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Differential impacts of wildfire on the population
dynamics of an old-forest species

JEREMY T. ROCKWEIT ,1,3 ALAN B. FRANKLIN,2 AND PETERC. CARLSON
1

1Cooperative Fish and Wildlife Research Unit, Colorado State University, 1484 Campus Delivery, Fort Collins, Colorado 80523 USA
2National Wildlife Research Center, USDA, 4101 Laporte Ave., Fort Collins, Colorado 80521 USA

Abstract. Ecological disturbances shape and maintain natural communities, but climate
change and human land use can alter disturbance regimes and affect population persistence
and vital rates in unpredictable ways. Species inhabiting landscapes shaped by wildfire have
evolved mechanisms allowing them to persist under this dynamic disturbance type, which cre-
ates habitats of varying quality for these species. We utilized data from a 26-yr demographic
study of northern spotted owls to analyze the influence of wildfire on apparent survival and
recruitment rates. Wildfires occurred across different years and affected different spotted owl
territories, which allowed us to implement a retrospective Before-After-Control-Impact
(BACI) analysis and model the potential effect of wildfire extent and severity. Our results indi-
cated that mixed-severity fires that burned at predominantly low-severity had little effect on
survival and recruitment while fires characterized by more medium to high burn severities neg-
atively affected spotted owl survival, with varying effects on recruitment. Reduced survival and
increased recruitment rates on some territories affected by medium to high severity fires sug-
gested that post-fire habitat quality was reduced resulting in territories that were marginally
capable of supporting owls. We hypothesize these territories may have represented “sinks” that
were supported by nearby “source” territories in a spatially heterogeneous landscape created
by the mixed-severity fire regime of the region.

Key words: apparent survival; mixed-severity; population dynamics; recruitment; spotted owl; Strix
occidentalis; wildfire.

INTRODUCTION

Ecological disturbances play an integral role in shap-
ing and maintaining natural communities. Disturbance
regimes occur across multiple spatial and temporal
scales and can have both positive and negative effects on
the plant and animal species they impact (Rykiel 1985)
by, for example, creating habitat conditions that improve
vital rates (Fraterrigo and Rusak 2008). As such, species
have evolved a set of life history traits adapted to coping
with disturbance regimes common to their particular
ecosystem. Moreover, the degree to which a species or
community is affected by disturbance depends on the
intensity of the disturbance, the pre-disturbance condi-
tions, and the quality of the surrounding landscape
(Franklin et al. 2002). Thus, a species’ ability to respond
to a disturbance event may be compromised if the domi-
nant disturbance regime is altered from its historic range
of variability (e.g., in scale, intensity, frequency, or type
of disturbance) due to past land use practices and
climate change.
Wildfire is one such disturbance type that has resulted

in fire-adapted ecological communities throughout large

portions of the western U.S. However, the scale (Stephens
2005, Miller et al. 2012) and intensity (Lutz et al. 2009,
Miller et al. 2009) of wildfire has been increasing over the
past several decades and is causing considerable concern
because of the potential for an increased loss of economi-
cally and ecologically valuable forests (Thomas et al.
1990, Davis et al. 2011, USFWS 2011). This increase is
thought largely to stem from the unintended consequences
of effective fire suppression beginning in the early-to-mid
20th century, past and current timber harvest practices
such as clear cut logging (Odion et al. 2004), and the
growing influence of climate change (Liu et al. 2013,
Abatzoglou and Williams 2016, Westerling 2016).
In the southern portion of the Pacific Northwest lies

