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A B S T R A C T   

Pigs (Sus scrofa) may be important surveillance targets for risk assessment and risk-based control planning 
against emerging zoonoses. Pigs have high contact rates with humans and other animals, transmit similar 
pathogens as humans including CoVs, and serve as reservoirs and intermediate hosts for notable human pan
demics. Wild and domestic pigs both interface with humans and each other but have unique ecologies that 
demand different surveillance strategies. Three fundamental questions shape any surveillance program: where, 
when, and how can surveillance be conducted to optimize the surveillance objective? Using theory of mecha
nisms of zoonotic spillover and data on risk factors, we propose a framework for determining where surveillance 
might begin initially to maximize a detection in each host species at their interface. We illustrate the utility of the 
framework using data from the United States. We then discuss variables to consider in refining when and how to 
conduct surveillance. Recent advances in accounting for opportunistic sampling designs and in translating 
serology samples into infection times provide promising directions for extracting spatio-temporal estimates of 
disease risk from typical surveillance data. Such robust estimates of population-level disease risk allow sur
veillance plans to be updated in space and time based on new information (adaptive surveillance) thus opti
mizing allocation of surveillance resources to maximize the quality of risk assessment insight.   

1. Introduction 

Pigs (Sus scrofa) share many pathogens with humans (Ruiz-Fons 
et al., 2008; Meng et al., 2009; Miller et al., 2017) and have been the 
source of notable human pandemics such as (H1N1)pdm09 virus (Smith 
et al., 2009). They also transmit a variety of coronaviruses (CoVs) 
(Miller et al., 2017; Cui et al., 2019; Wang et al., 2019; Leopardi et al., 
2020), some of which show broad host-receptor usage (Li et al., 2018; 
Wang et al., 2019). While there is overwhelming evidence that bats have 
been important reservoirs for the evolution and spillover of zoonotic 
CoVs (Li et al., 2020b), the role of pigs is less well studied. In addition to 
high levels of contact with humans, several lines of evidence suggest pigs 
could be intermediate hosts, mixing vessels, or even reservoirs of new 
CoVs (Li et al., 2018; Wang et al., 2019; Leopardi et al., 2020), as has 
been suggested for influenza A viruses (Ma et al., 2008). In fact, it was 
recently suggested that the genome of SARS-CoV had a complicated 

history of recombination with alpha- and gamma-CoVs from multiple 
divergent taxa including bats, birds, mice, pigs, and humans (Su et al., 
2016). The ongoing threat from persistence and transmission of influ
enza A genetic variants among wild birds, pigs, and humans (including 
frequent human-to-pig transmission (Nelson and Worobey, 2018), and 
repeated emergence of zoonotic CoVs in humans from different animal 
reservoirs, underscores the importance of better understanding the po
tential role of multiple animal hosts, including pigs, in the emergence 
and persistence of disease in humans. One step towards preparation for 
managing zoonotic disease emergence is to develop risk-based surveil
lance strategies that are rooted in the fundamental mechanisms of 
zoonotic emergence theory, ready for deployment as needed. Below we 
outline how to plan surveillance for an emerging zoonotic disease using 
CoVs as an example, assuming that pigs could be relevant reservoir, 
intermediate, or maintenance hosts to a novel CoV emergence event. 

The zoonotic spillover framework of Lloyd-Smith et al. (2009) 
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describes the sequential phases of zoonotic emergence: reservoir dy
namics, spillover, stuttering chain transmission, followed by ongoing 
human-to-human transmission, where each phase is determined by 
ecological and evolutionary processes (Lloyd-Smith et al., 2009). The 
spillover phase of the framework was then expanded by Plowright et al. 
(2017) to describe the barriers of spillover as a series of bottlenecks that 
must align for zoonotic spillover to occur (Plowright et al., 2017). Key 
bottlenecks in the spillover process include: 1) Pathogen availability in the 
reservoir: e.g., host reservoir distribution and density, pathogen preva
lence, infection intensity, survival outside the host and transmissibility 
(pathogen availability for spillover), 2) Interface connectivity: contact 
with humans (interhost-species connectivity), and 3) Success in the new 
host species: genetic pliability of the pathogen and low immunity in 
humans so that the pathogen can replicate well in humans (ability of the 
pathogen to be fit in a new host species). Similar bottlenecks would 
apply with humans as the ‘reservoir’ when considering transmission 
from humans to animals. Thus, for predicting risk in a system where 
both spillover and spillback could be important, the framework can be 
generalized as: pathogen availability in host 1, interface connectivity, 
and pathogen availability in host 2, assuming that host 1 and host 2 are 
receptive to each other’s pathogens. 

