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Table II. Screen filter mesh sizes and corresponding filter opening

diameters.
Mesh Diamerer
Size Inches mm Microns
40 0.017 0.425 425
100 0.006 0.150 150
150 0.004 0.105 105
200 0.003 0.075 75
270 0.002 0.053 53
400 0.0015 0.038 38

Table III. Selected equivalent diameters.

Particle Diameter, mm
Coarse sand 0.50 to 1.00
Fine sand 0.10 to 0.25
Silt 0.002 to 0.05
Clay <0.002
Bacteria 0.0004 to 0.002
Virus <0.0004

cleanings, and the allowable pressure drop across the filter.
Information about the maximum allowable particle size
should be available from the dripline manufacturer. If not, a
rule of thumb is remove any particles larger than one-tenth
the diameter of the smallest opening in the emitter. Table 11
shows a range of filter mesh sizes and corresponding filter
opening diameters. Table 11l shows the equivalent diameters
of selected particles. A 200-mesh screen filter will remove
particles the size of fine sand and larger and is usually
adequate for SDI systems using groundwater in the Great
Plains.

Flow rates through screen filters should not exceed 200
gallons per minute per square foot (gpm/ft*) of effective
filter area. The effective filter area is defined as the area of
the openings in the filter screen. A 200-mesh screen has 200
openings per linear inch. Generally, a 200-mesh screen with

Figure 3. Flushable screen filter (courtesy Yardney
Water Management Systems, Inc.)

a surface area of about 2.8 square feet will provide 1 square
foot of effective filter area. Screen filters should be cleaned
(backflushed) when the pressure drop across the filter
increases by 3 to 5 psi (pounds per square inch) or as
recommended by the manufacturer. Automatic flushing is
available on some screen filter systems. Figure 3 shows a
typical screen filter.

In addition to sand, pump lubrication oil also may
cause plugging of screen filters. To avoid filter plugging
and to ensure that the pump is adequately lubricated,
discuss drip-oil issues with the well driller or well service
professional and your SDI system dealer.

Another type of screen filter is the self-cleaning spin

filter: These filters are continuous-flushing units. Spin filters

swirl the water towards the center of the filter. Filtered
particles move towards the sides of the filter and to the
bottom where they flow out of the filter through an opening
on the bottom. A small volume of water continuously
flushes the filtered particles out of the system.

In some applications where the water contains a large
amount of sand, a sand separator may be required (Figure

Outlet
A
[nlet
o
<
S
e’
e
Y
g™
=4
=
-
d Sand
b Collection
Chamber

Figure 4. Sand separator (photo courtesy of Yardney
Water Management Systems, Inc.)

4). Sand separators also swirl the water towards the center
of the separator using centrifugal action to separate sand
and other heavy particles (specific gravity > 1.5) from the
water prior to entering the filtration unit. Properly function-
ing sand separators can remove 70 to 95% of heavy
particles with equivalent diameters greater than 0.003
inches.

For surface water with a large silt concentration, a
settling basin may be required. In addition, pre-screening of
the water to remove debris such as stalks, leaves, and other
plant residue may be necessary. When surface water is used,
more refined filtration systems like sand media or disc
filters may be required.
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Figure 5. Photo and schematic sand media filter (photo courtesy of Waterman Industries, Inc.)

Table IV, Sand media size and screen mesh equivalent.

Sand No. Effective Sand Size (in) Sereen Mesh Size
8 0.059 70
11 0.031 140
16 0.026 170
20 0.018 230
30 0.011 400

Biological clogging hazards

Biological or organic material, such as bacterial slimes
and algae, are often filtered with sand media filters (Figure
5). Particle size of the media is selected according to the
desired degree of filtration (Table IV). Flow rates for media
filters should not exceed approximately 25 (gpm/ft*) of
filter surface area. Lower flow rates should be used with

water sources containing greater than 100 ppm of sus-
pended solids to reduce the need for frequent backflushing.
Media filters should be backflushed when the pressure drop
across the filter reaches about 10 psi or as recommended by
the manufacturer. In most installations, multiple filters are
necessary to accommodate backflushing while the SDI
system continues to operate.

