
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

USDA National Wildlife Research Center - Staff 
Publications 

U.S. Department of Agriculture: Animal and 
Plant Health Inspection Service 

2017 

Anthropogenic factors predict movement of an invasive species Anthropogenic factors predict movement of an invasive species 

Michael A. Tabak 
USDA APHIS Wildlife Services 

Antoinette J. Piaggio 
USDA/APHIS/WS National Wildlife Research Center, Toni.J.Piaggio@aphis.usda.gov 

Ryan S. Miller 
USDA APHIS Wildlife Services 

Rick A. Sweitzer 
University of California - Davis, rasweitzer@berkeley.edu 

Holly B. Ernest 
University of Wyoming, hernest@uwyo.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc 

 Part of the Life Sciences Commons 

Tabak, Michael A.; Piaggio, Antoinette J.; Miller, Ryan S.; Sweitzer, Rick A.; and Ernest, Holly B., 
"Anthropogenic factors predict movement of an invasive species" (2017). USDA National Wildlife 
Research Center - Staff Publications. 1968. 
https://digitalcommons.unl.edu/icwdm_usdanwrc/1968 

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant 
Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion 
in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of 
DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/icwdm_usdanwrc
https://digitalcommons.unl.edu/icwdm_usdanwrc
https://digitalcommons.unl.edu/usdaaphis
https://digitalcommons.unl.edu/usdaaphis
https://digitalcommons.unl.edu/icwdm_usdanwrc?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F1968&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F1968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/icwdm_usdanwrc/1968?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F1968&utm_medium=PDF&utm_campaign=PDFCoverPages


Anthropogenic factors predict movement of an invasive species
MICHAEL A. TABAK,1 ANTOINETTE J. PIAGGIO,2 RYAN S. MILLER,1

RICHARD A. SWEITZER,3 AND HOLLY B. ERNEST
4,�

1Center for Epidemiology and Animal Health, USDA/APHIS/Veterinary Services, 2150 Centre Avenue,
Fort Collins, Colorado 80526 USA

2National Wildlife Research Center, USDA/APHIS/Wildlife Services, 4101 LaPorte Avenue, Fort Collins, Colorado 80521 USA
3Great Basin Institute, 16750 Mt. Rose Highway, Reno, Nevada 89511 USA

4Department of Veterinary Sciences, Program in Ecology, University of Wyoming, 1000 E. University Avenue,
Laramie, Wyoming 80271 USA

Citation: Tabak, M. A., A. J. Piaggio, R. S. Miller, R. A. Sweitzer, and H. B. Ernest. 2017. Anthropogenic factors predict
movement of an invasive species. Ecosphere 8(6):e01844. 10.1002/ecs2.1844

Abstract. Humans are playing an increasingly large role in the expansion of invasive species’ distribu-
tions, but few (if any) studies have evaluated anthropogenic factors associated with intentional transloca-
tion of invasives. The wild pig (Sus scrofa) is an extremely destructive and rapidly expanding invasive
species whose movement is thought to be facilitated by humans. We sought to (1) identify a suite of genetic
markers that can be applied to population genetic analyses of wild pigs, (2) find quantitative evidence of
human-mediated dispersal of wild pigs, and (3) determine which anthropogenic factors were associated
with their translocation. We identified 43 polymorphic microsatellite loci and employed population genetic
analyses to evaluate population structure and movement of wild pigs among populations in California,
USA. Hierarchical Bayesian models were used to evaluate the influence of anthropogenic covariates on
wild pig movement, and to predict migration risk. Natural dispersal of wild pigs among populations was
low, as indicated by a large number of genetic clusters (K = 21), significant population differentiation, and
low rates of recent migration. This suggests that the observed movement resulted from human-mediated
translocation. Movement of pigs was positively predicted by the number of domestic pig farms, the num-
ber of captive game hunting farms, the amount of public land, the number of wild pigs harvested by hun-
ters, and the number of game outfitters. While hunting has been hypothesized to play a role in wild pig
movement, our study is the first to provide quantitative evidence of such a relationship. We argue that
future efforts to manage invasive species must consider the potential role of humans in their dispersal.
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scrofa; translocation.

