
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

USDA Wildlife Services - Staff Publications U.S. Department of Agriculture: Animal and 
Plant Health Inspection Service 

2021 

Behavioral state resource selection in invasive wild pigs in the Behavioral state resource selection in invasive wild pigs in the 

Southeastern United States Southeastern United States 

Lindsay M. Clontz 
University of Georgia, lindsay.clontz@uga.edu 

Kim M. Pepin 
USA National Wildlife Research Center, USDA-APHIS, kim.m.pepin@aphis.usda.gov 

Kurt C. Vercauteren 
APHIS, kurt.c.vercauteren@usda.gov 

James C. Beasley 
University of Georgia, beasley@srel.uga.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc 

 Part of the Natural Resources and Conservation Commons, Natural Resources Management and 

Policy Commons, Other Environmental Sciences Commons, Other Veterinary Medicine Commons, 

Population Biology Commons, Terrestrial and Aquatic Ecology Commons, Veterinary Infectious Diseases 

Commons, Veterinary Microbiology and Immunobiology Commons, Veterinary Preventive Medicine, 

Epidemiology, and Public Health Commons, and the Zoology Commons 

Clontz, Lindsay M.; Pepin, Kim M.; Vercauteren, Kurt C.; and Beasley, James C., "Behavioral state resource 
selection in invasive wild pigs in the Southeastern United States" (2021). USDA Wildlife Services - Staff 
Publications. 2432. 
https://digitalcommons.unl.edu/icwdm_usdanwrc/2432 

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant 
Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion 
in USDA Wildlife Services - Staff Publications by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/icwdm_usdanwrc
https://digitalcommons.unl.edu/usdaaphis
https://digitalcommons.unl.edu/usdaaphis
https://digitalcommons.unl.edu/icwdm_usdanwrc?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/168?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/771?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/19?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/20?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/770?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/770?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/763?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/769?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/769?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/81?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/icwdm_usdanwrc/2432?utm_source=digitalcommons.unl.edu%2Ficwdm_usdanwrc%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages


1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6924  | https://doi.org/10.1038/s41598-021-86363-3

www.nature.com/scientificreports

Behavioral state resource 
selection in invasive wild pigs 
in the Southeastern United States
Lindsay M. Clontz1*, Kim M. Pepin2, Kurt C. VerCauteren2 & James C. Beasley1 

Elucidating correlations between wild pig (Sus scrofa) behavior and landscape attributes can aid in the 
advancement of management strategies for controlling populations. Using GPS data from 49 wild pigs 
in the southeastern U.S., we used hidden Markov models to define movement path characteristics 
and assign behaviors (e.g., resting, foraging, travelling). We then explored the connection between 
these behaviors and resource selection for both sexes between two distinct seasons based on forage 
availability (i.e., low forage, high forage). Females demonstrated a crepuscular activity pattern in the 
high-forage season and a variable pattern in the low-forage season, while males exhibited nocturnal 
activity patterns across both seasons. Wild pigs selected for bottomland hardwoods and dense 
canopy cover in all behavioral states in both seasons. Males selected for diversity in vegetation types 
while foraging in the low-forage season compared to the high-forage season and demonstrated an 
increased use of linear anthropogenic features across seasons while traveling. Wild pigs can establish 
populations and home ranges in an array of landscapes, but our results demonstrate male and female 
pigs exhibit clear differences in movement behavior and there are key resources associated with 
common behaviors that can be targeted to improve the efficiency of management programs.

Understanding how animals move throughout landscapes and interact with heterogeneously distributed resources 
is critical for management of invasive species because this knowledge provides insight regarding how popula-
tions persist and expand, and is thus one of the central goals of ecological  research1,2. Habitat characteristics that 
meet specific needs for different behavioral states (e.g., resting vs. foraging) of an animal are usually spatially 
segregated; therefore, investigation of movement patterns and habitat selection at a fine spatial scale can be used 
to illustrate the asynchrony of the behavioral strategies employed over  time3. The observed movement patterns 
that make up an animal’s home range are determined by single movement steps that provide information on 
the interactions between the individual’s external environment and behavioral  state4,5. Therefore, this interac-
tion represents an animal’s response to the  environment6. For example, in heterogeneous landscapes an animal 
can respond to variable stimuli such as food availability, cover, and water that can change the trajectory of their 
movement  path6. These responses are ultimately the result of a continual decision-making trade-offs every ani-
mal has to make about the wide range of competing demands to survive and  reproduce3. Understanding these 
underlying fine-scale interactions with resources allows managers to predict movements of animals in different 
landscapes to optimize management  planning7,8.

Despite the relevance of these fine-scale behavioral questions to conservation and management goals, behav-
ior-specific resource selection is understudied in most species due to the lack of behavioral context associated 
with animal location  data9. Animal behaviors, and the driving factors behind these behaviors, are difficult to 
quantify in the absence of proper data resolution and analytical  tools10. However, continued advancements in 
global positioning system (GPS) tracking technologies and behavioral analysis techniques provide the ability to 
estimate behavioral states using movement path characteristics such as turning angles and step-lengths11–13. In 
particular, hidden Markov models (HMM) allow for the exploration of patterns in movement path characteristics 
created by underlying behavioral states and estimation of the probabilities of transitioning among the identifiable 
 states10,14,15. Thus, the application of HMMs to animal relocation data can uncover physiological or behavioral 
states of tracked individuals, which in turn can be used in a resource selection analysis to infer resource selection 
associated with identified behaviors.
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In the case of an adaptable generalist like invasive wild pigs (Sus scrofa), innovative management is critical 
given the rapid increase in size and distribution of populations throughout their introduced range. In addi-
tion, management is important to mitigate the extensive impacts of this species on anthropogenic and natural 
 systems16,17. The correlation between behavior and landscape patterns can inform how unexpected populations 
emerge in new places and continue to expand their range (e.g., travelling via movement corridors and identifying 
suitable resources to reside), as well as help identify areas that may act as hotspots for disease transmission (e.g., 
areas associated with close contact behaviors such as resting and foraging). These are major concerns for wildlife 
managers since wild pigs have the potential to alter ecosystems across broad spatial scales and have extreme 
economic  impacts6,16–18. Like most wild animals, the movement behavior of wild pigs is largely driven by spatio-
temporal variation in the distribution of resources throughout the  landscape19,20. Wild pigs move deliberately, 
choosing different resource patches depending on their current needs (rest, forage, mates, etc.) relative to what 
is available. Their movements also depend on whether or not the tradeoff for accessing these resources is ener-
getically  reasonable21–23. When targeting these resources for specific behaviors or needs, wild pig movements 
tend to be methodical, as they often consistently use the same trails and interact with the same areas on the 
 landscape24,25. These patterns tend to change at a broad scale with food availability and dietary shifts throughout 
the  year26; however, there is little to no information regarding how wild pigs change fine-scale resource selection 
and activity patterns associated with specific behaviors as a result of changing landscape characteristics or food 
availability. Identifying fine-scale behavioral resource selection and activity patterns of wild pigs can inform more 
effective and efficient selection and development of site-specific management techniques.