The CoV pathway to zoonotic spillover can involve multiple evolu
tionary processes, including mutation and recombination, and trans
mission among multiple host species (Zhao et al., 2004; Cotten et al., 
2014; Su et al., 2016; Li et al., 2020b) before a cross-species transmission 
to humans results in successful human-to-human transmission. The role 
of spillover-spillback dynamics in the process of emergence is unknown. 
Similarly, our understanding of the order of evolutionary events, 
ecological conditions, and host species that allowed the last three CoV 
emergences (SARS-CoV, MERS, SARS-CoV-2) in humans remain poorly 
understood (Su et al., 2016; Li et al., 2020b). Below we describe the 
potential relevance of pigs in the emergence and persistence of new 
CoVs. 

2. Why might pigs contribute to emergence of zoonotic CoVs? 

2.1. Pigs are abundant, widely distributed, and have frequent contact with 
both humans and wildlife 

As livestock, domestic pigs have high contact rates with humans, 
especially at county fairs (CDC, 2016) and on smaller, backyard or niche 
production farms that are widespread across human populations (Bur
dett et al., 2015). Similar to domestic pigs, wild pigs are widespread 
across the globe (Lewis et al., 2017). Wild pigs have been highly suc
cessful in both their native and non-native ranges and continue to 
expand geographically (Lewis et al., 2017; Snow et al., 2017; Aschim 
and Brook, 2019), suggesting that wild pig contact rates with humans 
and backyard domestic pigs are increasing rather than decreasing. Wild 
pigs contact a variety of wildlife species, including bats (Wang et al., 
2018), while also contacting humans through hunting (Bevins et al., 
2014), living in urban spaces (Stillfried et al., 2017), and intense control 
programs (Pepin et al., 2019b) or with backyard domestic pigs (Wyckoff 
et al., 2009; Wu et al., 2012). As such, pigs have been implicated in the 
emergence of novel influenza A viruses in humans (Brown, 2001; Hass 
et al., 2011), and human influenza A prevalence is positively correlated 
with influenza A prevalence in wild pigs (Pepin et al., 2019a). Thus, 
relative to other animal species, pigs may be quite connected to other 
reservoir species and humans concurrently, while supporting pathogen 
transmission and evolution with an ample supply of susceptible hosts. 

2.2. Several divergent CoVs are prevalent in pigs 

Pigs readily transmit a variety of CoVs (Cui et al., 2019; Wang et al., 
2019). While only alpha- and beta-CoVs typically circulate in humans, 
alpha-, beta-, and delta-CoVs have been detected in pigs (Chan et al., 
2013; Cui et al., 2019; Wang et al., 2019). Of the alpha-CoVs, the same 

genus as Middle Eastern respiratory syndrome CoV (MERS-CoV), the 
three most commonly studied and monitored alpha-CoVs in pigs are 
transmissible gastroenteritis virus (TGEV), porcine respiratory CoV 
(PRCV), and porcine epidemic diarrhea virus (PEDV). These viruses are 
highly prevalent and transmissible in domestic pigs (Li et al., 2018; 
Wang et al., 2019) and wild pigs (Kaden et al., 2009; Roic et al., 2012; 
Lee et al., 2016; Bevins et al., 2018), although surveys in wild pigs 
remain scarce. Additionally, a severe acute respiratory syndrome CoV 
(SARS-CoV)-like alpha-CoV named swine acute diarrhea 
syndrome-coronavirus (SADS-CoV) and porcine enteric alpha-CoV 
(PEAV) have recently emerged in pigs (causing widespread morbidity 
and mortality) likely through spillover from bats (Gong et al., 2017; 
Wang et al., 2018; Zhou et al., 2018). In addition to these alpha-CoVs, 
porcine delta-CoVs (PDCoV) are prevalent in domestic pigs (Li et al., 
2018; Wang et al., 2019), but have not been surveyed in wild pigs to our 
knowledge. PDCoVs and SADS-CoV have been highlighted as high-risk 
for of a novel zoonotic spillover (Li et al., 2018; Edwards et al., 2020). 
In fact, there is evidence that PDCoV has spilled over into poultry (Boley 
et al., 2020). It has also been shown that several of these CoVs can 
remain infectious on animal feed for extended periods of time (up to 42 
days for PDCoV and TGEV, and 7 days for PEDV; (Trudeau et al., 2017), 
suggesting that these CoVs could increase their chance of spillover with 
high environmental persistence. There is also one pig beta-CoV, the CoV 
genus that SARS-CoV and SARS CoV-2 belong to, that is highly prevalent 
in domestic swine and is named porcine hemagglutinating encephalo
myelitis virus (PHEV) (Mora-Diaz et al., 2019; Wang et al., 2019), but it 
has not been detected in wild pigs (Moutelikova et al., 2016) (although 
surveillance has been minimal). In summary, CoVs from other host 
species are highly available for spillover into pigs, where the virus can 
successfully replicate. 