the Klamath Ecological Province of northwestern Cali-
fornia and southwestern Oregon, which is considered a
global hotspot for biological diversity (Whitakker 1960).
Forests in this region are structurally complex and spe-
cies rich, with a diverse mix of under- and mid-story
hardwood species and a canopy of mixed conifer species
(Whitakker 1960, Skinner et al. 2006). This high level of
biodiversity is partly a function of the dominant distur-
bance regime of the area, mixed-severity wildfire, which
historically had a relatively frequent fire return interval
(12–19 yr; Agee 1993, Willis and Stuart 1994). Prior to
fire suppression and timber harvesting, this landscape
contained a mosaic of seral stages resulting from mixed-
severity wildfires (Perry et al. 2011, Hessburg et al.
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2016). Although high severity patches occurred, they
generally were smaller in extent and contributed to the
seral stage patchwork that made up the landscape (Skin-
ner et al. 2006, Donato et al. 2009, Halofsky et al. 2011,
Perry et al. 2011). One species to capitalize on this
patchwork landscape created by wildfire was the north-
ern spotted owl (Strix occidentalis caurina). Although
generally considered an old-growth forest obligate, high
quality habitat for northern spotted owls in the Klamath
Province encompasses a range of different seral stages
that balance early seral stages with older forest in a
mosaic that mimics the landscape created by mixed-
severity fires (Franklin et al. 2000). This patchwork of
seral stages (Fig. 1a) and the relatively short fire return
interval combine to create a dynamic landscape for the
wildlife species inhabiting the region.
This confluence of ecologically and economically valu-

able forests with a changing disturbance regime has cre-
ated intense interest in the effects of wildfire on spotted
owls, with some studies reporting negative effects of wild-
fires on spotted owl survival (Clark et al. 2011), repro-
duction (Gaines et al. 1997, Jenness et al. 2004), and
territory occupancy and colonization rates (Clark et al.
2013, Jones et al. 2016) while others found no discernible
effects of wildfires on spotted owl survival and reproduc-
tion (Bond et al. 2002), territory occupancy (Bond et al.
2002, Roberts et al. 2011, Lee and Bond 2015), and colo-
nization and extinction rates of territories (Lee et al.
2012). Research has also been ambiguous on the use of
burned areas by spotted owls; two studies found spotted
owls using forests burned at all severities for foraging but
avoiding moderate- and high-severity burned areas for
roosting (Bond et al. 2009, 2016), one study found the
probability of use decreasing with increasing fire severity
(Eyes 2014), while another found spotted owls avoided
foraging in large patches of severely-burned forest 1 yr
post-fire (Jones et al. 2016). These conflicting results sug-
gest that any categorical conclusion about the influence
of wildfire on spotted owls is not warranted, but rather
that spotted owls exhibit varied responses to wildfire due
in part to the highly variable nature of wildfire itself (e.g.,
overall burn severity, wildfire size, pre-fire habitat condi-
tions, time since fire, etc.) and the methodologies used to
analyze their response (occupancy vs. demography vs.
habitat use). Furthermore, many of the studies to date are
either confounded by post-fire salvage logging (Bond
et al. 2009, Clark et al. 2011, 2013, Lee et al. 2012), lack
pre-fire data (Gaines et al. 1997, Bond et al. 2002, 2009,
Clark et al. 2011, Roberts et al. 2011, Eyes 2014, Lee and
Bond 2015), consist of small sample sizes (Gaines et al.
1997, Jenness et al. 2004, Bond et al. 2009, Clark et al.
2011, Eyes 2014), or examined only short-term effects
(Bond et al. 2002, 2009, Clark et al. 2011, 2013, Roberts
et al. 2011, Eyes 2014, Lee and Bond 2015, Jones et al.
2016). We attempted to address this ambiguity by analyz-
ing northern spotted owl responses to wildfire using a
robust analytical method, the Before-After-Control-
Impact (BACI) design, and a wide range of wildfire

severities that burned across a 21-yr period. We hypothe-
sized that the degree to which spotted owls would be
influenced by wildfire would be contingent on distur-
bance intensity (i.e., wildfire severity).
In this study, we capitalized on a natural experiment

during a 26-yr study of the population ecology of north-
ern spotted owls in the Klamath Province to examine
how wildfire influenced apparent survival and recruit-
ment. Our data was not confounded with salvage logging
because post-fire salvage logging did not occur in our
study area. Because fires occurred on different northern
spotted owl territories between 1987 and 2008, we were
able to utilize a BACI design to compare pre- and post-
fire survival and recruitment at territories affected by
wildfire (treatments) with territories unaffected by fire
(control). Based on the natural fire regime in the Kla-
math province, we predicted lower severity wildfires
would have minimal effects on northern spotted owl
populations while higher severity wildfires would nega-
tively affect those populations.

