YMT,
although wide variation in pentodosine concentrations even in
the same decadal age cohort seems to negate the utility of Ps
as a precise ageing biomarker, at least in this turtle species.
Furthermore, we could demonstrate no significant difference
in pentosidine concentrations among our three subpopula-
tions, even though PopZ, which inhabits an ephemeral wet-
land, exhibits a shorter annual activity season, slower growth
and longer age to maturity (J.B.I., unpublished observations)
and, presumably, greater physiological stress than the two
populations inhabiting permanent waters.

In addition to the variation we documented, the mean Ps
concentration of 1.14 + 0.47 pmol/mg that we report for
YMTs >50 years of age is lower than that detected for mature
individuals of any endotherm. For example, Sell ez al. (1996)
reported average adult Ps concentrations of 7 pmol/mg in the
least shrew (at 3 years of age), 15 pmol/mg in miniature swine
(at 14years), 20pmol/mg in rhesus monkeys (26 years),
30 pmol/mg in cows (9 years), 60 pmol/mg in dogs (14 years)
and ~100 pmol/mg in a human (92 years). They found the rates
of Ps formation were greatest in short-lived species and lowest
in long-lived species. Their regression equations predicting
Ps concentration as a function of age for these species had
in all cases, except the least shrew and miniature pig, an
intercept predicting a Ps concentration at age = 0 larger
than the highest mean concentration at 50+ years of age
observed in the YMT.

Ageing processes are complex and often studied in the
context of a disease that accelerates the process in mammals.
Krivoruchko and Storey (2010) reviewed the sophisticated
physiological adaptations expressed in cold-tolerant hiberna-
ting turtles and the relevance of these processes in retarding
the signs of ageing as expressed in mammals. Pentosidine
often accumulates in tissues as a non-enzymatically regulated
byproduct of metabolic imbalance in the host (Monnier,
1989; Sell et al., 1996). We attempt to provide a contrast
between our results and those reported in ageing studies for
mammals in the context of various physiological processes
that would potentially up-regulate Ps formation in turtles or
other species and how those processes are perceived as being
down-regulated in turtles.

The low, variable concentrations of Ps in our study could
possibly reflect the fact that pentosidine concentrations are
known to vary among different tissues in the body of the
same animal, at least in endotherms (Holmes et al., 2001;
Fallon ez al., 2006), depending on such variables as vascu-
larization, tissue temperatures, collagen turnover rates and
antioxidant concentrations. However, we do not believe this
serves to explain our data because linear or higher-order
relationships between Ps and time still occur in different tis-
sues in endotherms. For example, Cooey et al. (2010) docu-
mented differences in Ps concentration in skin samples
collected from the patagium vs. the breast of vultures and

monk parakeets, and they found that Ps concentration in
vultures was not different between these two source loca-
tions, whereas it was higher in the breast than in the pata-
gium in the monk parakeet. This difference between the two
species and sample sites was attributed to differences in
flight behaviour, with increased oxidative stress associated
with more vigorous flight in the monk parakeet. Oxidative
stress significantly increases Ps skin concentration in broiler
chicks, which can be offset by feeding haemin, an iron-
containing porphyrin (Klandorf et al., 2001). The intercepts
for the regression equations for Ps concentration in the
monk parakeet for both breast and patagium samples calcu-
lated by Cooey et al. (2010) were also greater than our
mean value for the 50+-year-old turtles.