2.3. CoVs evolve rapidly and human CoVs can replicate in pigs 

Like many RNA viruses, CoVs evolve rapidly (compared with DNA 
viruses) through a combination of mutation, recombination, and pur
ifying selection (Li et al., 2020b). Emergence of both SARS-CoV and 
SARS-CoV-2 were thought to be the product of recombination events in 
wildlife hosts, including pigs (Su et al., 2016; Cui et al., 2019; Li et al., 
2020b). In fact, the SARS-CoV genome shows evidence of recombination 
with PEDV at some point in its evolutionary history (Su et al., 2016). 
Experiments have shown that SARS-CoV do not replicate well in juvenile 
pigs (Weingartl et al., 2004), while MERS-CoVs do (Vergara-Alert et al., 
2017), although spillover of SARS-CoV from humans to domestic pigs 
was detected (Chen et al., 2005). 

The science on SARS-CoV-2 is evolving rapidly and shows inconsis
tent findings on the potential role of pigs in SARS-CoV-2 epidemiology. 
While two experiments showed that juvenile pigs were not susceptible to 
SARS-CoV-2 inoculated at < 106 PFU (Meekins et al., 2020; Shi et al., 
2020), a more recent experiment showed that SARS-CoV-2 does repli
cate at low levels in 8 week old domestic pigs when inoculated orona
sally at 106 PFU (Pickering et al., 2020) and that SARS-CoV-2 does infect 
and cause damage to cultured porcine cells (Meekins et al., 2020). 
Similarly, while multiple studies have demonstrated that pig ACE2 re
ceptors (a mechanism of viral entry into host cells) show high affinity for 
SARS-CoV-2 spike protein binding (Wan et al., 2020; Zhai et al., 2020; 
Zhao et al., 2020), another suggests that pig ACE2 should have low 
compatibility for SARS-CoV-2 (Damas et al., 2020). However, the latter 
study also predicted that dog and mink ACE2 should have low to very 
low affinity for SARS-CoV-2, yet multiple cases and outbreaks in these 
species have been detected (Oreshkova et al., 2020; USDA-APHIS, 
2020). Thus, our understanding of the infection mechanisms of 
SARS-CoV-2 and the potential role of pigs and other animals in the 
epidemiology of SARS-CoV-2 remains incomplete (Zhao et al., 2020). 

Regardless of whether the currently circulating strains of SARS-CoVs 
are infectious to pigs, there is the possibility that human-infectious 
strains could mutate or recombine with prevalent porcine CoVs, 

K.M. Pepin et al.                                                                                                                                                                                                                                



Preventive Veterinary Medicine 188 (2021) 105281

3

expanding their host range further and expanding the reservoir of SARS- 
CoVs. This kind of genetic pliability appears common based on the 
recent emergences of bat-like CoVs in pigs (Gong et al., 2017; Wang 
et al., 2018; Zhou et al., 2018), pig CoV genetic elements in SARS-CoV 
(Su et al., 2016), and frequent coinfection (Zhang, 2016) and recombi
nation of CoVs in pigs and among pigs and other host species (Wang 
et al., 2019). 