METHODS

Field surveys

Our field methods are detailed in Franklin et al.
(1996, 2000). Briefly, we surveyed two study areas
(Fig. 1b) using vocal surveys to detect northern spotted
owls annually between April and August from 1987 to
2012. The first was a contiguous 292 km2 area in Hum-
boldt and Trinity counties, California, which we sur-
veyed entirely. The second study area consisted of 34
territories surveyed annually in Humboldt, Trinity, Sis-
kiyou, and Mendocino counties, California. Unlike the
first study area, we did not survey the matrix lands
between territories in the second; all other survey meth-
ods were the same between study areas. Owls located
and captured were marked with a uniquely numbered
U.S. Geological Survey band and a unique colorband
combination that allowed for subsequent identification
through resighting the colorband.
We defined spotted owl territories following Franklin

et al. (2000) where the territory center was defined as the
arithmetic mean of all cumulative roost and nest locations
within a given territory. We then created a 1,000 m buffer
around each territory center to define the territory
boundaries where owls might be affected by fire because,
1) it was approximately halfway between ½ mean nearest
neighbor distance (714 m; Franklin et al. 2000) and
home range estimates (1,381 m; Bingham and Noon
1997) for spotted owls in this region, and 2) Bond et al.
(2009) found that foraging California spotted owls (Strix
occidentalis occidentalis) selected for all burn severities up
to 1,000 m from their roost. Thus, we considered a terri-
tory “affected” by fire if the territory center was within
1,000 m of a burn perimeter. Within this 1,000 m buffer,
we calculated fire covariates that characterized the extent
and severity of wildfire for each affected territory.
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Characterization of fire effects

We used data from the Monitoring Trends in Burn
Severity (MTBS) project (Eidenshink et al. 2007) to iden-
tify fires that occurred on our study areas from 1987

through 2012. The MTBS project was designed to provide
consistent, long-term, nation-wide burn severity informa-
tion by mapping all large fires across the U.S. (>404 ha in
the West) and generating spatial information on burn
perimeter and fire severity for each fire. Severity thresholds

FIG. 1. (a) Landscape typical of the Klamath Province of northwestern California illustrating the patchwork of burn severities
created by a mixed-severity fire regime. (b) Location of study area (shaded areas) and burn perimeters of fires (red stippled areas)
used to estimate apparent survival and recruitment rates of northern spotted owls. (c) Example of high burn severity from the 2004
Sims Fire that impacted 3 northern spotted owl territories (circles). [Color figure can be viewed at wileyonlinelibrary.com]
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(unburned, low, medium, high) were derived using the
delta Normalized Burn Ratio (dNBR; Cocke et al. 2005,
Key and Benson 2006, Eidenshink et al. 2007). Post-fire
imagery was taken as close as possible to one year after
the pre-fire image to minimize variation in plant phenol-
ogy (Miller and Thode 2007). This value was then con-
verted into discrete burn severity categories: unburned,
low severity, moderate severity, or high severity. Burn
severity categories were defined based on ground-based
methods of estimating ecological fire effects (Key and
Benson 2006) that correlate with the satellite-based
methods used by the MTBS project. Low severity wild-
fire was defined as areas that exhibited >15% of an area
burned with an almost complete combustion of litter,
but with <25% overstory tree mortality. Conversely, high
severity wildfire was defined as areas with a nearly com-
plete combustion of litter and duff, a high degree (35–
65%) of medium and heavy woody debris consumed and
an overstory tree mortality >75%. Moderate severity fire
encompassed everything between low and high severity
(Schwind 2007, public communications).
We used the Patch Analyst extension in ArcGIS to