In this study, we estimated population-level resource selection patterns (Second Order)27 of wild pigs across 
two distinct periods (hereafter ‘seasons’) based on food availability (high- and low-forage availability) in the 
Southeast U.S. We then used HMM’s to distinguish and define movement patterns into associated behavioral 
states (e.g., resting, foraging, traveling) of wild pigs. Lastly, we evaluated the relationship between behavioral 
states and resource selection. We tested the hypothesis that wild pigs exhibit differential resource selection 
patterns depending on their behavioral state (Third Order)27 and availability of forage resources. We expected 
females and males to demonstrate different activity patterns throughout the day (i.e., diel patterns: crepuscular, 
nocturnal, diurnal) due to differences in reproductive responsibilities (e.g., mate seeking, gestation, farrow-
ing) (Table 1). For example, females may have a more variable activity pattern that coincides with farrowing 
since they reduce movements during the period when piglets have limited  mobility28 (Table 1). In addition, we 
expected associated resource selection with movement behaviors to shift throughout the year based on food 
availability. Overall, given their association with riparian  areas19,29,30, we expected behavioral states that aligned 
with restricted movements (i.e., resting and foraging) to be associated with forested areas proximal to water (i.e., 
bottomland hardwoods) and areas with greater canopy cover, especially in the warmer and mast (e.g., acorns) 
producing months (Table 1). In contrast, given the heterogeneous distribution of riparian areas throughout our 
study site we expected wild pigs would more extensively use upland pines and linear features such as roads while 
traveling (Table 1). During low-forage months, we expected wild pigs to be more opportunistic foragers leading 
to more variable patterns of resource selection while foraging (Table 1).

Methods
Study area. Our work was conducted on the Savannah River Site (SRS), a ~ 800  km2 site managed by the 
U.S. Department of Energy (DOE) on the Georgia-South Carolina border (Fig. 1). Although established for 
industrial activities, facilities and infrastructure comprise a small proportion of the landscape, with most of 
the landscape being managed by the United States Forest Service (USFS) for timber production and wildlife 
conservation. The SRS was comprised of approximately 50% upland pine including loblolly pine (Pinus taeda), 
longleaf pine (Pinus palustris), and slash pine (Pinus elliottii), 25% was bottomland hardwood forest, 10% shrub/
herbaceous-dominated areas, 8% upland hardwoods, and the rest was mixed forest, developed, and barren land. 
Wild pigs have been managed on the SRS since the early 1950s, when an active live-trap-and-removal pro-

Table 1.  Hypotheses for activity patterns and resource selection for three behavioral states (i.e., resting, 
foraging, traveling) for female and male wild pigs (Sus scrofa) on the Savannah River Site in South Carolina 
during two distinct seasons based on forage availability, low-forage availability (January–April) and high-
forage availability (May–December).

Sex Behavior

Season

Low-forage High-forage

Females

Resting Select for areas associated with water and cover Select for dense thermal cover/areas associated with water

Foraging Select for moist landscapes/variable vegetation associated with subterranean food 
sources Select for hardwood habitat associated with soft/hard mast

Traveling Select for open habitat/linear features Select for open habitat/linear features

Activity Pattern Variable (Farrowing peak) Typical Nocturnal/Crepuscular

Males

Resting Select for areas associated with water and cover Select for dense thermal cover/areas associated with water

Foraging Moist landscapes/variable vegetation associated with subterrean food sources Hardwood habitat associated with soft/hard mast

Traveling open habitat/linear features Open habitat/linear features

Activity pattern Typical nocturnal/crepuscular Typical nocturnal/crepuscular
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gram was initiated to mitigate damages caused by wild  pigs31. This program is managed by USFS and currently 
removes ~ 1300–1800 pigs  annually32. Despite this control, there are several thousand wild pigs inhabiting the 
SRS that are distributed throughout the  site33. Since the SRS was previously used to manufacture nuclear materi-
als and manage nuclear  waste34, there is limited public access across the site. The diversity of habitat types of the 
SRS combined with the limited public access, diversity of other wildlife species present, and high wild pig densi-
ties (i.e., > 4000–5000 individuals; ~ 5–6.25 individuals/km2)33 make the site an ideal location to study movement 
patterns and resource selection of this species.