3. Where should we do surveillance? 

With such potential for CoVs and other zoonotic pathogens to 
transmit between pigs and humans, it is useful to establish off-the-shelf 
guidelines for emerging disease surveillance, especially for wild pigs 
which frequently contact other wildlife species. Wildlife disease sur
veillance is challenging because animals are difficult to sample 
randomly across a geographic area or at a target proportion, and re
sources are typically limited (Park et al., 2013). Thus it is useful to guide 
surveillance programs spatially based on where risk might be highest – 
targeted risk-based surveillance (Miller and Pepin, 2019). Using pigs 
and CoVs in the USA as a case study, we illustrate how risk factors can be 
used to develop guidance for triaging surveillance resources. In our 
example, the surveillance objective is risk assessment for either a new 
(pig to human) or reverse zoonosis (human to pig) that could lead to 
ongoing persistence or spatial spread. We assume that either would be of 
interest to control because spillover and ongoing transmission of a 
human CoV in pigs could have the risk of transmitting to other human 
populations or recombining with other pig CoVs and undergoing further 
evolutionary change. Applying the spillover framework of Plowright 
et al. (2017), we expect that risk of a CoV transmission among wild pigs 
and humans, for example, would be highest where virus availability in 
wild pigs and humans (Aw and Ah) is highest and where contact (Cw-h) is 
highest (Fig. 1). Because alpha- and beta-CoVs are prevalent in both pigs 
and humans and pigs additionally have delta-CoVs that are thought to 
pose and emergence risk in humans (described above), we assume that 
an initial surveillance plan would involve all of these groups. Similarly, 
as bat-derived coronaviruses are known to emerge in pigs (Gong et al., 
2017; Wang et al., 2018; Zhou et al., 2018) and bats are thought to have 
played a role in the generation of novel pandemic coronaviruses, it could 
be useful to surveil areas where bats and pigs have the most opportunity 
for contact. Other examples of risk factors to consider initially are 
described in Table 1. 

Without considering hierarchical relationships of factors that deter
mine A and C, the simplest proxy for risk can be expressed as the 

multiplicative process: Aw∙Ah∙Cw-h, with component risk factors 
(Table 1) also being multiplicative within A and C. The relative risk of 
each spatial unit (here, counties) in the USA can then represented as, 

∏R

r=1
ωrθj,r  

where ω is the weight for risk factor r and Өj,r is the relative risk score for 
risk factor r in county j. Each risk factor, Өr, is normalized from 0 to 1 
using minimum-maximum normalization (i.e., with county values being 
relative to one another such that the highest score would be 1 and reflect 
the county with the highest risk factor score) to allow each risk factor to 
be considered equally. The weights, ωr, then place importance on each 
risk factor relative to the other risk factors. This can either be defined by 
data or based on expert opinion. Here we weight each risk factor equally 
(ωr = 1; Fig. 2), however if there is evidence for the relative role of 
different risk factors other weighting schemes could be used. Ultimately, 
it would be useful to understand mechanistic or hierarchical relation
ships for the role of these risk factors in spillover so that their potential 
non-linear relationships could be accounted for in the risk assessment 
framework (e.g., (Plowright et al., 2017; Cross et al., 2019)). 

4. When should we do surveillance? 

4.1. Temporal variation in risk 

The risk maps we present ignore temporal variation, yet temporal 
fluctuations in host demography, movement ecology, and pathogen 
prevalence determine transmission risk (Lloyd-Smith et al., 2009; Peel 
et al., 2014; Plowright et al., 2017; Scherer et al., 2019) and detection 
probability (Walton et al., 2016). Thus the risk maps we present for 
guiding surveillance design should be updated regularly with recent 
demographic and CoV prevalence data, or at least scaled over time to 
account for regular temporal fluctuations in transmission risk due to 
seasonal factors such as birth pulse dynamics (Peel et al., 2014) or 
mating behavior (Scherer et al., 2019). Meteorological factors, such as 
temperature and relative humidity, can also drive temporal changes in 
CoV transmission risk by affecting environmental persistence of CoVs 
(Kim et al., 2007; Casanova et al., 2010; Gardner et al., 2019; Altamimi 
and Ahmed, 2020; Gunthe et al., 2020). However, the relationship be
tween meteorological factors and virus persistence is non-linear and 
dependent on multiple interacting meteorological variables (Casanova 
et al., 2010), which has made it complicated to determine how meteo
rology modifies transmission risk in host populations (Dowell and Ho, 
2004; Tan et al., 2005; Cai et al., 2007). Unraveling how meteorological 
variables modify disease risk remains an important challenge for opti
mizing risk-based surveillance plans. 

