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Abstract Invasive species can impact ecosystem 
health by introducing parasites during their establish-
ment in new areas. However, the dynamics of para-
site loads between invasive and native species remain 
poorly understood. In the 1940s, Abert’s squirrels 
(Sciurus aberti) were introduced to the Pinaleño 
Mountains in southeastern Arizona where they now 
co-occur with endemic endangered Mt. Graham red 
squirrels (Tamiasciurus fremonti grahamensis). The 
study aimed to identify and quantify parasites in both 
Abert’s and Mt. Graham red squirrels, with a focus 

on investigating possible parasite spillover between 
these two species and examining how host-related 
factors affect parasite presence. PCR amplifica-
tion and morphological analyses revealed two endo-
parasite species: Citellinema sp. and Trypanoxyuris 
(Rodentoxyuris) sp. In Abert’s squirrels, ectoparasites 
such as Opisodasys robustus, Anomiopsyllus sp., and 
Neohaematoinnus sciurinus were encountered, while 
Mt. Graham red squirrels carried Orchopeas caeden 
and a mite from the Glycyphagidae family. Our find-
ings suggest new host and geographic record for the 
Glycphagidae mite in Mt. Graham red squirrels of 
Arizona and indicate possible spillover of Trypanoxy-
uris (Rodentoxyuris) sp. from Abert’s squirrels to Mt. 
Graham red squirrels. Additionally, sex influenced 
presence of ectoparasites in Abert’s squirrels. We can 
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offer a better understanding of factors that place spe-
cies at risk of extinction with enhanced insights into 
probable parasite transmission routes and the role that 
parasites play in biological invasion.

Keywords Ectoparasites · Tamiasciurus fremonti 
grahamensis · Spillover · Helminths · Sciurus aberti · 
Presence

Introduction

Invasive species can influence ecosystem health via 
introduction of vectored parasites as these introduced 
species establish residence in a new geographic area 
(Prenter et al. 2004; Dunn et al. 2012). Parasites may 
play a key role in either enhancing or limiting the 
impacts of biological invasions, affecting native spe-
cies positively or negatively (Dunn et al. 2012; Lym-
bery et  al. 2014). Parasite-mediated competition can 
be explained by three principal processes. Spillback 
occurs when invasive species acquire native parasites 
in the area of introduction and amplify local para-
site circulation, resulting in higher infection levels in 
native species (Goedknegt et  al. 2017; Romeo et  al. 
2019). Spillover occurs via transmission of a parasite 
endemic to one host species to a new host (Daszak 
et al. 2000; Dunn et al. 2012; Borremans et al. 2019). 
In this scenario, the impact of parasites carried 
by invasive species can be severe if native species 
are naïve to the introduced parasites (Prenter et  al. 
2004; Romeo et al. 2015). Finally, the enemy-release 
hypothesis is a concept in which species introduced 
to a new area lose their natural parasites and are less 
impacted by parasitic infections, improving their fit-
ness as a consequence (Lymbery et al. 2014). These 
processes can create a competitive advantage for the 
invader making its invasion successful (Dunn et  al. 
2012; Mazzamuto et al. 2016; Romeo et al. 2021).

The squirrel poxvirus (SQPV) is one of the best-
known models of spillover and disease-mediated 
competition resulting from the introduction of the 
eastern gray squirrel (Sciurus carolinensis) from the 
USA into the UK and Ireland (Rushton et al. 2006a; 
McInnes et al. 2012; Romeo et al. 2015). Introduced 
eastern gray squirrels are unaffected carriers of SQPV 
and spread the disease to the native Eurasian red 
squirrels (Sciurus vulgaris) that are lethally affected 
by the infection (Tompkins et al. 2002; Prenter et al. 

2004). As a result, native red squirrel populations 
have declined or have been extirpated in all areas 
where the introduced eastern gray squirrel is pre-
sent (Tompkins et  al. 2002; Santicchia et  al. 2020). 
Despite the attention spillover has received, the mech-
anisms used by these parasitic invaders remain poorly 
understood, and studies demonstrating the impact of 
foreign parasites on native hosts are surprisingly few 
(Romeo et al. 2021).