Field methods. We captured wild pigs throughout the SRS from January 2014–December 2019 using 
baited-corral traps equipped with a combination of remote-operated and trip-wire mechanisms. We monitored 
traps using remote cameras (Reconyx PC900, Holmen, WI, USA) to identify dominant sows to receive GPS col-
lars, as well as all breeding-aged males. We used a dart rifle (X-Caliber, Pneu-Dart Inc., Pennsylvania, USA) to 
anesthetize captured pigs using a combination of butorphanol [0.077 mg/kg], azaperone [0.026 mg/kg], medeto-
midine [0.031 mg/kg] (BAM; 0.031 ml/kg; Wildlife Pharmaceuticals Inc., Colorado, USA; Ellis et al. 2019) and 
Ketamine (2.2 mg/kg; Wildlife Pharmaceuticals Inc., Colorado, USA) or Xylazine (2.2 mg/kg; Wildlife Pharma-
ceuticals Inc., Colorado, USA) and Telazol (4.4 mg/kg; MWI Veterinary Supply, Idaho, USA). While under anes-
thesia, we recorded sex and assessed age through examination of tooth  eruption36. We fit the largest subadult or 
adult female in each sounder (i.e., social unit) and breeding-aged males (i.e., > 1 year) with an iridium GPS collar 
(Telonics Gen4 GPS/Iridium System; Sensor weight = 260 g; Total Collar Weight =  ~ 500–880 g, Telonics, Inc., 
Mesa, Arizona or VECTRONIC GPS PLUS Globalstar-3; Total Collar Weight =  ~ 830 g, VECTRONIC Aero-
space, Coralville, Iowa). Anesthetized wild pigs were allowed to recover at the capture site after being reversed 
with a combination of Atipamezole (25 mg/ml; Wildlife Pharmaceuticals Inc.) and Naltrexone (50 mg/ml; Wild-
life Pharmaceuticals Inc., Colorado, USA). Collars were programmed to record GPS locations at 30-min or 
one-hour intervals and equipped with a mortality sensor that became activated after 12 h with no movement by 
the animal. To avoid pseudo-replication, we only tracked one individual from each social group and all solitary 
boars. All experimental protocols were approved by and conducted in compliance with the University of Geor-
gia’s Animal Care and Use Committee (Protocols: A2012 08-004, A2015 05-004, and A2018 08-013), and where 
applicable, with Animal Research: Reporting In Vivo Experiments (ARRIVE) guidelines.

Figure 1.  Overall study area with distinct vegetative communities and the 1.2  km2 polygon representing the 
specified area used to develop available locations for second order resource selection functions of male and 
female wild pigs (Sus scrofa) during two distinct seasons (i.e., low-forage and high forage) between Janurary 
2014–December 2019 in South Carolina, USA.
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To estimate location error of GPS transmitters, we left a subset of three collars out for 10 days in fixed loca-
tions, 5 days in open vegetation and 5 days in forest vegetation. We used these data to calculate the average error 
among fixes for each habitat type, and to inform initial parameters for behavioral states.

Identification of movement states. We used HMMs to model the movement characteristics and asso-
ciated behavioral states of wild pigs for two distinct seasons based on food availability. We considered January 
through April to represent a low-food availability time period based on dietary preferences of wild  pigs19, which 
also generally represents the peak trapping season in the Southeastern U.S. May through December was con-
sidered a high-food availability time period when ample amounts of fruits and plants are available throughout 
the Spring and Summer months, followed by acorns and other mast in Fall and early Winter. Initially, we used 
all data collected at 30-min intervals and compared HMM outputs for 30-min locations to outputs of models 
for the same individuals when subset to 1-h locations, and there were no substantial differences. Therefore, we 
subset data for wild pigs with a 30-min GPS fix rate to 1-h intervals to maintain an equivalent temporal resolu-
tion within our dataset. We also removed any duplicate locations (e.g., same date-time stamp) and locations 
associated with non-pig movements (e.g., locations after mortality). From collars we were able to retrieve and 
download, less than 0.01% of locations were 2-Dimensional fixes (i.e., locations collected with three satellites). 
Therefore, we included all locations regardless of dimensional fix within our dataset to be consistent across all 
individuals. We also removed the first 48 h of GPS fixes to account for any potential bias associated with residual 
anesthetic effects.

We used step-lengths and turning angles as our observational input data in HMMs to differentiate among 
behaviors. We compared HMM results from 25 different sets of randomly chosen starting values for step-
lengths and turning angle distribution parameters for each behavioral state to ensure we were capturing global 
maximums of the likelihood  function12 (Supplementary Table S1). In addition, using an array of starting values 
from parameter distributions ensures that models were numerically  stable12. We tested HMMs with two and 
three movement states based on model  parsimony13, but also took into consideration the biological relevance 
of identified states because model selection criteria sometimes tend to favor models with a greater number of 
states than makes biological  sense37.

Sex has been found to be an important predictor of wild pig home range size, with males typically having 
a larger home range and greater movement rates than  females38. Also, wild pigs have demonstrated seasonal 
differences in home range size and habitat selection based on resource  availability19,23,39. Therefore, we expected 
sex-specific and seasonal-specific differences in the movement parameters (e.g., step-lengths and turning angles) 
associated with each behavioral state. We also expected differences in transition probabilities among states 
throughout the diel period, which ultimately adds to the insight of the model when using it to decode states. We 
ran two and three movement state HMMs separately for males and females in both the low- and high-forage 
seasons and tested for an additive effect of time of day on the probability of transitioning among states. Therefore, 
we ran a total of eight HMMs (Table 2). We selected the most parsimonious model for both seasons for females 
and males separately using Akaike Information Criterion (AIC)40. Next, we decoded the most likely sequence of 
states to have produced each location in the movement path of each wild pig given the most parsimonious model 
using the Viterbi  algorithm15. All computations were done using the moveHMM  package12 in the statistical com-
puting software R 3.6.141. We partitioned GPS locations into appropriate behavioral states and quantified resource 
selection for both sexes in each season and behavioral state at the third order (i.e., home range) spatial  scale27.