Received 23 January 2017; revised 17 April 2017; accepted 25 April 2017. Corresponding Editor: James W. Cain III.
Copyright: © 2017 Tabak et al. This is an open access article under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
� E-mail: hernest@uwyo.edu

INTRODUCTION

The geographic ranges of many invasive spe-
cies are increasingly being driven by human-
mediated movement (Hulme 2015, Buckley and
Catford 2016). Anthropogenic movements of
invasive species threaten biodiversity and agri-
culture, modify ecosystems, facilitate the spread

of harmful pathogens over long distances (e.g.,
chytridiomycosis and sudden oak death), and
impede conservation efforts (Banks et al. 2015,
Kuebbing and Nu~nez 2015). Movement of
plants and invertebrate animal species (e.g.,
Ambrosia spp. and Dreissena polymorpha) is
often an unintentional consequence of human
long-distance travel, international trade, and
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globalization (Perrings et al. 2005, Garc�ıa-D�ıaz
et al. 2015). Historically, the prediction of inva-
sive species distribution and range expansion
has focused on natural dispersal (Kot et al. 1996,
Guisan and Thuiller 2005). Such attempts often
ignore anthropogenic effects, which for some
species might be the greatest driver of range
expansion (Waithman et al. 1999).

In North America, many vertebrate species
have been introduced and moved, often for the
purposes of recreational hunting and fishing
(Geist 1985, Johnson et al. 2001, Cambray 2003).
There are at least 125 free-ranging exotic mam-
mal species in North America (Belden 1994,
Mungall and Sheffield 1994), many of which
have been intentionally imported, moved, and
released for sport hunting (Pine and Gerdes
1973, Butler et al. 2005). Despite the extensive
research on exotic and invasive species, the link-
age of anthropogenic mechanisms that underpin
intentional human-mediated range expansion of
invasive mammals remains unstudied in the eco-
logical literature. Providing evidence and quanti-
fying human-mediated spread of invasive
species can help managers predict areas at high
risk of having invasive species introduced, sup-
port mitigation strategies, encourage legislation
to stop introductions, and identify populations
requiring management.

The wild pig (Sus scrofa) is invasive to, and
widely distributed across, North America (Brook
and van Beest 2014, McClure et al. 2015); it causes
a tremendous amount of damage to wildlife,
native ecosystems, and agriculture (Cushman
et al. 2004, Parkes et al. 2010) and is a vector of
harmful zoonotic pathogens (Meng et al. 2009).
The wide distribution of wild pigs in North
America is largely a result of human stocking of
populations over the last five centuries (McCann
et al. 2014). Humans continue to move wild pigs,
a process that facilitates their expansion and com-
plicates management efforts (Bevins et al. 2014).
Legal and illegal movement of pigs for sport hunt-
ing is thought to be a primary mechanism driving
wild pig range expansion globally (Pine and
Gerdes 1973, Barrett 1977, Wood and Barrett 1979,
Spencer and Hampton 2005, Sweitzer et al. 2015).
However, there is little quantitative evidence of
human movement of wild pigs, and attempts to
quantify the association between anthropogenic
factors and translocation remain elusive.

We coupled state-wide population genetic
analyses of wild pigs in California with
hierarchical Bayesian models to quantify anthro-
pogenic factors that are associated with human-
mediated movement into, and out of, counties
(or immigration and emigration, respectively).
We hypothesized that wild pig emigration would
be positively associated with wild pig density
and the importance of the recreational hunting
industry in the county. We used hunter harvest
as a proxy for the availability of wild pigs for
capture and translocation. To measure the impor-
tance of recreational hunting, we used the num-
ber of licensed game outfitters present in the
county.
We evaluated three covariates with potential

roles in wild pig introduction into counties: game
farms, domestic pig farms, and public land. The
game farm industry (farms where customers can
hunt captive animals) has been associated with
the introduction and release of exotic, and often
invasive, species for the purposes of recreational
hunting (Geist 1985, Demarais et al. 1990, Butler
et al. 2005). Specifically, game farms are thought
to be associated with the movement and release
of wild pigs for hunting purposes in several
regions of the United States (Mayer and Brisbin
2008). Additionally, domestic pigs are known to
be a source for established feral swine popula-
tions (Brook and van Beest 2014). Domestic pig
escapes are common, especially with small
farms, and have been established as a source of
feral swine populations (Morelle et al. 2016). It is
also common for domestic heritage pigs to be
purchased and released for the purpose of estab-
lishing hunting populations (Scandura et al.
2011). Finally, public land has been identified as
a potential location for new wild pig populations
(Hartin et al. 2007, Loggins 2007). Therefore, we
hypothesized that immigration of wild pigs
would be positively associated with game farms,
domestic pig farms, and public land.
Here, we search for quantitative evidence that