In this study we investigated the relationship 
between the introduced Abert’s squirrel (Sciurus 
aberti) and the native, federally endangered Mt. 
Graham red squirrel (Tamiasciurus fremonti graha-
mensis) on Mt. Graham in the Pinaleño Mountains 
in southern Arizona, with a focus on their respective 
parasite populations. The Pinaleño Mountains are the 
northern extent of the Madrean Sky Island Complex 
and have the highest peak in the complex at 3,269 m 
(Hoffmeister 1956; Warshall 1996). The federally 
endangered Mt. Graham red squirrel is the southern-
most and rarest subspecies of the southwestern red 
squirrel (Tamiasciurus fremonti) (Hope et  al. 2016). 
Mt. Graham red squirrels were initially thought to 
have been extinct in the 1960s, but a few squirrels 
were rediscovered in the 1970s (Minckley 1968; 
Sanderson and Koprowski 2009). This subspecies is 
restricted to mixed-conifer and spruce-fir forests at 
elevations above 2,400  m while being isolated from 
other southwestern red squirrel populations for at 
least 10,000 years (Allen 1894; Merrick et al. 2021). 
Mt. Graham red squirrels are sensitive to changes in 
the environment and are short-lived, typically about 
three years in the wild, and reproduce once or some-
times twice per year (Munroe et  al. 2009; Goldstein 
et al. 2017; Merrick et al. 2021). Over the last three 
decades, the population has experienced large fluc-
tuations due to low habitat quality, multiple insect 
outbreaks, three major wildfires in short succession, 
human activities, and introduced species (Sander-
son and Koprowski 2009; USFS 2011; Merrick et al. 
2021).

In the 1940s, 69 Abert’s squirrels were trapped 
at Fort Valley north of Flagstaff, Arizona and intro-
duced in the Pinaleño Mountains by the Arizona 
Game and Fish Department for hunting purposes 
(Hoffmeister 1956; Davis and Brown 1988; Edel-
man and Koprowski 2009). Abert’s squirrels are 
native to New Mexico, Colorado, Utah, northern Ari-
zona, parts of Wyoming, and north-central Mexico 
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(Davis and Brown 1988; Davis and Bissell 1989; 
Allred 2011). Abert’s squirrels are active year-round 
and often are sympatric with other squirrels in their 
natural range (Keith 1965; Cudworth and Koprowski 
2010). Abert’s squirrels were expected to be con-
strained to lower-elevation pine forests. However, 
in the last 75  years, Abert’s squirrels have extended 
mountain-wide and now overlap with Mt. Graham red 
squirrels near the summit of the Pinaleño Mountains 
dominated by spruce-fir forests (Picea engelman-
nii, Abies lasiocarpa var. arizonica) (Rushton et  al. 
2006b; Allred 2011; Merrick et al. 2021). Where co-
occurring, Abert’s squirrels may further constrain Mt. 
Graham red squirrels’ recovery via higher population 
density, competition for food resources, niche over-
lap, direct competition between squirrels species, and 
novel parasites (Steele and Koprowski 2001; Rushton 
et  al. 2006b; Goldstein et  al. 2018; Bergman et  al. 
2021).

No parasitological studies have been conducted on 
neither Abert’s nor Mt. Graham red squirrels in this 
area. We first assessed the parasitological diversity of 
these species and investigated the potential role that 
parasites may play in providing Abert’s squirrels an 
additional competitive advantage. We hypothesized 
that if spillover has occurred in the last > 75  years, 
parasites identified in Abert’s squirrels would also 
occur in native Mt. Graham red squirrels hence we 
would see a similar community composition of endo/
ectoparasites between the two host species. If spillo-
ver did not occur, then the community composition 
would be different. We also investigated if the pres-
ence or absence of parasites was influenced by host-
linked factors (sex and body mass).