Resource selection analyses. Habitat covariates. We generated individual raster layers for five types 
of land cover from the 2016 National Land Cover Database (NLCD) raster layer (30 × 30 m-resolution)42 for 
resource selection analyses: (1) upland pines, (2) bottomland hardwoods, (3) shrub and herbaceous, (4) upland 
hardwoods, and (5) developed (i.e., buildings/structures). We also characterized the distribution of streams and 
roads within our study area from existing SRS geospatial layers. We classified primary roads as those that were 
paved and routinely used for travel by SRS employees, whereas secondary roads were unpaved gravel and/or 
logging roads. We used the Euclidean distance tool in ArcGIS 10.7.1 (Environmental System Research Institute, 
Inc., Redlands, CA, USA) to calculate the distance to each of the covariates for used and available locations to 
provide a less ambiguous approach compared to a classification or categorical-approach43 (i.e., A location would 
receive a “0” for the vegetation type it is observed in). Lastly, we used the NLCD 2016 USFS tree canopy cover 
raster (30 × 30 m-resolution) to estimate the percent canopy cover.

Second order. We selected a 481  km2 area within the SRS to represent the study area for this analysis. We gener-
ated a minimum convex polygon (MCP) around all GPS locations and buffered it by 1.2 km to account for any 
long distance movements (Fig. 1)17,35. We quantified habitat availability for the population at the second order 
by systematically sampling the study area (every 3rd pixel, i.e., 90 m; available locations) to ensure the entire 
area was represented yet maintain a dataset that was computationally manageable, compared to random sam-
pling which may involve uncertainty and not effectively represent the overall  landscape44. We compared these 
locations to locations classified as ‘used’ generated by systematically sampling (every 3rd pixel, i.e., 90 m; used 
locations) within a 95% fixed kernel home range for each individual. Uniformly sampling locations across home 
ranges allows a comprehensive representation of the resources within a home range to compare to the available 
locations within the study area. We used the adehabitat package with the reference bandwidth (href) smoothing 
 parameter45 in the statistical computing software R 3.6.141 to generate and sample all home ranges. We created 
individual home ranges for both seasons to compare seasonal shifts in home range distribution. We evaluated 
used locations specific to each individual home range against the same set of available locations throughout the 
study area for all individuals. We calculated Pearson’s correlation coefficients to test for collinearity between 
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each of our covariates and excluded covariates with a Pearson’s |r|> 0.63. Covariates that were highly correlated 
included distance to primary roads and distance to buildings/structures (r = 0.75); therefore, we retained the 
covariate of distance to primary roads only for modeling purposes given this covariate was more represented 
in the areas wild pigs were captured. We then fit a global (i.e., including all covariates) generalized linear model 
(GLM) with binomial response distribution (logistic regression) and logit link to the used-available data indi-
vidually for both sexes in both the low-forage and high-forage  seasons46,47. This resulted in four comprehensive 
models representative of second order resource selection for females and males in the low-forage season and 
high-forage seasons (Table 2). We standardized all variables prior to model development [(xi − x)/s] (Supple-
mentary Table S2). We then back-transformed, exponentiated, and raised all distance variable coefficients to 
the one-hundredth power to represent 100 m increments and canopy cover to the tenth power to represent 10 
percent increments for interpretation using predictive odds ratios. We did not use a model selection technique 
to rank candidate models because a global model included the full set of covariates that were of interest for 
hypothesis testing and, therefore, allowed a direct comparison between coefficient estimates across sexes and 
 seasons48. All GLM models were computed using the glm function in R version 3.6.141,49. We assessed how well 
the second order model explained the data using area under the receiver-operating characteristic curve (AUC 
50–52), which we computed using the pROC package in R version 3.6.141,53. A value of 0.5 indicates the model 
provides predictions that are no better than random predictions, but values greater than 0.7 indicate a better 
model fit with more accurate  predictions51.

Third order. To assess fine-scale resource selection of wild pigs, we used a resource selection function (RSF) 
 framework47 to compare resource selection of wild pigs across the three behavioral states associated with the 
movement path characteristics identified from the HMM (i.e., resting, foraging, and traveling). We quantified 
habitat availability for individuals at the third order by comparing GPS locations (i.e., used locations) to sys-
tematically sampled locations (every 3rd pixel, i.e., 90 m; available locations) within home ranges across each of 
the aforementioned covariates (see above). The sampling framework provided inference on the similarities and 

Table 2.  A demonstration of all models ran for female and male wild pigs (Sus scrofa) on the Savannah 
River Site in South Carolina during two distinct seasons based on forage availability, low-forage availability 
(January–April) and high-forage availability (May–December) separated by type including: (a) hidden Markov 
models, (b) second order resource selection functions, and (c) third order resource selection functions. a All 
covariates includes distance to upland pines, distance to upland hardwoods, distance to streams, distance to 
shrub/herb, distance to secondary road, distance to primary road, distance to bottomland hardwoods, and 
percent canopy cover.

Model Sex Season Covariates

(a)

2-State Female Low-forage Time of day (hour)

2-State Male Low-forage Time of day (hour)

3-State Female Low-forage Time of day (hour)

3-State Male Low-forage Time of day (hour)

2-State Female High-forage Time of day (hour)

2-State Male High-forage Time of day (hour)

3-State Female High-forage Time of day (hour)

3-State Male High-forage Time of day (hour)

(b)

2nd Order RSF Female Low-forage Alla

2nd Order RSF Male Low-forage Alla

2nd Order RSF Female High-forage Alla

2nd Order RSF Male High-forage Alla

(c)

Resting Female Low-forage Alla

Foraging Female Low-forage Alla

Traveling Female Low-forage Alla

Resting Male Low-forage Alla

Foraging Male Low-forage Alla

Traveling Male Low-forage Alla

Resting Female High-forage Alla

Foraging Female High-forage Alla

Traveling Female High-forage Alla

Resting Male High-forage Alla

Foraging Male High-forage Alla

Traveling Male High-forage Alla
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differences of wild pig resource selection in three prominent behavioral states that can be extracted to the popu-
lation level. We used a generalized linear mixed model (GLMM) with binomial response distribution (i.e., used 
vs. available, logistic regression)46, logit link, and a random intercept to account for variation among individuals 
54. We standardized all variables prior to model development [(xi − x)/s]. We then back-transformed, exponen-
tiated, and raised all distance variable coefficients to the one-hundredth power to represent 100 m increments 
and canopy cover to the tenth power to represent 10 percent increments for interpretation using predictive odds 
ratios. All GLMM models were computed using the lme4 package in R version 3.6.141,49.