Backflush flow rates depend on the media size; lower
flow rates should be used for finer filter media. Automatic
backflushing is generally required on media filtration
systems. Most manufacturers recommend the use of a
screen filter downstream from the media filter to reduce the
hazard of escaping filter media clogging emitters.

Disc filters (Figure 6) are sometimes used when
filtering biological material. They are a hybrid of screen
filters and sand media filters. Microscopic grooves between
the discs filter unwanted material. Discs within the filters

Backflushing

Filtration

Figure 6. Photo and schematic of disc filter (schematic courtesy of Arkal Filtration Systems.)
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separate during backflushing. Disc filters require less water
than media filters for backflushing; however, required
backflushing pressures may be as high as 50 psi. Such high
pressures may require the use of a pressure-sustaining valve
or booster pump or both. A typical recommended flow rate
for filtering with 200-mesh equivalent disk filters is 50
gpm/ft® of filter area.

If sand is a particular concern for a given system, one
may choose to avoid using disc filters entirely. During
backflushing, when the discs are separated, sand may
become lodged between discs. If this happens, the effective
screen mesh size is reduced and filtration will be less
effective. If sand is present, and one still chooses to use a
disc filter, consider using a sand separator before the filter
unit.

Chlorine injection is commonly used to assure that any
unfiltered biological material does not accumulate else-
where in the SDI system. If the biological load of the
irrigation water is severe (Table 1), a low concentration (1 to
2 ppm) of chlorine should be injected continuously. If the
biological load is slight to moderate, and thus the potential
for biological clogging is low, a periodic chlorine shock
treatment may be used as an alternative to continuous
chlorine injection. A typical chlorine shock treatment uses a
concentration of 10 to 30 ppm. For systems that use
groundwater, a semiannual chlorine shock treatment likely
will be sufficient to prevent biological clogging. The
frequency of shock treatments is not, however, set in stone.
One should continuously monitor system performance and
adapt the maintenance schedule accordingly.

Sodium hypochlorite or liquid bleach (NaOCL) is a
safe and easily obtained chlorine source. However, it
degrades over time so it should not be stored for long
periods before using.

While chlorine injections are effective against biologi-
cal clogging hazards, injecting chlorine has no effect on
scale deposits. There are other commercial materials to
dislodge and dissolve scale deposits.

With SDI systems, if the pH of the water is high,
concurrent acidification and chlorination may be required.
Chlorination for bacterial control is relatively ineffective if
the pH of the water is above 7.5, so adding acid may be
necessary to lower the pH and increase the biocidal action
of the chlorine. Acid and chlorine injection points should be
at least 2 to 3 feet apart. Acid and chlorine should never be
combined in the same container because dangerous toxic
chlorine gas is released.

When chlorine is injected, a test kit should be used to
see that the injection rate is adequate. Color test kits that
measure the “free residual” chlorine, which is the primary
bactericidal agent, should be used. Common test kits
(orthototlidine-type) that one might use to measure the total
chlorine content of a swimming pool are not satisfactory for
irrigation applications. To ensure the system is adequately
treated, the chlorine concentration at the flush outlet farthest
from the injection pump should equal the desired treatment
concentration.

As was mentioned, most biological clogging hazards
are associated with surface water; however very small
concentrations of iron (0.1 — 0.3 ppm) in groundwater can
pose a biological clogging threat. Certain bacteria can use
iron as an energy source. Those bacteria oxidize ferrous
iron (+2 charge) to form ferric (+3 charge) iron. As the
bacteria grow, they form slimes that may combine with
other materials and clog emitters. As with other biological
clogging hazards, if iron bacteria do develop, chlorine
injections can be used to oxidize or kill the bacteria. The
dead bacteria then can be flushed from the system.