humans have moved wild pigs in California,
identify anthropogenic factors associated with
the movement of wild pigs, and predict the prob-
ability of wild pig immigration and emigration
for each county in the state. We describe ways
that an improved understanding of human-
mediated movement, and the anthropogenic fac-
tors associated with translocation, can be used to

 ❖ www.esajournals.org 2 June 2017 ❖ Volume 8(6) ❖ Article e01844

TABAK ET AL.



mitigate against the harmful effects of wild pigs
and help curb the ongoing spread of this invasive
species in North America. Future efforts to man-
age invasive species will require an improved
understanding of the anthropogenic factors asso-
ciated with translocation.

METHODS

Data acquisition
Wild pigs on mainland California were cap-

tured opportunistically in traps from control
efforts and hunters between June 2005–October
2008. Locality data for individual pigs were col-
lected at the county level. Wild pigs on Santa
Cruz Island were sampled during an eradication
program (Parkes et al. 2010). Domestic pigs (i.e.,
black, Duroc, Hampshire, white, York, and cross-
breeds) were subsampled from an archive at the
University of California, Davis. Blood, muscle, or
hair samples were collected from each individual
for genetic analyses.

Microsatellite loci were identified from the
domestic pig genome (Archibald et al. 1995,
Alexander et al. 1996, Rohrer et al. 1996). Initially,
85 loci were identified for testing in wild pig pop-
ulations from California. After preliminary tests
of amplification, polymorphism, and multiplex-
ing, a subset of 43 loci were selected to be applied
to the total set of samples (Appendix S1). Details
of methods for polymerase chain reaction are
available in Appendix S2.

Population genetics
MICROCHECKER v.2.2.3 (Van Oosterhout

et al. 2004) was used to assess null allele frequen-
cies across 43 loci using a Bonferroni correction
with a 95% confidence interval for 104 iterations.
The Brookfield 1 index (Brookfield 1996) was
applied, and loci with <15% null alleles were
retained (Dakin and Avise 2004). We used ARLE-
QUIN v.3.5.1.2 (Excoffier and Lischer 2010) to
calculate basic diversity indices across all samples
(number of alleles, NA; expected heterozygosity,
HE), calculate Nei’s gene diversity (Nei 1987), and
estimate FST among inferred genetic clusters
(described below). GENEPOP v.4.5 (Raymond
and Rousset 1995) was used to calculate Hardy–
Weinberg equilibrium (HWE; 106 steps in Markov
Chain and 105 dememorization steps) and linkage
disequilibrium (LD; 104 permutations). Sequential

Bonferroni corrections were performed to adjust
significance levels for multiple tests of FST, HWE,
and LD (Holm 1979, Rice 1989).
To assess population structure, we used two

Bayesian approaches to detect genetic clusters (K)
within the total data set. The first approach was
implemented in BAPS v.6.0 (Corander and Martti-
nen 2006, Corander et al. 2008a) to estimate K dis-
tributed among individuals without information
about capture locality (Corander et al. 2008b). We
ran BAPS initially with five replications of K = 1–
25 and then, based on those results, final analyses
were conducted with 20 replications on the K val-
ues with the highest likelihood (K = 15–22).
Another approach used to estimate K was accom-
plished in STRUCTURE v.2.3.4 (Pritchard et al.
2000, Falush et al. 2003) as it implements a differ-
ent algorithm than BAPS. STRUCTURE was run
with a burn-in of 106 and 106 Markov chain
Monte Carlo (MCMC) repetitions post-burn-in.
The remaining parameters were set to default
(admixture for ancestry and correlated allele
frequencies). We tested K from 1 to 25 with 20
replications of each to assess stability between
runs (Waples and Gaggiotti 2006). To determine
the optimum value for K based on the STRUC-
TURE runs, ΔK, a statistic based on the rate of
change in log-likelihood of the data (Evanno et al.
2005) was calculated using STRUCTURE HAR-
VESTER v.0.6.94 (Earl and vonHoldt 2012). Once
we identified optimal K, individuals were divided
into their assigned clusters and genetic differenti-
ation (FST) was calculated among these clusters
using 104 permutations in ARLEQUIN.
Rates of recent migration were estimated