We calculated Pearson’s correlation coefficients to test for collinearity between each of our  covariates3. We 
created a global model including all covariates for each sex in each behavioral state in each season (i.e., 2 sexes × 3 
behavioral states × 2 seasons = 12 RSFs) (Table 2). As with our second-order analyses, we did not use a model 
selection technique, and used AUC to assess how well the model explained the  data50–52.

Disclaimer. This manuscript was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor any of their employ-
ees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, process, or service by trade name, trade-
mark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring 
by the United States Government or any agency thereof. The views and opinions of the authors expressed herein 
do not necessarily state or reflect those of the United States Government or any agency thereof.

Results

Identification of movement states. We used a sample of 49 wild pigs tracked between January 2014 and 
December 2019, resulting in 117,150 validated and cleaned GPS locations (Table 3). In the low-forage season 
(January–April), we tracked 37 wild pigs (21 females, 16 males), resulting in 47,983 GPS locations, and in the 
high-forage season (May–December) we tracked 41 wild pigs (20 females, 21 males), resulting in 69,177 GPS 
locations (Table 3). From these data, we estimated movement path characteristics (e.g., behavioral states) for 
29,433 and 42,277 locations for females during the low- and high-forage seasons, respectively. For males, we had 
18,550 locations during the low-forage season and 26,900 during the high-forage season to inform our analyses 
(Table 3). We determined average collar error in forested vegetation to be 22.3 m and in open vegetation to be 
11.9 m.

We concluded a three-state HMM with a Gamma distribution for step-length, a wrapped Cauchy distribution 
for turning angle, and an added covariate of hour in the diel period fit the data of both sexes in both seasons 
best and provided the most reasonable biological interpretation (Supplementary Table S3). From the three-state 
HMMs, we identified three general types of movements associated with common behavioral states: (1) a state 
with short step-lengths and high degrees of turning concentrated around π radians; (2) a state with short to 
intermediate step-lengths and high degrees of turning concentrated around π radians; and (3) a state with long 
step-lengths and more straightforward movements with turning concentrated around 0 radians, which likely 
represents resting, foraging, and traveling behaviors, respectively (Table 4; Figs. 2, 3).

Male and female wild pigs exhibited clear differences in movement behavior. Specifically, average step-lengths 
differed between sexes, and males and females exhibited differences in partitioning of behavioral states across the 
diel period (Fig. 4). Males typically traveled farther than females in hour segments (Table 3) and demonstrated 
evident nocturnal activity by traveling mainly throughout the nighttime hours and resting during most of the 
day (Fig. 4). Males also maintained a consistent movement pattern across seasons. In contrast, females exhibited 
their longest step-lengths in the evening hours around dusk in the low-forage season and had a variable behav-
ioral pattern throughout the remainder of the day. However, in high-forage months females had a crepuscular 
activity pattern with peak traveling and foraging movements around dawn and dusk (Fig. 4). Step-lengths for 
both sexes were longer during the resting and foraging behaviors in the high-forage season compared to the 
low-forage season (Table 4).

Resource selection. Second order. Female wild pigs selected all vegetation types (i.e., upland pines, up-
land hardwoods, bottomland hardwoods, shrub/herbaceous) across our study area in their home-range place-
ment at the second order in both the low and high-forage seasons (Fig. 5, Supplementary Table S4), likely reflect-

Table 3.  Summary of global positioning system (GPS) information, average step-lengths (± SE of the mean 
parameter) and turning angles of female and male wild pigs (Sus scrofa) on the Savannah River Site in South 
Carolina based on GPS locations from January 2014–December 2019.

Sex Months (season) Number of pigs Number of locations
Mean number ± SE of 
locations

Range of locations per 
individual

Avg. step-length ± SE 
(m)

Avg. turning angle 
(radians)

Females
January–April 21 29,433 1401.57 ± 137.97 240–2987 124.32 ± 1.23 1.72 ± 0.006

May–December 20 42,277 2113.85 ± 360.46 432–5843 144.97 ± 1.06 1.68 ± 0.005

Males
January–April 16 18,550 1159.38 ± 174.59 328–2232 186.01 ± 2.36 1.67 ± 0.007

May–December 21 26,900 1280.95 ± 276.67 239–4263 229.18 ± 2.31 1.62 ± 0.006
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ing the ubiquitous establishment of wild pigs across the Savannah River  Site33. Females also selected locations 
closer to streams and avoided areas near roads. In contrast, males in the low-forage season selected home ranges 
in or near upland pines, shrub/herbaceous vegetation, and bottomland hardwoods (Fig. 5). In addition, males 
selected areas close to streams and primary roads. During the high-forage season, males selected resources simi-
larly to the low-forage season, with the main difference of primary roads no longer being an important driver of 
home range placement (Fig. 5). AUC values in the low-forage season models for females and males were 0.62, 
0.66 and in the high-forage season as 0.64, 0.59, respectively.