calculate annual, individual covariates that characterized
the extent and severity of fire within our defined owl ter-
ritories and were used to represent different hypotheses
about the effects of fire on spotted owl survival. We cal-
culated the proportion of each territory that burned at
any severity (pBurn) and the distance from each terri-
tory center to the nearest burn perimeter (Dist) to char-
acterize the extent of fire within the affected territories.
We also calculated the proportion of each territory that
burned at low (pLow), moderate (pMod), and high
severity (pHigh) fire, and the combined proportions that
burned at low and moderate severity (pLowMod), and
moderate and high severity (pModHigh) fire. We calcu-
lated these latter two covariates because the broad eco-
logical definition of moderate severity fire (25–75%
canopy tree mortality) resulted in some uncertainty in
how it would affect spotted owls. Four of the territories
that burned in 2008 also burned in 1987. When calculat-
ing covariates for these territories, we combined the fire
effects from 1987 and 2008 because we felt that the
effects from the 1987 fires were probably still influencing
resident spotted owls 21 yr later. Finally, we calculated a
fire severity index (FSI; Shaffer and Laudenslayer 2006)
where: FSI = (pLow 9 1) + (pMod 9 2) + (pHigh 9 3),
in an attempt to summarize the overall burn characteris-
tics within each territory into a single covariate. Thus,
FSI represented the hypothesis that an owl’s response to
wildfire was a function of the cumulative effects of all
burn severities within an owl’s territory and not the
result of any particular level of burn severity. We tested
each covariate separately because many of the covariates
were highly correlated with each other (r = 0.21–0.98).
We also examined the linear, quadratic, and pseudo-
threshold form of each covariate to determine how spot-
ted owl populations respond to changes in the extent
and severity of wildfire within their territory.

Estimating survival and recruitment

We estimated apparent survival (the probability that an
individual alive in year t was also alive in year t + 1, given
the individual remained on the study area) of non-
juvenile northern spotted owls (i.e., ≥1 yr old) using
Cormack-Jolly Seber capture-recapture models (Cormack
et al. 1979) and recruitment rates (number of individuals
in the population at time t + 1 per individual in the popu-
lation at time t) using Pradel reverse-time Jolly Seber cap-
ture-recapture models (Pradel 1996) in program MARK
(White and Burnham 1999). These two parameters cap-
tured the full dynamic of the treatment (i.e., fire) effect in
that apparent survival accounted for both survival and
emigration from burned territories (e.g., the reciprocal of
survival indicated that the individual either died or left
the territory) and recruitment accounted for new immi-
grants into the affected territories.
We analyzed the capture-recapture data using five

groups based on the years when fires occurred (1987,
1999, 2004, 2008, and control group) and the territories
affected by the fires in those years. Spotted owls on sites
never affected by fire (i.e., territory center >1,000 m
from a burn perimeter) during the course of the study
were assigned to the control group. We did not have pre-
fire data for the 1987 group because that was the first
year of surveys at those sites. If a spotted owl moved
between treatment and control groups, we truncated its
capture history at the last year it was observed in that
group, and then began a new capture history the year it
showed up in the new group. We used this approach to
account for movement between groups because <5% of
individuals moved between groups.
We used a multi-step modeling process to estimate

apparent survival rates of territorial spotted owls using
AICc (Burnham and Anderson 2002) to rank models
after each step and to determine the best overall model.
In the first step, we modeled recapture rates (p) while
keeping apparent survival (/) unconstrained by group
and year (g*t) to determine the recapture structure with
the lowest AICc value. We then used the recapture struc-
ture from this model to begin modeling apparent sur-
vival. In the second step, we modeled the best time
structure for / on the control group of owls not affected
by fire followed by modeling the best time structure on
the pre-fire years of the fire groups. In the third and final
step, we modeled the best time structure for the post-fire
years of the fire groups. We maintained annual time vari-
ation (g+t) in the fire groups while modeling the control
group, and in the post-fire years while modeling the pre-
fire years. After determining which overall time model
best fit the data, we added the annual, individual covari-
ates to determine what fire characteristics helped explain
the observed patterns in spotted owl post-fire survival.
We then estimated group-specific recruitment rates (f)