among each of the sampling locations (i.e., coun-
ties, island zones, or domestic breeds) using a
Bayesian algorithm implemented in BAYESASS
v.3.0.3 (Wilson and Rannala 2003). We used this
program to estimate movement among popula-
tions and movement of individual pigs within
the last three generations. To identify movements
among populations, 108 MCMC iterations were
used following a burn-in period of 107 and a
sampling interval of 500 steps. Chains were com-
pared to a stationary posterior distribution for
convergence by performing multiple runs with
dispersed starting values. Proportion of individ-
uals that were assigned as migrants (migration
rates) and associated 95% credible intervals (CIs)
were estimated among each of the sampling
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locations. BAYESASS also provided estimates of
migration for individuals (i.e., the posterior pro-
portion of the ancestry of each individual that
was from other locations). Migration rates were
classified as negligible if the 95% CI overlapped
zero and as significant if the CI did not include
zero. Estimated rates of individual migration
from BAYESASS were compared to their cluster
assignment from BAPS to assess concurrence
between these analyses for each individual.

Evaluating probability of wild pig migration
We modeled the effects of several covariates on

migration rates among sampling locations (i.e.,
the mean posterior proportion of a county that
was assigned as migrants by BAYESASS) to test
the hypotheses of social factors contributing to
human-mediated movement of wild pigs. Models
were run separately using immigration and emi-
gration as response variables, where immigration
was the proportion of individuals who were
migrants into a county (i.e., the sum of proportion
migrants from all other sampling locations) and
emigration was the proportion of individuals that
migrated out of a county (i.e., the sum of propor-
tion migrants into all other sampling locations).
Predictor variables for migration in each direction
included the mean number of pigs harvested
by hunters in a county between 1994 and 2014
(hunter harvest; California Department of Fish and
Wildlife 2015), the number of registered game
outfitters (i.e., outfitters for all game, not just wild
pigs) in a county (game outfitters; California
Department of Fish and Wildlife 2014), the mean
number of game farms across years from 2002 to
2012 (game farms; USDA 2015), the mean number
of domestic pig farms across years from 1997 to
2012 (pig farms; USDA 2015), and an index of the
amount of public land (in km2; public index). Each
of the covariates was scaled and standardized
prior to analyses.

Three of these covariates require more explana-
tion. Game farms focused on Cervids make up the
majority (68%) of the game farm industry in the
United States (Anderson et al. 2007a, b), and the
absolute number of game farms in a county was
not available. Thus, we used data describing the
number of Cervid game farms in the county as a
measure of the game farm industry size (USDA
2015). For pig farms, the number of domestic pig
farms available from the United States

Department of Agriculture’s National Agricultural
Statistics Service in a county was used as a mea-
sure of the availability of domestic pigs both as
escapees and for purchase and release by hunters
(USDA 2015). The public index was constructed to
provide an estimate of the amount of public land
that was suitable for wild pig introduction and
sustainability. First, the amount of public urban
land area (in hectares; California Department of
Transportation 2015) in a county was subtracted
from the total amount of public land (USGS 2015).
Then, the amount of public land was weighted by
the relative probability of wild pig occurrence
(McClure et al. 2015) in the county.
Generalized linear models (GLMs) in a hierar-