Third order. During the resting state, female wild pigs in the low-forage season strongly selected areas in or 
close to bottomland hardwoods and shrub/herbaceous habitats (Fig. 6, Supplementary Table S5). For example, 
there was a 23% decrease in use for every 100 m farther away from bottomland hardwoods, and a there was a 
10% decrease in use for every 100 m farther away from shrub and herbaceous habitats. During the high-forage 
season, female wild pigs selected resting areas similarly to the low-forage season with the addition of a strong 
selection for upland hardwoods (Supplementary Table S5). Also, the resting model for females in both seasons 
indicated they avoided areas near secondary roads and streams (Fig. 6). Similarly, males selected resting areas 
in or close to bottomland hardwoods, upland hardwoods, and shrub/herbaceous communities in both seasons. 
However, males differed between seasons in selecting to rest near streams during the low-forage season but not 
during the high-forage season. For example, males demonstrated a 5.4% decrease in use for every 100 m farther 
away from a stream during the low-forage season (Fig. 6).

Throughout the foraging state, females differed in relative probability of selection for specific vegetation types 
and landscape characteristics between the low- and high-forage seasons (Fig. 6). For example, females selected 
areas near primary roads and bottomland hardwoods during the low-forage season, yet during the high-forage 
season they selected areas near upland hardwoods, upland pines, bottomland hardwoods, and areas near primary 

Table 4.  Average step-lengths (± SE) and turning angles for each designated behavioral state by sex in the 
3-state HMMs with the additive effect of hour of day of wild pigs (Sus scrofa) on the Savannah River Site in 
South Carolina based on GPS locations from two distinct seasons based on forage availability, low-forage 
availability (January–April) and high-forage availability (May–December).

January–April May–December

Resting Foraging Traveling Resting Foraging Traveling

Mean parameters—females

Average step-lengths ± SE (m) 11.4 ± 7.38 37.70 ± 23.24 244.30 ± 220.97 19.25 ± 13.08 67.29 ± 48.32 276.62 ± 227.91

Average turn angle (radians) 3.14 3.11 0.001 − 3.11 3.14 0.07

Mean parameters—males

Average step-lengths ± SE (m) 9.68 ± 6.31 33.00 ± 23.11 398.43 ± 385.81 14.27 ± 9.56 52.46 ± 34.67 420.70 ± 406.12

Average turn angle (radians) − 3.12 − 3.12 − 0.04 3.11 3.13 0.02

Figure 2.  Step-length parameter distributions from three-state hidden Markov models (HMMs) for wild pigs 
(Sus scrofa) in the Southeast USA by sex and season: (a) females in low-forage months (January–April); (b) 
males in low-forage months; (c) females in high-forage months (May–December); (d) males in high-forage 
months.
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roads. Males demonstrated more diversity in selection while foraging in the low-forage season including shrub/
herbaceous, bottomland hardwoods, and both secondary and primary roads; however, during the high-forage 
season, males concentrated foraging in areas near or in bottomland hardwood vegetation (Fig. 6). During the 
high-forage season, males exhibited a 23% decrease in use for every 100 m farther from bottomland hardwoods. 
In addition, the selection for areas with a high percentage of canopy cover was consistent between sexes and 
seasons within the foraging behavioral state (Fig. 6).

When traveling, resource selection was similar between seasons for females and males. Females selected pri-
mary roads and bottomland hardwoods when traveling in both seasons, with the addition of upland hardwoods 
in the high-forage season (Fig. 6). Males selected shrub/herbaceous vegetation, primary and secondary roads, 

Figure 3.  Turn angle parameter distributions from three-state hidden Markov models (HMMs) for wild pigs 
(Sus scrofa) in the Southeast USA by sex and season: (a) females in low-forage months (January–April); (b) 
males in low-forage months; (c) females in high-forage months (May–December); (d) males in high-forage 
months.

Figure 4.  Proportion of steps per hour for each behavioral state of wild pigs (Sus scrofa) on the Savannah River 
Site in South Carolina by sex and season: (a) females in low-forage months (January–April); (b) males in low-
forage months; (c) females in high-forage months (May–December); (d) males in high-forage months. The dark 
gray bars represent average nighttime hours while the light gray bar represents the average daytime hours.
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and bottomland hardwoods while traveling in both seasons (Fig. 6). For example, in the high-forage season, 
males displayed a 16% decrease in use for every 100 m farther from secondary roads while traveling (Fig. 6).

The AUC values (overall fit for resting, foraging, and traveling behavioral states in low- and high-forage 
seasons) were 0.81, 0.79, 0.76 and 0.73, 0.75, 0.73 for females and 0.77, 0.80, 0.70 and 0.77, 0.80, 0.74 for males, 
respectively.

Discussion
Wild pigs are a major agricultural and environmental pest in their invasive range, and managing impacts is 
often expensive and difficult to  implement17. Therefore, acquiring and analyzing movement data at a fine scale 
provides important insight on when and where damage or disease transmission is likely to occur. This informa-
tion provides the ability to improve the efficiency and effectiveness of current management strategies. Therefore, 
using an extensive dataset of wild pig GPS data across a heterogeneous landscape in the Southeastern U.S., here 
we demonstrate the differential resource selection tactics employed by wild pigs at both broad (i.e., home range 
placement) and fine (i.e., within-home-range, behavior-specific) spatial scales for males and females across two 
distinct seasons. Movement path characteristics of wild pigs in our study were influenced by a combination 
of local and landscape-level habitat attributes such as bottomland and upland hardwoods, streams, secondary 
roads, and shrub/herbaceous vegetation communities. While males and females tended to select areas to establish 
home ranges (population scale) similarly, we found notable differences in the fine-scale use of habitats within 
home ranges between sexes and seasons. However, both males and females selected bottomland hardwood 
habitats and areas with extensive canopy cover extensively. Further, through the use of step-lengths and turn 
angles to define behavioral-based resource selection patterns, we found that females and males differed in daily 
movement patterns. In addition, we found that wild pigs exhibited differential selection of landscape attributes 
among behavioral states.