to better capture the occupancy dynamics of territories
affected by fire. After developing models for apparent
survival, we used the Pradel models (Pradel 1996) in
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program MARK to estimate recruitment rates using the
top time structure from the survival analysis above. We
used AICc to compare a model with no pre- and post-fire
effect on recruitment rates, with a model allowing for dif-
ferent pre- and post-fire effects on recruitment rates.
Lastly, barred owls have been found to negatively

affect spotted owl apparent survival, occupancy and col-
onization rates (Dugger et al. 2016). Barred owl detec-
tions on our study areas remained at consistently low
levels through the mid-2000s (~8–13% of spotted owl
territories surveyed had sporadic barred owl detections
annually through 2006) and did not begin to increase
until 2007, which is a similar timing as the 2008 fires.
However, only one of the territories affected by wildfire
in 2008 was occupied by barred owls, so we did not con-
sider barred owl presence in our analysis.

RESULTS

Ten fires ranging in size from 496 ha to 50,386 ha
burned through all or portions of 24 of 94 (26%) territo-
ries surveyed in our study areas during the course of the
study (Table 1). Four of these territories were burned
twice in wildfires occurring in 1987 and 2008. Most of
the fires were typical of the mixed-severity fire regime of
the area (Willis and Stuart 1994, Taylor and Skinner
1998) with average proportions of 0.27, 0.39, 0.19, 0.15
for unburned, low, moderate, and high severity fire,
respectively. However, 48% of the 2004 Sims Fire burned
at high severity (Table 1, Fig. 1c).
We used 579 unique encounter histories (n1987 = 70;

n1999 = 18; n2004 = 28; n2008 = 77, ncontrol = 386) to esti-
mate pre- and post-fire apparent survival and recruit-
ment rates. The best model structure for recapture rates
(p) included a linear time trend (b̂ = �0.068, 95%
CI = �0.094 – [�0.043]) which indicated that recapture
rates slowly declined over the course of the study. The best
survival model without covariates (Appendix S1: Table S1)
indicated that: 1) each group had constant (no time trend)
pre-fire estimates of apparent survival that did not differ
from each other or the control group (ûcontrol = 0.83, 95%

CI = 0.81–0.84; ûpre1999 = 0.93, 95% CI = 0.83–0.97;
ûpre2004 = 0.88, 95% CI = 0.81–0.93; ûpre2008 = 0.82,
95% CI = 0.77–0.86; Fig. 2a), and 2) fire had a strong, sig-
nificant negative effect on apparent survival for the 2004
and 2008 fire groups (Fig. 2a). Fire also appeared to have a
slight negative effect on the 1999 group. However, there
was uncertainty about this effect with overlapping confi-
dence intervals for pre- and post-fire survival estimates
(Fig. 2a; ûpost1999 = 0.83, 95% CI = 0.69–0.91). The 1987
group lacked pre-fire data, but post-fire survival was not dif-
ferent than the control group. There was strong support for
this model, which accounted for >62% of the Akaike weight
(Appendix S1: Table S1).
The best performing model that included the terri-

tory-specific fire covariates (Appendix S1: Table S2)
included the combined proportion of moderate and high
severity fire within 1,000 m of the owl’s activity center
(b̂pModHigh = �1.88, 95% CI = �3.36 – [�0.40]), indi-
cating that as the combined proportion of moderate and
high severity fire increased, apparent survival decreased
(Fig. 3). Seven other covariate models were within 2
AICc units of the top-ranked covariate model suggesting
some model selection uncertainty (Appendix S1:
Table S2). However, all of the competitive covariates
(FSI, pMod, pHigh, pBurn, FSI2, pModHigh2, and Ln
(FSI)) supported the same negative association between
fire severity and spotted owl survival. Thus, we found a
negative relationship between the probability of spotted
owls surviving and remaining on a territory and the extent
and severity of wildfire within an owl’s territory.
The top recruitment model indicated that post-fire

recruitment rates were not statistically different from pre-
fire rates or the control group, except for the owls affected
by wildfire in 2008, where recruitment rates substantially
increased post-fire (Fig. 2b). Point estimates for the other
fire groups increased slightly despite the lack of any statis-
tical significance (f̂ pre1999 = 0.10, 95% CI = 0.04–0.22;
f̂ post1999 = 0.12, 95% CI = 0.05–0.24; f̂ pre2004 = 0.13,
95% CI = 0.08–0.21; f̂ post2004 = 0.17, 95% CI = 0.07–
0.37), and this slight increase likely contributed to the
strong support (Appendix S1: Table S3) for this model.