chical Bayesian framework were applied using
Stan v.2.9.0 (Stan Development Team 2015a),
with the R package “rstan” (R Core Team 2015,
Stan Development Team 2015b) to fit models for
immigration and emigration. The full models
included the fixed effects of five predictor vari-
ables (hunter harvest, game outfitters, game farms,
pig farms, and public index) on migration.
Reduced models considering all possible combi-
nations of covariates were also applied. The
response variable (proportion of migrants) was
treated as a beta-distributed random variable. To
estimate the posterior, we used the “no-u-turn
sampler” algorithm (Homan and Gelman 2014),
using four chains of 5000 iterations, half of which
were used as warmup (after confirming that this
was sufficient for model convergence). For each
model, we calculated Watanabe-Akaike Informa-
tion Criterion (WAIC). Bayesian model averaging
was conducted to obtain posterior distributions
for each parameter based on the entire suite of
models (Hooten and Hobbs 2015). We used the
covariate values for each county in California (in-
cluding those for which we did not sample wild
pigs) and the model-averaged GLM bis to predict
the probability of immigration and emigration
for each county. We evaluated the predictive abil-
ity of our models using leave-one-out cross-vali-
dation (Rennie et al. 2005, Hooten and Hobbs
2015). For each county, we used a training data
set that included all counties except this county
and ran the entire suite of models (including
Bayesian model averaging) and used these esti-
mates to predict the migration rate for the county
that was left out (Gelman and Hill 2006). We then
compared predicted migration rates from this
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cross-validation procedure to the migration esti-
mates from BAYESASS using Spearman’s rank
correlation (Boyce et al. 2002).

RESULTS

None of the 43 loci had >13% null alleles per
locus so all were retained for subsequent analy-
ses. A total of 736 individuals were genotyped to
some degree. Individual genotypes that were
from counties or domestic breeds with less than
four individuals genotyped and genotypes that
were <20% complete (fewer than 35 loci) were
removed. The final data set used for these analy-
ses included 699 individuals from 25 sampling
locations (16 counties, three Santa Cruz Island
zones, and six domestic breeds). Demographic
data (age and sex) were not necessarily collected
for each individual (the implications of the
absence of such data are described below).

Across all loci, the NA ranged from 6 to 36 (me-
dian = 9.0, mean = 11.2, standard deviation
[SD] = 6.1). Genetic diversity was moderate with
HE across loci ranging from 0.03 to 0.90 (me-
dian = 0.66, mean = 0.59, SD = 0.24), and overall
Nei’s diversity was 0.57 � 0.28. At each sam-
pling location where a locus was polymorphic,
there was no significant LD among loci and there
were no significant deviations from HWE.

The number of genetic clusters with the lowest
log-likelihood in BAPS was K = 21. Clusters gen-
erally formed geographical units (Fig. 1a). Ana-
lyzing population structure using STRUCTURE
and STRUCTURE HARVESTER also revealed
K = 21. Individual membership to clusters was
analogous between both algorithms. When FST
was estimated among these clusters (210 total
pairwise comparisons), all pairwise FST values
were significantly different from zero except for
17 comparisons (Appendix S3). Of these 17 com-
parisons, all had FST ≥ 0.19, and most (11)
involved one cluster that was comprised of only
two individuals that were both identified as
migrants from Trinity County into Mariposa
County by BAYESASS. Of the remaining six
insignificant comparisons, FST values were
high (>0.25), and five of these FST values were
>0.31, indicating high genetic differentiation
among clusters (Hartl and Clark 2006, Frankham
et al. 2010). Therefore, combining results led to
identification of 21 differentiated populations in

California that were geographically associated
and had little gene flow among them.
There were negligible rates of migration

among most of the sampling locations, further
confirming low overall gene flow. Of 600 sam-
pling location-level migration rates that were cal-
culated (from each sampling location into every
other sampling location), only 18 were significant
(i.e., the 95% CI for proportion of individuals
assigned as migrants did not overlap zero;
Appendix S4). Of the migrants that were identi-
fied, the largest distance across which significant
migration occurred at the level of the sampling
location was 360 km; 11.4% (�5.0%; 95% CI) of
the individuals in Trinity County were migrants
from San Benito County. Additionally, at the
level of the sampling location, some individuals
in Trinity County were assigned as migrants
from the black domestic breed (7.2% � 4.9%)
and from the white domestic breed (5.3% �
4.8%; Appendix S4). However, this migration
between domestic and wild pigs was not
observed when examining the posterior assign-
ment for individual pigs in the output from
BAYESASS or BAPS.
Comparing the results of individual-level

migration from BAYESASS and BAPS revealed
that these two algorithms produced similar
results. Individual-level migrants are shown with
arrows in Fig. 1b. Note that in this figure, lines of
migration are only drawn among counties where
(1) individuals were assigned as migrants among
these locations by BAYESASS and (2) they were
assigned to the cluster where the arrow origi-
nates by BAPS, but sampled in the county where
the arrow points.