Also poorly understood is how reproductive phenology in wild pigs 
varies geographically (Macchi et al., 2010), in a way that could impact 
contact with domestic pigs (Wu et al., 2012). Reproductive phenology in 
both males and females is impacted by seasonal and inter-annual 
availability of forage, potentially affecting both birth rates within wild 
pigs and contact between wild and domestic pigs (Wu et al., 2012). 
Similarly, hunting rates (Johann et al., 2020) and wild pig control rates 
by trapping (Pepin et al., 2019b) (a technique that involves the more risk 
for transmission between humans and wild pigs) vary seasonally sug
gesting that seasonal variation in these activities could be used to 
optimize detection of spillover at the wild pig-human interface. 

5. How should we conduct surveillance? 

5.1. Surveillance objectives 

Surveillance for pathogens in wild pigs is often designed to identify 
pathogen presence for objectives such as determining disease freedom, 
or to gain baseline information about emergence of new diseases or 

Fig. 1. Risk factors of the spillover-spillback process. Risk factors of pathogen 
availability within each host group are shown in the colored boxes – these 
factors affect the dynamics of pathogen availability within each host group. 
Risk factors that affect the contact and transmission between host groups 
(interface connectivity) are shown in white between the host groups that they 
connect. Factors that influence the entire system - both pathogen availability in 
hosts and interface connectivity – such as climate would be included only once 
in the relative risk framework. 

K.M. Pepin et al.                                                                                                                                                                                                                                



Preventive Veterinary Medicine 188 (2021) 105281

4

where diseases of agricultural concern may occur (Pedersen et al., 2012, 
2013; Pedersen et al., 2015; Bevins et al., 2018). Surveillance programs 
with these objectives provide useful foundational information for 
developing risk-based surveillance plans. However, for the surveillance 
objective here of informing risk assessment and response to cross-species 
disease emergence, we need to target locations that are most likely to 
lead to cross-species transmission and ongoing spread of disease in the 
spillover host population (i.e., areas where pathogen availability and 
interface connectivity are high). Pathogen availability can be deter
mined by population-level quantities that describe the current status of 
disease risk such as prevalence (per capita number of cases at a given 
time), incidence (per capita number of cases over time), force of infec
tion (rate at which susceptible hosts become infected), or Re (effective 
reproduction number; the average number of individuals that an infec
ted individual transmits to). Incidence, force of infection, and Re are 
more functional epidemiological metrics of pathogen availability 

because they describe ‘transmission risk’ – how likely the disease is to 
transmit to other hosts (and therefore persist), whereas prevalence only 
describes how many hosts are currently impacted (current pathogen 
availability) rather than the likelihood of ongoing transmission. Func
tional epidemiological metrics are especially useful for optimizing sur
veillance and control programs (Ferguson et al., 2001; Lessler and 
Cummings, 2016; Routledge et al., 2018) because they can be used to 
quantify factors that drive transmission risk thus providing more refined 
predictions about where pathogen availability for spillover will be 
highest. Thus, surveillance aimed at quantifying functional epidemio
logical metrics can provide better prediction about where to focus more 
expensive and intensive sampling for genetic markers of emergence risk. 

5.2. Opportunistic sampling designs and assay error 

Estimating functional epidemiological metrics is challenging using 

Table 1 
Description of example risk factors for triaging surveillance plans. The scale and source columns describe the data sources used in our map examples. Caveats describe 
issues that if resolved could improve risk assessment mapping or understanding effective mitigation strategies. This is not an exhaustive list of possibilities, rather it 
represents risk factors for which there is already readily available data. Additionally, factors that affect both pathogen availability in hosts and interface connectivity 
(e.g., climate) should be included only once in the relative risk framework.  