Chaney et al. (2003) measured Ps concentrations in the
foot webbing of California gulls and determined a linear rela-
tionship between Ps concentration and age. The intercept for
their equation was 7.47 pmol/mg, again significantly higher
than our YMT values. Fallon et al. (2006) determined the Ps
concentration in museum skin mounts of ruffed grouse and
reported 22.5 pmol/mg for a 2-year-old bird. They also exam-
ined Ps concentration changes by body location and found
that samples from the abdomen had the lowest Ps concentra-
tions (27.5 pmol/mg), whereas the wing had the highest
(38.8 pmol/mg). Cooey et al. (2010) attributed higher Ps in
breast skin than patagium skin to increased vascularization in
the former. Given that turtle skin is highly vascularized
(Jackson and Ultsch, 2010; Krivoruchko and Storey, 2010),
the low Ps concentrations in the YMT are even more striking.
Future sampling of other tissues from turtles would be neces-
sary to evaluate whether intra-individual variation in Ps con-
centrations is important, although other tissues will be much
more difficult to sample without negative impact to the turtle.

Sell et al. (1996) demonstrated that the interaction of
metabolism and longevity in six mammalian species was cor-
related with Ps accumulation in skin tissues, and Cerami
(1985) proposed that glucose was a mediator in the ageing
process in mammals. As Ps is a glycolytic byproduct, the
extremely low concentrations of Ps detected in the skin sam-
ples of YMTs probably reflect the lower metabolic rate of
this poikilotherm, the metabolic depression that occurs as a
result of extreme cold exposure, the adaptive mechanisms
that reduce formation of reactive oxygen species during
hibernation and the physiological mechanisms that allow for
anoxia while diving (each discussed below). The initial
physiological responses of numerous chelonian species to
these stressors have been demonstrated to increase glucose
and some amino-acid concentrations in blood (Reese et al.,
2001; Storey, 2006; Warren and Jackson, 2007; Costanzo and
Lee, 2013), and this favours Ps formation.

Our YMT population inhabits a region of temperature
extremes and exhibits one of the shortest annual activity
seasons of any turtle (generally <128 days; Christiansen
et al., 1985). Hence, we associate the high variance that we



observed in our samples with the complex interaction of
climate, growth rate, age, duration of hibernation and indi-
vidual exposure to stress during hibernation; however,
insufficient details of these life-history parameters exist for
our individuals to allow us to evaluate their effects on our
Ps data.

Pentosidine accumulation is greater in conditions of oxida-
tive stress (Fallon et al., 2006; Rattiste et al., 2015), but turtles
are relatively resistant to this stress at lower temperatures
(Baker et al., 2007; Treidel, 2015). Also, in endotherms,
hyperglycaemia generally increases Ps accumulation (Dyer
et al., 1991; Mikulikova et al., 2008), and hyperglycaemia in
turtles occurs in response to hibernation or anoxia (Jackson
and Ultsch, 2010), but this apparently does not result in
increased Ps in the skin of the YMT. Furthermore, one might
expect reduced oxygen delivery to the skin in cold and/or
anoxic conditions as a result of reduced capillary circulation,
limiting Ps accumulation.

Terrestrially dormant (both aestivating and hibernating)
YMTs have been demonstrated to incur an oxygen deficit
based on increased respiratory levels (Seidel, 1978) and ele-
vated plasma lactate concentrations (Chilian, 1976), which
are both associated with the anaerobic metabolism reported in
other cold-tolerant, hibernating turtles (Jackson and Ultsch,
2010; Costanzo and Lee, 2013). Yellow mud turtles do not
exhibit the freeze tolerance observed in hatchlings of
Chrysemys picta or Terrapene ornata (Costanzo et al., 1995),
and at our study site, adult and hatchling YMTs hibernate in
terrestrial burrows below the frost line (Iverson, 1991; Iverson
et al., 2009) and, presumably, do not experience the physio-
logical demands associated with the anoxia/hypoxia endured
by turtles that hibernate underwater. Nevertheless, hibernating
turtles maintain elevated concentrations of blood glucose to
maintain brain and heart function (Jackson and Ultsch, 2010),
and elevated glucose concentrations contribute to increased
rates of Ps formation in endotherms (e.g. Dyer ez al., 1991,
Mikulikova et al., 2008). In humans, Ps and other advanced
glycation end products contribute to oxidative stress in dia-
betics (i.e. in hyperglycaemic conditions; Nowotny et al.,
2015). But turtles have been found to mount significant anti-
oxidant defenses to protect against reactive oxygen species
produced as a result of metabolic shifts associated with anoxia
and hibernation (Krivoruchko and Storey, 2010), and these
responses may have led to the reduced Ps concentrations
detected in the present study.