Migration covariates
Leave-one-out cross-validation revealed that

the model-averaged Bayesian GLMs for predict-
ing migration had good predictive capacity,
demonstrated by a high correlation between val-
ues predicted from the model and those
observed for both immigration (Spearman’s rank
correlation coefficient rs = 0.91) and emigration
(rs = 0.93). Migration into a county was posi-
tively associated with pig farms and game farms
(Pr(bi > 0) = 1, for both parameters; Table 1). For
an increase in 10 pig farms within a county, there
was an 11% increase in the probability of immi-
gration, and for an increase in 10 game farms,
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there was a 10% increase in immigration proba-
bility. The model-averaged effect of public index
was weak, but the median of the posterior
distribution of bi was positive in all of the best
models (ΔWAIC < 5). Migration out of a county
was positively associated with hunter harvest
(Pr(bi > 0) = 1). For an increase in 10 wild pigs
harvested by hunters within a county, there was
a 12% increase in the probability of emigration.
The model-averaged effect of game outfitters
was not as strong (Table 1), but this covariate
was found in all of the best models (ΔWAIC < 5)
and the median of the posterior distribution of bi
was positive in all candidate models. When we

predicted the probability of immigration and
emigration for each county based on these model-
averaged covariate estimates, areas with a high
probability of movement were identified (Fig. 2).
For example, there was a high probability of
migration into counties in southern California
(Fig. 2a) and out of counties in central California
(Fig. 2b).

DISCUSSION

There was distinct population structure in wild
pigs in California, with 21 populations identified
in our sampling areas. This suggests that

Santa Cruz Island

Santa Barbara

KernSan Luis Obispo

Monterey Fresno

San Benito

Mariposa
TuolumneStanislaus

Santa Clara
Alameda

Contra Costa

Sutter

Trinity

Domestic breeds
HampshireYork

Black Cross

White Duroc

Domestic breeds
HampshireYork

Black Cross

White Duroc

Santa Cruz

0 150 225 30037.5
km

a) b)

Madera

Fig. 1. Results from two Bayesian clustering analyses identified 21 genetic clusters in California. (a) Genetic
clusters (ellipses) were generally found in only one county (and multiple clusters occurred within counties), with
a few exceptions (ellipses overlapping county boarders). (b) Arrows indicate individuals that were classified as
migrants by BAYESASS and individuals who were assigned to the cluster where the arrow originates by BAPS,
but captured in the county where the arrow terminates. Five genetic clusters included only domestic breeds of
pigs, which did not have significant migration with wild pigs at the individual level. However, at the population
level, 12.5% (�9.7%) of the individuals in Trinity County were identified as migrants from domestic breeds by
BAYESASS.
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although wild pigs have been present in the state
since the 16th century, they generally exist in
small focal groups with limited geographic pop-
ulation ranges and do not disperse large dis-
tances. Further, we found quantifiable evidence
that humans have moved wild pigs within Cali-
fornia and identified anthropogenic factors that
were associated with these translocations. Our
results suggest that recreational hunting plays an
important role in facilitating the spread of wild
pigs. Our study is the first to predict the influ-
ence of anthropogenic factors on the intentional
translocation of invasive species. We argue that
future efforts to manage invasive species must
consider the role of humans in dispersal.

Population structure of wild pigs in California
High levels of population structure across the

sampled area (K = 21) and high genetic differenti-
ation suggest that natural long-distance dispersal
among wild pig populations was rare (Lowe and
Allendorf 2010). Other researchers have also found
low levels of dispersal or only short-range
(<10 km) dispersal in wild pig populations world-
wide (Hampton et al. 2004, Fulgione et al. 2016,
Morelle et al. 2016). As evidence for translocation,
individual-level migration indicated long-distance
migration beyond that expected from natural
dispersal or range expansion. For example, some
individuals in Trinity County were migrants, or
descendants of migrants from Monterey County
(minimum distance of 355 km), San Benito County

(360 km), and Santa Cruz Island (710 km; Fig. 1b).
Because previous studies have reported that most
natural dispersal ranges from 4 to 10 km, with
long-range dispersal ranging from 30 to 60 km
(Truv�e et al. 2004, Keuling et al. 2010, Morelle
et al. 2016), we interpret these long-distance move-
ments as evidence of human-mediated movement
(Keuling et al. 2010, Hone 2012).