Risk factor Type Rationale Scale Source Caveats 

Pathogen availability in hosts (A) 

Host density 
A Pathogen 
availability – all 
host species 

Host density affects dynamics and prevalence 
of CoVs in each host population 

County (All 
data 
streams) 

(Lewis et al., 2017) using 
methods from (Lewis et al., 
2019) (USDA, 2020) ( 
Institute, 2018) 

Wild pigs: density over time is important 
because densities can fluctuate 
dramatically due to birth pulses and 
control efforts. 
Commercial domestic pigs: Size of farms 
may not correlate directly to risk due to 
differences in farm connectivity and 
biosecurity 

CoV trends in 
hosts 

A Pathogen 
availability – all 
host species 

Historical trends of CoV circulation in hosts 
could represent hotspots for CoV availability in 
hosts 

County (All 
data 
streams) 

(USDA-APHIS, 2015; Bevins 
et al., 2018; Benatia et al., 
2020) 

Recent prevalence of specific ‘high-risk’ 
CoVs would be a more direct risk metric 
of pathogen availability 

Climate 
A Pathogen 
availability – all 
host species 

CoV transmission within host species will be 
higher in colder climates because CoVs persist 
longer outside hosts in colder climates 
providing an additional source of infection 
within host species (i.e., higher virus 
availability). 

County nCLIMGRID (Vose et al., 
2014) 

Relationship of climate and CoV 
prevalence remains poorly understood, 
is likely non-linear, and depends on 
other factors that could modify its 
effects. 

Interface connectivity (C) 

Hunters 

Cw-h 

Areas with more hunting have more wild pig- 
human contact 

State (USFWS, 2020) 
Some hunting practices may be more 
conducive to human-wild pig contact 
than others. 

Wild pig 
↕ 
Humans 

Control 
personnel 

Cw-h 

Areas with higher rates of wild pig control have 
higher contact among humans and wild pig State (Labor, 2019) 

Some control techniques and local 
practices may be more conducive to 
human-wild pig contact than others. 

Wild pig 
↕ 
Humans 

Climate 

C CoV transmission among host species will be 
higher in colder climates because CoVs persist 
longer outside hosts in colder climates 
providing enhanced environmental 
transmission among host species (i.e., direct 
contact with environmental surfaces). 

County nCLIMGRID (Vose et al., 
2014) 

Relationship of climate and transmission 
remains poorly understood, is likely non- 
linear, and depends on other factors that 
could modify its effects. 

All hosts 
↕ 

All hosts 

Agricultural 
workers 

Cd-h Agricultural workers (including animal 
caretakers and slaughterhouse workers) have 
the highest contact rates with domestic pigs 

State (USDA, 2020) 
Some types of agricultural workers may 
have more risky contacts than others 

Domestic pigs 
↕ 
Humans 

County fairs 

Cd-h 

County fairs allow increased interaction among 
humans and domestic pigs 

County (Fairgrounds, 2020) 

The relationship of county fairs to 
contact might not be related to Ad and Ah 

in the same county because humans may 
travel from other counties to attend fairs 

Domestic pigs 
↕ 
Humans 

Bat species 
density 

Cw-b Higher bat species densities present a higher 
spillover risk for CoVs into pigs that could act as 
intermediate hosts for further evolution or 
transmission to humans 

County (States, 2011) 

Best to use the bat species that are most 
suspected for the spillover of risky CoVs 
(see (Olival et al., 2020) for recent 
analysis of North American bat species) 

Wild pigs 
↕ 
Bats (affects Aw) 

Backyard pig 
density 

Cw-d Backyard operations often have low biosecurity 
allowing direct and indirect contact with wild 
pigs thus areas with higher backyard pig 
densities would have higher risk of 
transmission among wild and domestic pigs 

County (USDA, 2020) 
Some landscapes and local practices may 
be more conducive to backyard-wild pig 
contact than others 