Methods

Study area—Spanning more than 2,100 m, the Pina-
leño Mountains span a diverse range of forest types, 
from spruce-fir woodlands at their highest points to 
arid desert grasslands at their base (Hoffmeister 1956; 
O’Connor et  al. 2014; Merrick et  al. 2021). Domi-
nated by Engelmann spruce and corkbark fir above 
2,985 m, the forest transitions to a mix of Douglas-
fir (Pseudotsuga menziesii), southwestern white pine 
(Pinus strobiformis), and aspen (Populus tremu-
loides) at lower elevations (O’Connor et  al. 2014). 
The surrounding forest mainly comprises dry mixed 

conifer stands, including white fir (Abies concolor) 
and ponderosa pine (Pinus ponderosa) (O’Connor 
et  al. 2014). Rising from the arid desert landscape, 
the Pinaleño Mountains ascend to higher elevations, 
creating a forested sky island within the surrounding 
desert scrub (Wood et al. 2007). Precipitation primar-
ily occurs during two main periods: snowfall from 
December to April and monsoon rains spanning July 
to September (Wood et al. 2007). Small mammals that 
co-exist in the same areas of Mt. Graham red squirrels 
include rock squirrels (Otospermophilus variegatus), 
spotted ground squirrels (Xerospermophilus spilo-
soma), Mexican wood rats (Neotoma mexicana), deer 
mice (Peromyscus maniculatus), Mt. Graham pocket 
gopher (Thomomys bottae grahamensis), western 
pocket gopher (T. bottae mearnsi), western harvest 
mouse (Reithrodontomys megalotis), brush mouse (P. 
boylii), long-tailed vole (Microtus longicaudus), east-
ern cottontail (Sylvilagus floridanus), and desert cot-
tontail (S. audubonii) (Hoffmeister 1986).

Study system—Abert’s squirrels are larger 
(500–750 g), non-territorial, occasional scatter-
hoarders, have larger home ranges and practice social 
nesting (Edelman and Koprowski 2007; Derbridge 
and Koprowski 2019). Abert’s squirrels prefer open 
forests, which often result from fire and insect infes-
tations, as on the Pinaleño Mountains (Minor and 
Koprowski 2015; Gwinn and Koprowski 2016). In 
contrast, Mt. Graham red squirrels are solitary, are 
territorial, and have smaller home ranges (Koprowski 
2005; Derbridge and Koprowski 2019). Mt. Graham 
red squirrels are much smaller in size (200–250 g), 
and aggressively defend larderhoarders at the center 
of their territory aggression and have unique territo-
rial vocalizations (Debridge and Koprowski 2019).

Removal and collection—Examinations were con-
ducted on Abert’s squirrels from the years 2002 to 
2019. A total of 15 individuals were collected from 
road-killed and through an experimental removal 
conducted by Debridge and Koprowski (2019). While 
the main approach involved euthanizing a substantial 
portion of these squirrels using firearms, under the 
2019 Arizona Game and Fish Department-funded 
removal program (Bergman et al. 2021). The program 
targeted areas of proposed action that overlapped 
with the habitat of the Mt. Graham red squirrel on the 
Pinaleño Mountains (Bergman et al. 2021). The pro-
ject personnel employed suppressed firearms to miti-
gate potential noise disturbance. Shooting activities 



832 D. Jones et al.

1 3
Vol:. (1234567890)

were strictly limited to daylight hours and confined 
to locations where discharging firearms is both 
legal and safe (Bergman et  al. 2021). The personnel 
received specialized training to distinguish between 
Abert’s squirrels and Mt. Graham red squirrels and 
were current with all the necessary firearms handling 
training requirements (Bergman et  al. 2021). Dur-
ing collection of population data for Mt. Graham red 
squirrel, researchers opportunistically (on a monthly 
basis there are consistently at least two people on 
the mountains for a 20-d period) collected Mt. Gra-
ham red squirrels in situations where they were road-
killed, partially consumed by a predator, or found 
deceased due to natural causes in close proximity to 
their middens between 2002 to 2020. Each carcass 
was placed in an individual plastic bag, sealed, and 
stored at −20 °C for later examination. We performed 
post-mortem examinations for all carcasses.