Anthropogenic translocation of wild pigs
We quantified the association between wild

pig movement and anthropogenic factors to
explain the evidence of translocation in Califor-
nia. Here, we propose potential mechanisms that
could lead to the observed relationships. We
found that wild pig emigration from counties
was positively associated with hunter harvest
and the number of licensed game outfitters
(Table 1). We hypothesized that hunter harvest
was a surrogate for the density and availability
of wild pigs for movement, as well as interest in
hunting wild pigs. The positive relationship
between emigration and this covariate may indi-
cate that these higher-density populations of
wild pigs provide a source for capture and trans-
port to new areas by hunters or outfitters. This
hypothesis was also supported by the relation-
ship between emigration and the number of
game outfitters, a covariate considered to repre-
sent the size of, and demand for, the recreational
hunting industry in a county.
Furthermore, we found that the number of

game farms, the number of domestic pig farms,
and the amount of public land were positive pre-
dictors of immigration into counties (Table 1). The
number of game farms in a county is a surrogate
for the size of the game farm industry, and the
size of this industry is associated with wild pig
hunting. Domestic pig farms might serve as local
sources of wild pigs due to either escape (Gould-
ing 2001, Morelle et al. 2016) or intentional release
for hunting purposes (Spencer and Hampton
2005, Scandura et al. 2008, Morelle et al. 2015).
This relationship is also supported by our obser-
vation that in one of the counties identified as a
common recipient of wild pigs at the individual
level (Trinity County; Fig. 1b), immigrants were
identified at the population level from two
domestic breeds (Appendix S4). Our findings sup-
port reports that sport hunters in California
released pigs on public land in order to promote

Table 1. Bayesian model-averaged generalized linear
models coefficients (b) between county-level covari-
ates and movement into and out of counties.

Direction of
movement Parameters

Median b
(95% credible

interval) Pr(b) > 0†

Into county pig farms 0.07 (0.06, 0.08) 1.00
game farms 0.04 (0.04, 0.05) 1.00
public index 0.01 (0.00, 0.01) 0.84
hunter harvest �0.12 (�0.13, �0.11) 0.00
game outfitters �0.05 (�0.06, �0.04) 0.00

Out of county hunter harvest 0.17 (0.06, 0.26) 1.00
game outfitters 0.01 (0.00, 0.02) 0.91

pig farms �0.04 (�0.05, �0.03) 0.00
game farms �0.02 (�0.03, �0.01) 0.00
public index �0.01 (�0.02, 0.00) 0.04

† Probability that b > 0 was calculated as the proportion of the
posterior distribution that was greater than zero.
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populations for hunting in new areas (Pine and
Gerdes 1973, Waithman et al. 1999).

Limitations of this study
In an ideal study, we could conduct a repli-

cated, randomized experiment in which the gen-
omes of populations were observed with and
without planned translocation events. Since
translocation of pigs is unethical and illegal, such
a study is not possible. Instead, our study is a cor-
relative one, in which we based inference on
observations of migration given genetic data and
societal covariates. Samples were collected oppor-
tunistically, instead of randomly, so it is possible
that there was an effect of sampling on inference.
Since genetic sampling was opportunistic, we did

not necessarily achieve a demographic distribu-
tion (age and sex of individuals) that is identical
to wild populations. However, it is unlikely that
there would be an effect of demography on infer-
ence, as analyses extend multiple generations into
the past and there is no known effect of sex on
translocation probability. Additionally, this app-
roach allowed us to take advantage of a much lar-
ger data set (with more samples and geographic
breadth) than if we used only samples from an
empirically designed study, an approach com-
monly utilized in genetic studies (Matala et al.
2014, Mandeville et al. 2015). Nevertheless, we
must view our results with the caveat that the
results could appear different if populations were
sampled randomly.