Chemical clogging hazards

Two major chemical clogging hazards to SDI systems
in the Great Plains are precipitation of calcium carbonate
(CaCO,), also called lime or scale, and the formation of
iron precipitates. Precipitation of CaCO, can occur in one
of two ways: evaporation of water, leaving the salts, behind,
or a change in solubility due to changes in solution charac-
teristics (mainly temperature or pH). Evaporation is not
usually a problem in SDI systems, but solubility changes
can cause CaCO, precipitation. As water temperature
increases, CaCO, solubility decreases and lime deposits
may occur. Because buried driplines do not get as hot as
surface-installed drip irrigation lines, temperature-induced
CaCO, precipitation is not generally a significant problem
in SDI systems.

Increased pH (more basic) also decreases CaCO,
solubility, increasing the potential for precipitation. A water
analysis can be used to determine the predisposition of the
water source to precipitate CaCO,. In many cases, bicar-
bonate may be present. Bicarbonate can react with naturally
occurring calcium in the water to form scale deposits.
Continuous acid injection is often used to lower the water’s
pH (< 7.0) and decrease the possibility of CaCO, precipita-
tion. '

If the intent of the acid injection is to remove existing
scale buildup within the irrigation system, the pH will have
to be lowered even more. When removing existing scale
deposits, the release of water into the soil should be
minimized as root damage may occur. An acid slug should
be injected into the irrigation system and remain in the
system for several hours, after which the system should be
flushed with irrigation water. Although acid will not
normally corrode PVC (polyvinyl chloride) and PE
(polyethylene) tubing, it may be corrosive to steel and
aluminum.

In addition to the biological oxidation of iron and the
associated clogging hazards mentioned previously, iron also
can be chemically oxidized (rusted). The oxidized (ferric)
iron can form precipitates that block emitters. If iron
presents a problem in your operation, there are two com-
mon treatment options. The first is to pump the groundwater
into a reservoir before pumping it into the SDI system,
making sure adequate aeration occurs in the reservoir. The
ferrous iron is oxidized and the ferric iron settles out. The



second option is to inject a strong oxidizer upstream of the
filter (all chemicals should be injected upstream from the
filtration system). Chlorine can be used to oxidize ferrous
iron. The resulting ferric iron is then filtered before it enters
the driplines.

Injecting Chemicals Into An SDI System

Anytime chemicals (including fertilizers) are injected
into an irrigation system, certain certifications, procedures,
and equipment are required.

Before injecting any chemical, or before mixing any
chemicals, one should always perform a “jar test” to
evaluate potential plugging hazards.

1. Add drops of the chemical to be injected into a
sample of the irrigation water so that the concen-
tration is equivalent to the solution that would be
in the system.

2. Cover and place the mixture in a dark, cool
environment for at least 12 hours,

3. Direct a light beam at the bottom of the sample
container to determine if any precipitates have
formed. If no apparent precipitates have formed,
the chemical will normally be safe to use with that
specific water source.

Concluding Statements

When using SDI systems, it is important to prevent
clogging problems before they occur. The best prevention
plan includes an effective filtration and water treatment
strategy. Depending on the water source and its quality,
various combinations of sand separation, filtration, and
chemical treatments may be required.

Filtration equipment may be the single item of greatest
cost when installing the SDI system. One must resist the
temptation to “cut corners.” Good filtration will pay for
itself by avoiding the costs and extra effort required to
repair a damaged system that was not adequately main-
tained.

To assess SDI system performance and to ensure that
components like filters are working correctly, flow meters

and pressure gauges must be properly installed to provide
feedback to the system operator. Monitoring flow meters
and pressure gauges over time can reveal system perfor-
mance anomalies that may require attention.

No matter how well designed your filtration system is,
some “contaminants” will find their way into the driplines.
To prevent the accumulation of those contaminants and the
resulting emitter clogging, driplines should be flushed
periodically. A useful way to provide for system flushing is
to connect all the downstream ends of the driplines within a
zone to a common flush manifold. Regular flushing is
critical to system health and longevity.

Profit margins for crops typically grown in the Great
Plains are less than the margins for fruits and vegetables
traditionally grown with SDI systems. To make SDI systems
in the Great Plains more viable economically, they must last
for many years. Prevention of clogging through proper
maintenance is therefore critical to successfully using SDI
on the Great Plains.
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