TABLE 1. Characteristics of wildfires that affected northern spotted owl territories in the Klamath province of northwest
California.

Year Fire name Territories affected Size (ha) Unburned Low Moderate High

1987 Cold 11 5,988 0.43 0.40 0.13 0.04
Friendly 1 1,406 0.24 0.39 0.25 0.12
Glasgow 3 5,462 0.24 0.35 0.23 0.18
King Titus 32 28,892 0.36 0.42 0.15 0.06

1999 Meagram 2 50,386 0.24 0.41 0.19 0.16
2004 Sims 4 1,541 0.10 0.21 0.20 0.48
2008 Hell’s Half 9 6,016 0.39 0.33 0.18 0.10

Slide 1 496 0.44 0.28 0.18 0.10
Lime 11 11,021 0.32 0.48 0.16 0.04

Panther 32 28,915 0.16 0.36 0.24 0.23

Note: Superscripts correspond to territories that initially burned in 1987 and were reburned in 2008.
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The increase in recruitment rates for owls affected by
wildfire in 2008 suggested that immigration to these sites
increased post-fire, which was partially responsible for
maintaining occupancy on some of these territories.

DISCUSSION

Wildfires on our study area occurred across different
years, affected different territories and had different
burn characteristics, which allowed us to implement a
retrospective BACI mark-recapture analysis under a nat-
ural experimental design and incorporate covariates that
characterized the extent and severity of each wildfire
within spotted owl territories. Our results suggest that
the degree to which northern spotted owls are influenced
by wildfire is partially dependent on the characteristics
of that wildfire. Wildfires with different mixtures of burn
severity represented a continuum of effects where the
predominantly lower severity fires in 1987 and 1999 were
associated with minimal impacts on survival and recruit-
ment, moderate to higher severity fires in 2008 were
associated with a reduction in survival but allowed for
increased recruitment, and the predominantly higher
severity fire in 2004 was associated with a large reduc-
tion in survival with minimal effect on recruitment
(Fig. 2). The 2004 Sims Fire (Table 1, Fig. 1a) was par-
ticularly severe, burning for 5 d during above-normal
temperatures (>38°C); conditions correlated with
increased amounts of high severity fire (Agee 1993, Pet-
tit and Naiman 2007, Perry et al. 2011). Nesting and
roosting habitat of northern spotted owls is closely asso-
ciated with mature and old-growth forests that include a
multi-layered canopy, high canopy cover (>70%), large
amounts of course woody debris, and a high basal area
of conifers (Forsman et al. 1984, Blakesley et al. 1992,
LaHaye and Guti�errez 1999). Thus, it is likely that post-
fire habitat conditions become unsuitable for nesting
and roosting by spotted owls following wildfires with
large, extensive patches of high severity fire (e.g., 2004
Sims Fire; Jones et al. 2016). Although spotted owls
may use high severity patches (Bond et al. 2009, 2016),
there is likely a threshold level of high severity fire effects
beyond which habitat suitability is appreciably reduced
(Lee et al. 2013, Jones et al. 2016).
Following this gradient from lower to higher wildfire

severities, the 2008 fires provided us with unique insight
into the effects of wildfire on northern spotted owl pop-
ulation dynamics. Post-fire apparent survival of owls
affected by wildfire in 2008 decreased (Fig. 2a), while
post-fire recruitment rates increased (Fig. 2b) which
effectively compensated for the lower survival and cre-
ated a situation in which territories remained mostly
occupied, but with higher turnover. Increased turnover
in these territories suggests that habitat quality was
reduced post-fire, resulting in marginal habitat that was
only capable of supporting owls temporarily before they
either emigrated or died (e.g., Redpath 1995, Winker
et al. 1995). Thus, the effects of wildfires on wildlife
populations goes beyond the individual, territory-scale
effects and may also depend on the surrounding land-
scape (Franklin et al. 2002), particularly in a region such
as the Klamath Province where mixed-severity fire cre-
ates a patchwork of seral stages and habitat quality. The