Based on the results of our HMM analyses, we distinguished three biologically relevant behavioral states 
generally based on patterns in the movement characteristics of wild pigs (i.e., resting, foraging, traveling). Pre-
vious studies have identified similar patterns for other  species11,37,55; however, behavioral states associated with 
movement characteristics may be assigned differently depending on prior knowledge of different animal species 
and fix rate at which GPS data were collected. Specifically, the interpretation of a behavioral state associated with 
short to intermediate step-lengths (what we defined as foraging) may differ among species. For example, this 
category of behavior was defined as “locally active at the kill site” for  wolves56, “moderately active” for Florida 
 panthers57, and “encamped” for American black  bears55. However, for caribou, this intermediate behavioral state 
was assigned as “foraging” and was associated with a foraging behavior for black bears as  well11,55. Although wild 
pigs exhibit several behaviors that correspond to short and intermediate step-lengths and tight turn angles (e.g., 
resting, wallowing, rubbing, tusking, foraging, etc.), for management purposes of wild pigs classifying behaviors 
into resting, foraging, and traveling encapsulated the most common and consistent motivations of space use (e.g., 

Figure 5.  Predictive odds with 95% confidence intervals for second order selection (Johnson 1980) of female 
and male wild pigs (Sus scrofa) on the Savannah River Site in South Carolina during two distinct seasons 
based on forage availability, (a) low-forage availability (January–April) and (b) high-forage availability (May–
December), for every 100 m increase for distance variables and every 10% increase for canopy cover. In cases 
where the confidence interval crosses 1, the variable is considered not significant.
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forage, cover, thermoregulation)19 as demonstrated by Blasetti et al.58 using captive adult wild pigs that spent 
approximately 58.9% of their time resting, 14% of their time foraging, and 27.1% of their time traveling. Also, 
wild pigs have demonstrated variable activity patterns that can shift throughout the  year29,59,60. Classifying these 
dominant behaviors and understanding that other similar movement-type behaviors are encompassed as well 
allows the development of knowledge about where to target certain management strategies or further research.

Both females and males decreased movements or traveling behavior in the mid-day, most likely due to the 
association with high temperatures in the southeast during the high-forage  season19,38, and males maintained 
a consistent nocturnal activity pattern between seasons. However, females exhibited seasonal differences in 
movement patterns that were likely related to reproductive stages of the reproductive cycle throughout the year, 
as the timing of farrowing is related to the seasonal availability of  forage28,61. In the low-forage season, which 
corresponded with peak farrowing in our study  area28 (Chinn, unpublished data), females demonstrated a sharp 
increase in traveling at dusk, an increase in foraging throughout daytime hours, a slight increase in resting mid-
day, and a distinct increase in resting throughout nighttime hours. However, during the high-forage season 
when farrowing rates are lower and juvenile pigs are more mobile, females demonstrated a more crepuscular 
activity pattern compared to the low-forage season. Pre-parturition and parturition-associated behaviors in some 
wildlife species, such as wild pigs, are associated with reduced movements and home range  sizes26,38. Irregular 
and/or reduced movements can continue after parturition causing an unusual activity pattern in  females61, as 
we found throughout the low-forage season. While reproduction can make it more difficult to assign behaviors 
and demonstrate consistent patterns in movements for females, this demonstration of a change in activity pat-
terns across seasons is consistent with previous literature and reveals the rigor of the methods used in this study. 
Males and females have different reproductive tendencies and responsibilities as a polygamous  species62 in which 
males breed multiple females and provide no parental care. Therefore, behavioral differences between sexes likely 
reflect different reproductive  obligations61 and should be a focus for further research, as well as a consideration 
when designing management plans. Also, the overlap in model parameters between the resting and foraging 
states for males throughout both seasons and females in the low-forage season indicates that these two states 
may not be distinct throughout parts of the year. Additional information on animal movement through the use 
of accelerometers or direct observation, for example, would help to differentiate states with similar distributions 
of step-lengths and turning  angles13,63.

Although wild pigs are an invasive habitat generalist, our approach of evaluating population-scale resource 
selection in contrast to fine-scale behavioral resource selection revealed wild pigs exhibit differential selection 

Figure 6.  Predictive odds with 95% confidence intervals of third-order selection of male and female wild 
pigs (Sus scrofa) on the Savannah River Site in South Carolina during two distinct seasons based on forage 
availability [i.e., low-forage season (January–April) and the high-forage season (May–December)]. It 
demonstrates selection or avoidance of vegetation types, streams, and characteristics of development (e.g., 
roads) for every 100 m increase and canopy cover for every 10% increase by state where states represent resting, 
foraging, and traveling behaviors, respectively: (a) Females in low-forage months (January–April); (b) males in 
low-forage months; (c) females in high-forage months (May–December); (d) males in high-forage months. In 
cases where the confidence interval crosses 1, the variable is considered not significant.
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of habitats relative to spatial scale. In areas where wild pigs are abundant, they often occur throughout the land-
scape, which was reflected in our second order (i.e., home range placement) analysis as wild pigs established 
home ranges in areas proximal to streams containing broad availability of most vegetation types present on 
the landscape. However, although wild pigs are well documented to select for areas near  streams19,32,64, here we 
demonstrate this selection is scale dependent, as neither males or females exhibited focused activity within their 
home ranges around streams across behavioral states. This difference in selection between spatial scales should 
be considered when targeting an invasive species for management purposes. The second order models for males 
and females did not demonstrate much strength in the AUC evaluation (< 0.7); therefore, indicating these models 
do not fit the data exceptionally well. However, we believe this is due to extensive variation in habitat selection 
among individuals stemming from the fact that wild pigs are a habitat generalist at the population scale.