A total of 113 Abert’s squirrels (male = 56, 
female = 57) were examined for ectoparasites, and 
only adult specimens were considered for both endo-
parasites and ectoparasites. Due to observed damages 
to the intestinal tracts in 13 individuals, the endopara-
site assessment included 100 individuals (male = 50, 
female = 50). Male and female Abert’s squirrels were 
sampled equally and randomly. We examined Abert’s 
squirrels during their breeding season, between 
late February to early June (Allred 2011). For Mt. 
Graham red squirrels, a sample of 24 individuals 
(male = 11, female = 13) was examined for ectopara-
sites, but only 22 individuals (male = 11, female = 11) 
could be included in the endoparasite assessment due 
to damage to their intestinal tracts. Due to limited 
sample size, all Mt. Graham red squirrels were sam-
pled regardless of the date collected or sex. However, 
to ensure the reliability and quality of the data, we 
excluded any bodies in decomposition from our anal-
ysis. It is worth noting that ectoparasites tend to leave 
shortly after host death, while endoparasites may be 
affected by the decomposition process.

Endoparasites

Collection -The gastrointestinal tract from the esoph-
agus to the rectum was removed during necropsy. 
The stomach, small intestine, and large intestine were 
examined for endoparasites following standard para-
sitological procedures as described in Romeo et  al. 
(2013). The content collected from each section was 

examined using a dissecting microscope (AmScope, 
California, USA) at 45X magnification. For later 
identification, the helminths were counted and stored 
in Tris–EDTA (TE) pH 8.0. Helminths were stored in 
separate tubes for each squirrel’s intestinal tract sec-
tion (e.g., small intestine, large intestine, stomach).

Morphological methods -A total of 12 nema-
todes were photographed from six Abert’s squirrels 
(7,2,1,1,1 from each individual), and a total of eight 
nematodes from three red squirrels (4, 2, 2 from each 
individual) for morphological identification. Nema-
todes were cleared and studied in temporary mounts 
of lactophenol. Most features were studied at 100X 
and 200X magnification. Measurements were taken 
with an optical micrometer. The morphological traits 
used for identification included the tightly coiled 
body, the pattern of cuticular ridges (synlophe), the 
asymmetrical bursa, a notably reduced dorsal ray, and 
the shape and size of the spicules in males, as detailed 
in identification keys by Hall (1916) and Dikmans 
(1938). Morphological analysis was also used to vali-
date our molecular identifications.

Molecular methods—DNA was extracted from 
individual nematodes collected from both squir-
rels species. Individual nematodes were isolated and 
ground using a pestle motor mixer for ≤ 2 min. DNA 
extraction of nematodes followed the manufacturer’s 
recommendation (Thermo Fisher User guide 2016) of 
the GeneJet Genomic DNA purification kit (#K0722, 
Thermo Scientific). With the exception overnight 
incubation for the digestion step: incubation ranges 
from 45 min to overnight, depending on the amount 
of DNA in the reaction. To improve DNA binding, 
the elution buffer was incubated at 56  °C for about 
30 min. Molecular identification involved the ampli-
fication of three markers using the polymerase chain 
reaction (PCR): 18S small subunit (SSU) ribosomal 
DNA, 28S large subunit (LSU) ribosomal DNA, and 
the internal transcribed spacer 2 (ITS2). The ITS2 
marker was selected due to it being helpful in stron-
gylid identification, although Pafčo et al. (2018) used 
the primers in metabarcoding. Optimal PCR condi-
tions were determined for each primer by adjust-
ing annealing temperatures, time of cycles, primer 
concentrations, and DNA concentrations (Table S1). 
This process was followed to refine our end prod-
uct for optimal results. The GeneJet PCR Purifica-
tion Kit (#K0702, Thermo Scientific) was used for 
the PCR purification following the manufacturer’s 
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recommendation (Thermo Fisher User guide 2015) 
for PCR purification. We incubated the elution buffer 
at 56 °C for about 15 min as the manufacture recom-
mended for maximal recovery of end product.