a) Probability into counties b) Probability out of counties

Relative probability
of migration

0

100

Fig. 2. Relative probability of migration into (a) and out of (b) each county in California based on model-aver-
aged estimates from Bayesian generalized linear models (seeMethods for a description of predictor variables used
in analysis). Darker colors represent a higher probability of migration, while lighter colors represent a lower
probability of migration.
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Since our results are based on the linkage of
genetic data and societal covariates, we must
have constraints on inference. Some of the soci-
etal covariates (i.e., public index and game outfit-
ters) that were linked to translocation of wild
pigs in California had small effect sizes (the 95%
CIs of coefficients were close to zero; Table 1).
There are a number of potential explanations for
the small effect sizes of these covariates. Because
data that directly describe intentional capture
and translocation of wild pigs are not available,
we used covariates that were proxies for the
mechanisms we hypothesized to underpin wild
pig translocation. For example, game outfitters is
the number of outfitters who registered with the
State of California and represented a measure of
the hunting industry. There are presumably other
businesses that escaped our analyses that may
serve as better measures of recreational hunting.
More broadly, there are likely other mechanisms
important for translocation of wild pigs. Due to a
lack of exact geographical sampling locations
and the coarse nature of the covariates analyzed,
we aggregated samples to the county level. We
were not able to use a traditional landscape
genetics approach (i.e., we could not evaluate the
effects of habitat features of the landscape on
population structure and migration), as geo-
graphic features vary greatly within counties,
and samples could have been collected from vari-
ous locations within the counties. Instead, we
used county-level covariates. The county-level
scale provides imprecise values for both covari-
ates and migration rates, which might have pro-
duced additional uncertainty in the data.
Nevertheless, even using these coarse-level data,
we found significant results and the models were
good at predicting migration (based on cross-
validation), which suggests that (1) these covari-
ates are good at predicting human-mediated
dispersal and (2) further research might help
define these relationships. As an increasing
number of wild pig samples become available for
genetic analyses (A. J. Piaggio, unpublished data),
we recommend further testing of these hypotheses.

Additionally, the covariate data were collected
on different temporal scales, which was not the
exact same temporal range when sampling was
conducted. We highlight that these covariates
were not perfect estimates of the anthropogenic
processes that we analyzed. However, these were

the relevant data that were available and we con-
sidered that estimating the mean of these covari-
ate values across several years was suitable for
examining the cultural trends associated with
these factors around the time of genetic sam-
pling. Despite these limitations, our analyses had
strong predictive capacity (given cross-validation
analysis) for movement of wild pigs among
counties in California.

Implications for management
The dichotomy between low natural dispersal

and long-distance human movement is an impor-
tant result for efforts to manage and mitigate the
damage caused by this species. Through intensive
genetic sampling in specific regions of interest,
future researchers could use the tools and results
documented here to identify “eradication units”:
populations that are linked by dispersal, but iso-
lated from potential re-invasion sources (Robert-
son and Gemmell 2004). By defining eradication
units, managers can systematically eradicate inva-
sives from specific regions while reducing the risk
of re-invasion following eradication (Tabak et al.
2015). If we focus only on natural dispersal and
assume that wild pigs can move a maximum of
60 km between genetic clusters (Truv�e et al.
2004), we could infer the existence of eradication
units. However, for wild pigs and for other com-
monly moved invasive species, managers must
consider the potential for human-assisted translo-
cation when planning eradication efforts, as an
individual could be moved to a previously eradi-
cated area. Translocation of invasives also has
important implications for disease management,
as the introduction of one exposed or infected
individual can have significant consequences for
disease spread to wildlife and livestock popula-
tions (Wyckoff et al. 2009). Our method of
identifying potential source locations (Fig. 2b) can
help managers evaluate and mitigate the risk of
translocations.
This is the first analysis we are aware of that

attempts to estimate the societal drivers of the
intentional release of invasive species. Under-
standing the underlying mechanisms driving
human translocation and release of invasive spe-
cies can be used to develop policies that reduce
these risks. For example, there has been ongoing
debate regarding managing wild pigs as a big
game mammal in California (Tietje and Barrett
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1993, Zivin et al. 2000). Although hunting
removes animals from the burgeoning statewide
wild pig population (Sweitzer et al. 2000), our
results indicate that hunter interest in harvesting
them is facilitating their expansion into new
areas. Decisions on how best to manage invasive
species, in light of human-mediated transloca-
tion, should be balanced by both the positive and
negative repercussions of resource policy.
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