Wild pigs can demonstrate multiple behaviors in similar vegetation  types65, but there are certain habitat 
characteristics and vegetation types that facilitate specific behaviors (e.g., relocation using roads)6. Although 
wild pigs are ecological generalists, they exhibit spatio-temporal differences in resource selection that reflect 
underlying biological needs (e.g., thermoregulation)19,39. Dense cover and areas proximal to water (i.e., bottom-
land hardwoods) are two key vegetation characteristics that provide resources that pigs  require19, and we found 
that females and males selected for bottomland hardwoods and areas with high percentages of canopy cover in 
every behavioral state during the low-forage season. In addition, wild pigs forage on subterranean foods such 
as roots and tubers when other sources are  scarce19,66,67; therefore, selecting bottomland hardwoods and areas 
with extensive canopy cover typically coincide with these forage types and provide access to water and cover.

While foraging, males selected for a variety of vegetation types and structures throughout the low-forage sea-
son. For example, at the home-range scale males demonstrated a change in selection for primary roads between 
seasons. In the low-forage season, males selected for areas closer to primary roads in all three behavioral states. 
Also, males selected for secondary roads in the foraging and traveling states at the home-range scale. The selection 
for areas near or along both primary and secondary roads while foraging is likely due to the decrease in resources 
in adjacent natural areas and the consistent availability of grasses along open roadsides during the low-forage 
 season67,68. These results coincide with the increase in use of urbanized and anthropogenic areas when natural 
forage is  scarce69,70. However, the result of wild pigs utilizing roads could shift in other areas that are associated 
with hunting or shooting pigs on roads. Wild pigs on the SRS are rarely persecuted (i.e., dog hunting, etc.) on 
roads; therefore, we expect roads are not associated with negative interactions with humans. Lastly, during the 
resting state females demonstrated selection for shrub and herbaceous vegetation, which was characterized by 
a mixture of areas in early successional stages and grasslands that both typically occurred together near linear 
features such as secondary roads, power lines, and streams, while males selected for this vegetation type in every 
behavioral state. Areas dominated by this vegetation type most likely provided forage, cover, and easy access to 
linear features when transitioning to traveling in the low-forage season. Therefore, interactions between wild 
pig behavior and the attributes of vegetation demonstrated in shrub and herbaceous communities in this study 
allows for the design of a more informed management plan.

During the high-forage season, at the home-range scale males selected for areas closer to secondary roads 
while traveling but avoided these areas when foraging and resting. Selecting for anthropogenic and natural 
linear features can help increase an animal’s pace (step-length) and directional movement, which can assist in 
traversing the landscape quickly when dispersing, searching for a mate, or transitioning between resting and 
foraging  behaviors19,71,72. Also, males selected primarily for bottomland hardwoods while foraging in the high-
forage season, and females selected for upland and bottomland hardwoods during all behavioral states, likely 
reflecting the availability of food, water, and cover in these  habitats19. Selection for bottomland hardwoods is 
most likely associated with mast producing hardwoods (e.g., oak acorns) and productive plants in the understory 
throughout summer months, as well as dense cover and proximity to water. Lastly, throughout the high-forage 
season, males and females avoided streams at the home-range scale, which is likely due to the extensive stream 
system throughout the SRS and the ability to access dense cover away from streams during times of extreme 
temperatures. Other studies have demonstrated the insignificance of streams at the home-range scale throughout 
certain times of the year when water is generally present throughout the  landscape72. Unlike the second order 
models, the AUC values of all third order resource selection models were greater than 0.7 indicating good model 
fits with meaningful predictions.

Wild pigs exhibit substantive behavioral plasticity making them the perfect invasive  species17. They can adjust 
their life history strategies such as daily activity patterns to decrease interaction with humans in populated areas. 
In addition, wild pigs can adjust their diet throughout the year and in a variety of climatic conditions to benefit 
their long-term survival depending on local environmental  conditions19,69,73,74. Although our study was limited to 
the SRS in the Southeastern U.S., wild pigs demonstrate consistent selection patterns for vegetation types associ-
ated with certain resources (i.e., water, mast, etc.)19,26,75–77. Therefore, our findings are likely applicable in similar 
areas throughout this species’ native and introduced range. Further research, though, should focus on wild pig 
behavioral state resource selection in other geographic regions to elucidate spatio-temporal differences in wild 
pig behavior across areas of differing climate and resource base. In addition, due to rapid growth in body weights 
and associated limitations of collecting long-term GPS data on free-ranging wild pigs, not all individuals within 
our dataset were represented across both seasons. We recognize comparing different individuals across seasons 
could influence the overall results but given our robust sample size, any differences due to individual variation 
likely would be minor and not alter the ultimate management implications of this work.

While our general findings are consistent with previous literature on wild pig habitat selection, through the 
investigation of fine-scale movement patterns coupled with behavioral-based resource selection we were able 
to demonstrate pigs exhibit clear differences in temporal patterns of activity and selection of habitats among 
behavioral states. Thus, delineating GPS observational data into unique behavioral states provides unique insights 
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into the relative importance of environmental attributes critical to the invasion of an ecosystem or management 
of a species that may otherwise be obscured through more coarse-scale resource selection  approaches3.

Accounting for behavior when studying habitat selection can provide more useful and accurate information 
for managers dealing with an invasive species. Specifically, for wild pigs, understanding the driving forces of 
resource selection at a fine scale can inform when, where, and how to deploy traps, toxicants, attractants, etc. to 
ensure visitations occur quickly and  consistently19,78, as well as areas to focus mitigation efforts from wild pig 
damage. In addition, understanding how wild pigs use the landscape can provide an advantage for managers 
and/or disease biologists when trying to predict areas of high risk for disease transmission. Our results indicated 
vegetation class and other landscape features all determined habitat use by wild pigs when resting, foraging, 
and traveling. Therefore, targeting specific vegetation types, features, and times throughout the diel period 
could provide an advantage for managers when strategically employing specific management techniques in areas 
where wild pigs would be most vulnerable. For example, to increase efficiency and effectiveness of management 
techniques such as trapping and toxicant deployment, targeting wild pigs in habitat types they select for during 
the foraging and/or traveling behavioral states could greatly increase the number of pigs removed during these 
management  processes78.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
request.
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