Even so, the results of this study were surprising to us,
given the wide age spread of the turtles and the bouts of
hyperglycaemia they would experience at least annually.
What we had not anticipated was the unique physiological
adaptations that turtles have that serve to ameliorate physio-
logical stress resulting from exposure to anoxia during diving
or hibernation and the degree to which these adaptations
suppress Ps formation. For example, in turtles (and other
vertebrates) oxidative stress significantly up-regulates the
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formation of a-oxyaldehydes (Abordo e al., 1999), which
are cytotoxic and predispose tissues to the formation of Ps
cross-links (A¢imovic ez al., 2014). These a-oxyaldehydes are
detoxified via a glutathione-dependent glyoxylase system,
and the concentrations of glutathione in turtle organs are
higher than those observed in other ectotherms (Willmore
and Storey, 1997). Glutathione (see above) inhibits pentosi-
dine formation (Labuza et al., 1994). Additionally turtle
glutathione reductase has a higher affinity for substrate
across a broader pH range than is observed in other species
(Willmore and Storey, 2007), offsetting the effects of acidosis
on this pathway as a result of lactic acid accumulation
observed during hibernation (Hochachka, 1986; Churchill
and Storey, 1992; Packard and Packard, 2004, 2005;
Jackson and Ultsch, 2010).

Furthermore, concentrations of the antioxidant ascorbic
acid (ascorbate) have been found to be relatively high in the
central nervous system of turtles, but to vary positively with
temperature (Pérez-Pinzon and Rice, 1995) and to be highest
in turtles that are anoxia tolerant (Pérez-Pinzon and Rice,
1995). Although ascorbate concentrations are in general
positively correlated with pentosidine production (at least in
mammals, e.g. Nagaraj et al., 1994), ascorbate concentra-
tions are tissue specific (declining peripheral to the brain
itself) and also tightly regulated seasonally (Pérez-Pinzén and
Rice, 1995). In any case, as noted above, the YMT hiber-
nates terrestrially and, presumably, does not exhibit elevated
ascorbate concentrations, although they have not been quan-
tified in this species. Hence, they may be irrelevant to Ps
production in this species.

These adaptations appear to be specific to turtles that are
cold tolerant, anoxia tolerant and hibernate, and they are
likely to contribute significantly to the low concentrations of
Ps detected in the present study. Therefore, in YMTs, extreme
temperature variation in the environment, moderated by
physiological adaptations, may drive variation in pentosidine
concentrations more than does ageing. The relative contribu-
tions of hibernation vs. diving adaptations in lowering Ps
accumulation might be teased apart in temperate-zone turtles
by investigating Ps patterns in other terrestrial species (such as
Terrapene) that hibernate but do not engage in diving.

If physiological adaptations for prolonged exposure to
anoxic conditions overwhelm the signature of ageing in Ps
accumulation for turtles from cold-temperate regions, it may
be that species from lower latitudes with longer activity
cycles and no need to hibernate may have different patterns
of pentosidine accumulation. We anticipate that given the
absence of these adaptations in tropical ectotherms, it might
be possible to use Ps as a biomarker to age them. We suggest
that this would be a worthy object of investigation, because
most of the world’s threatened turtles are from subtropical
or tropical regions (Turtle Taxonomy Working Group,
2014), and having a reliable ageing biomarker could, as
stated earlier, prove invaluable in assessing the demographic
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health of these populations and for estimating the potential
reproductive senescence of captive animals of unknown prov-
enance. Unfortunately, we are unaware of any long-term field
studies of tropical turtles (including marine turtles) that could
provide tissue samples from animals of known ages.
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