FIG. 2. Point estimates and their 95% confidence intervals
of pre- and post-fire apparent survival (a) and recruitment rates
(b) for the different fire groups. The point estimate and 95%
confidence interval for the control group is shown in each graph
as the dashed horizontal line and shaded bar. Bar graphs in
Fig. 2a show the comparative amount of unburned (green), low
(blue), moderate (yellow), and high (red) severity fire within the
spotted owl territories for each group. [Color figure can be
viewed at wileyonlinelibrary.com]

FIG. 3. bResults from the top covariate model showing the
influence of the combined proportion of moderate and high sever-
ity fire (pModHigh) on northern spotted owl apparent survival.
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resulting landscape may therefore be comprised of some
areas with suitable habitat conditions for spotted owls
and a sufficient number of individuals to provide new
recruits (sources) to areas that burned more severely and
are marginally capable of supporting individuals (sinks;
Pulliam 1988).
This concept is supported by previous research on our

study area (Franklin et al. 2000) on spotted owl habitat
quality where it was found that spotted owls occupied a
continuum of habitats that range from low to high qual-
ity with high quality territories acting as sources and low
quality territories acting as sinks. If moderate and high
severity fire in 2008 reduced the amount of older forest,
a key component of nesting and roosting habitat for
spotted owls, source territories could become sink terri-
tories that are being supported by immigration of indi-
viduals dispersing from nearby areas of higher quality
habitat (e.g., areas that experienced less high severity
fire; Pulliam 1988, Franklin et al. 2000).
Optimal habitat for northern spotted owls in the Kla-

math Province appears to be composed of a mosaic of
late seral stages for nesting and roosting (conditions that
are maintained by low severity fire) with smaller, early
seral stages (conditions created by high severity fire)
where the owl’s primary prey species, the dusky-footed
woodrat (Neotoma fuscipes), is more abundant (Sakai
and Noon 1993, Ward et al. 1998). Thus, it appears that
northern spotted owls inhabiting the Klamath Province
have capitalized on this seral stage patchwork created by
the dominant disturbance regime of the region (mixed-
severity wildfire) by nesting and roosting in areas that
experienced low severity fire, and foraging across all
seral stages including early seral stages created by high
severity fire where woodrats become more abundant
(Sakai and Noon 1993, 1997, Ward et al. 1998, see Bond
et al. 2009).
Patterns of mixed-severity fire in the Klamath Pro-

vince are influenced by complex interactions between
the region’s topography, climate, and fuels. The result is
a dynamic patchwork of seral stages, but one in which
some generalities can be made. Topography and climate
were historically the two major determinants of fire
severity in the region and have been relatively stable
during the recent past, helping to enforce a pattern
wherein north and east slopes are usually dominated by
lower severity wildfire and south and west slopes gener-
ally experience higher severity fire (Taylor and Skinner
1998). Similarly, because of their relatively high fuel
moisture content, riparian areas tend to dampen the
spread of fires (Pettit and Naiman 2007). However, dur-
ing periods of extreme fire weather, these regulating
mechanisms can break down resulting in large patches
of high severity fire which can be detrimental to spotted
owls (Jones et al. 2016). Summers in the Pacific North-
west are predicted to become longer, hotter and drier;
conditions that are correlated with increased fire activ-
ity in the West (Wimberly and Liu 2014, Westerling
2016). Thus, a changing disturbance regime in which

wildfires increase in extent and intensity suggests the
long-term persistence of viable northern spotted owl
populations may be compromised (Johnstone et al.
2016), especially when combined with multiple recent
stressors, such as habitat removal due to logging and
increased competition from the recent invasion of non-
native barred owls.
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