Domestic pigs 
↕ 

Wild pigs  
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typical surveillance data because many surveillance systems are 
opportunistic (e.g., (Pedersen et al., 2012; Lee et al., 2016; Smietanka 
et al., 2016; Bevins et al., 2018; Bertelloni et al., 2020)) to maximize the 
number of samples that can be collected on a very limited budget. Thus, 
there is uneven sampling in space and time and maps of apparent 
prevalence (number of positive samples over total samples across space) 
mainly reflect the sampling design rather than providing information 
about how disease risk varies spatially (Wilber et al., 2020). Applying 
survival analysis to surveillance data can help remove bias induced by 
temporally uneven sampling efforts. Survival analysis is widely appli
cable to commonly-collected disease surveillance data (Pepin et al., 
2019a; Wilber et al., 2020), suggesting that functional epidemiological 
metrics can be gleaned from opportunistic sampling designs when the 
sampling design biases are accounted for. A second approach is to apply 
state-space models that infer epidemiological metrics while accounting 
for reporting biases (Chen et al., 2012; Miller, 2017; Pepin et al., 2017a; 
Baker et al., 2019; Tabak et al., 2019). These approaches can be espe
cially useful for informing surveillance design by estimating the amount 
of under-reporting (Chen et al., 2012), which types of surveillance 
methods are most informative (Davis et al., 2019), or where additional 
surveillance might best inform epidemiological metrics of interest and 
management (Davis et al., 2019). A separate problem from opportunistic 
sampling designs is assay error. That is, sometimes the test of a sample 
will falsely conclude no evidence of the target pathogen (sensitivity) or 
will falsely conclude evidence of a pathogen (specificity). These sources 
of error can be substantial (Gilbert et al., 2013), and can be accounted 
for in epidemiological estimates of disease risk (Tabak et al., 2019). 

5.3. Surveillance for antibodies 

In wildlife hosts, it is common for surveillance systems to search for 
antibodies (Elbers et al., 2003; Pedersen et al., 2015; Bevins et al., 2018; 
Elfadil et al., 2018) instead of pathogens because pathogens are more 
difficult to find – especially those that have short infectious periods. 
Serosurveillance data are often reported as zero/one data – a host has 
either been exposed or not to a pathogen. The threshold for determining 
whether a host is seropositive is based on a predetermined cutoff of the 
ratio between antibody quantity (signal) and procedural noise (i.e. the 
signal to noise ratio, (Gilbert et al., 2013)). However, recent de
velopments in quantitative antibody analyses have shown that the signal 
to noise ratio itself can be used to estimate when hosts were infected 
with a pathogen (Borremans et al., 2016; Pepin et al., 2017b) and have 
highlighted opportunities to use serological data to estimate functional 
epidemiological metrics through time (Borremans et al., 2016; Pepin 
et al., 2017b; Gamble et al., 2020; Hay et al., 2020). Moreover, inte
grating multiple streams of data, such as data on viral load, virus pre
sence/absence, and host age, with quantitative antibody data can 
further improve inference on estimates (Borremans et al., 2016; Wilber 
et al., 2020). While longitudinal laboratory data on within-host infection 
dynamics facilitate inference of functional epidemiological metrics from 
serosurveillance data (Pepin et al., 2017b), they are not strict pre
requisites (Wilber et al., 2020). For example, Gamble et al. (2020) 
showed that longitudinal data from the field in the form of 
mark-recapture data can be integrated with serosurveillance data to 
provide estimates of functional epidemiological metrics. Thus, for acute 
pathogens such as CoVs that may be difficult to find in wildlife hosts, 

Fig. 2. Relative risk map for CoVs at the wild pig-domestic pig- human interface (a). The histogram presents the distribution of % risk values across all counties. (b)- 
(d) show pathogen availability risk maps in each host group and (e-g) show risk maps for interface connectivity. Data layers that were included in mapping (a) for 
each type of risk factor included: (b) wild pig density and CoVs in wild pigs (c) commercial domestic pig density and CoVs in domestic pigs (d) human density and 
CoVs in humans, (e) backyard domestic pig density, (f) agricultural workers and county fairs, (g) hunters and control personnel. Data sources are listed in Table 1. 
Note climate and bat diversity are shown in Fig. S1 and were only included once (in (a)) and are therefore not shown in (b)-(g). Individual data streams for each risk 
layer of pathogen availability and connectivity are shown in Figs. S2 and S3. 
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serosurveillance data can be used to quantify functional epidemiological 
metrics which, compared to seroprevalence data, can improve seasonal 
predictions of when spillover risk might be greatest, helping further 
optimize the allocation of surveillance resources. 

5.4. Adaptive surveillance 

Adaptive management is a valuable concept for optimizing spatial 
allocation of limited resources. In adaptive management frameworks, 
management is structured to improve learning about the system by 
iterating between monitoring that reduces uncertainty about key drivers 
of management outcomes and updating management strategies based on 
the improved knowledge (Williams et al., 2009). Similarly a surveillance 
plan for emerging CoVs in pigs could be implemented adaptively in 
order to optimize the amount learned based on the surveillance objec
tives, current conditions, and most recent insight, e.g., (Clow et al., 
2019; Miller and Pepin, 2019). To implement adaptive surveillance 
there needs to be methods and personnel in place for regular assessments 
of risk from the surveillance data, in a manner that is appropriate for the 
surveillance objective and sampling design. As surveillance data are 
collected according to the initial surveillance plan, analyses to estimate 
the relative role of specific risk factors in predicting cases will then allow 
weighting schemes of the risk factors in the plan to be updated to refine 
the surveillance plan (increase accuracy and precision) and maximize 
the amount learned from the data based on available funding. For 
example, if initial surveillance failed to identify any ongoing chains of 
transmission for CoVs in wild pigs despite suspected pathogen intro
duction (suggesting that R0 < 1), increased weight and thus increased 
surveillance effort could be allocated to regions with a high 
human-animal interface where stuttering chains of transmission could 
be more easily detected. Designing adaptive surveillance plans is espe
cially important for pre-emerging diseases because management objec
tives are likely to change from predominantly risk assessment to 
predominantly control if the disease emerges in an area (Clow et al., 
2019). In addition to an adaptive design, the plan might also need 
flexibility in diagnostic assays. For example, during pre-emergence 
surveillance pan-CoV diagnostics (Zhang, 2016; Li et al., 2020a) can 
be conducted that are then followed up with diagnostic assays for spe
cific strains in areas where CoVs are detected most frequently, which 
may allow more informative surveillance in the same budget (Zhang, 
2016). 

We described a starting point for an adaptive surveillance plan for 
disease emergence at the wildlife-livestock-human interface based on 
current knowledge and available data for risk factors. As knowledge of 
spatial transmission risk improves using the baseline plan, the surveil
lance design can be adapted based on a mechanistic description for how 
the risk factors predict spillover among host groups (Cross et al., 2019), 
which could be used to optimize control strategies. Given our a priori 
ignorance on seasonality and age-specific prevalence of CoVs in wild 
pigs, we recommend that initial surveillance sampling be evenly 
distributed across age groups and time. Analyses of initial surveillance 
data can then reveal whether the timing of surveillance should be 
adapted based on demographic fluctuations or seasonal changes in host 
movement. An initial surveillance plan could also benefit from including 
CoV serosurveillance, which would improve detection of previous 
transmission and thus evidence of viral presence. To maximize infor
mation gained from all the available analytic tools, serosurveillance 
programs should consider collecting and reporting both quantitative 
antibody data and viral presence/absence data, and host demographic 
data as well as considering small-scale laboratory or field studies that 
can generate longitudinal infection data. Together these data will pro
vide the best opportunity to implement adaptive serosurveillance to 
uncover potential seasonal mechanisms underlying pig infection risk to 
CoVs, which will also help to optimize sampling designs for more 
expensive genetic assays that can reveal transmission among host groups 
or identify high-risk strains or genes. 

6. Conclusions and recommendations 

Pigs transmit a variety of CoVs, some of which have come from bats 
and humans. They frequently contact humans and potentially bats, and 
co-infections and recombination of CoVs occur in pigs. Together these 
observations suggest that pigs are a useful surveillance target for 
guarding against emergence and ongoing transmission of new CoVs. 
They also suggest that agricultural workers, hunters, and personnel 
working on control of wild pigs should wear appropriate personal pro
tective equipment when contacting pigs directly or contacting control 
equipment or environmental features that pigs may have contaminated. 
Currently, movement of wild pigs by humans occurs frequently in the 
USA (Tabak et al., 2017; Hernandez et al., 2018), suggesting not only the 
opportunity for intimate contact with humans and wild pigs but also a 
mechanism for broader spatial dissemination. This type of capture and 
release should be avoided to minimize the spatial spread and evolution 
of new CoV strains. Our work outlines a plan for risk-based surveillance 
of disease emergence at the wildlife-livestock-human interface that can 
be implemented adaptively to optimize detection, learning about 
transmission risk factors, and prediction of transmission hotspots. 
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