Sequencing and phylogenetic analyses—PCR 
products were Sanger sequenced at the University of 
Arizona Genetics Core. Nucleotide sequences were 
edited, aligned, and analyzed using Geneious soft-
ware version 9.0 (Kearse et  al. 2012) and compared 
with sequences available in GenBank dataset using 
the Basic Local Alignment Search Tool (BLAST) 
tool (Camacho et  al. 2009). For the phylogenetic 
analysis, the ITS2 sequences obtained in this study 
were aligned with sequences of Trichostrongyloidea 
(n = 8) and Heligmosomidae (n = 22) available in 
the GenBank database identified as closely related 
by BLAST. In addition, the 28S rDNA sequences 
obtained in this study were aligned with sequences 
of Heligmosomidae (n = 8), Herpetostrongylidae 
(n = 4), Herpetostrongylinae (n = 2), Trichostrongy-
loidea (n = 1), Mackerrastrongylidae (n = 2), Paras-
trostrongylus bettongia available in GenBank data-
base. Lastly, the 18S rDNA sequences obtained in 
this study were aligned with sequences of Oxyuridae 
sequences (n = 19) available in GenBank database. 
Phylogenetic analyses were performed with the maxi-
mum likelihood method using IQ-TREE multicore 
version 1.5.5 (Nguyen et al. 2014) with ultrafast boot-
strap (1,000 replicated) to test the topology robust-
ness (Minh et  al. 2013). Jmodeltest (Posada 2008) 
was used to select the best model of evolution for 
each gene based on the Akaike information criterion. 
The produced phylogenetic trees were edited using 
FigTree version 1.4.4 and Inkscape version 1.0.2.

Ectoparasites

Collection—We combed the entire body of each 
squirrel with a flea comb above a white surface and 
examined areas on the body where clusters most com-
monly occur (e.g., on the face, near ears, near eyes, 
neck area, underside regions). Each squirrel was 
combed for a fixed amount of time (2 min), ensuring 
uniformity across all individuals to avoid bias. The 
flea comb was properly sanitized between squirrels 
to prevent any cross-contamination. In addition to the 
post-mortem examinations, the sealed bags contain-
ing the squirrel carcasses were thoroughly inspected 
to recover any ectoparasites present. Ectoparasites 

were counted and stored in 70% ethanol for later 
identification.

Morphological methods—Ectoparasites were 
examined using a dissecting microscope (WILD 
Heerburgg, Gais Schweiz, Switzerland) for whole 
specimens and DM compound scope (Lecia 
Microsystems, Wetzlar, Germany) for slide-mounted 
and dissected material. Specimens were placed in 
cold 10% potassium hydroxide (KOH) to remove 
soft internal tissues. When cleared, specimens were 
passed through water and ethanol alcohol (EtOH) 
progressions to halt the clearing process until dehy-
drated in 100% EtOH. Once cleared, specimens were 
sorted using the dissecting scope, counted, and males/
females selected for slide-mounting and identifica-
tion. Slide-mounted specimens were placed in Hoy-
er’s medium or glycerol under a coverslip on a slide, 
then viewed under high magnification to examine 
critical external morphological characters, including 
the female spermatheca and male aedeagus (Ewing 
and Fox 1943; Hubbard 1947; Fleas of the World 
2021).

Statistical analyses for endo/ecto parasites—To 
describe the parasitic infections and infestations, we 
calculated prevalence and mean intensity for both 
endo and ecto parasites (Margolis et al. 1982). Prev-
alence was obtained by dividing the total number of 
infected/infested hosts by the total number of sampled 
hosts (Margolis et al. 1982; Mergo and Crites 1984). 
Both molecular (Sanger sequences) and morphologi-
cal confirmed identifications were included in calcu-
lating prevalence and mean intensity. Mean intensity 
was calculated by dividing the total number of indi-
viduals of a particular parasite species in an indi-
vidual of a host species by the number of infected/
infested individuals of the host species in the sample 
(Margolis et  al. 1982; Mergo and Crites 1984). The 
incorporation of Sanger sequences offers an addi-
tional dimension by facilitating the identification and 
enumeration of specific parasite taxa. Results are pre-
sented as mean ± SE.

We examined factors influencing the probability of 
squirrels being infected and infested by endoparasites 
and ectoparasites using binomial generalized linear 
models (GLMs) with a logit-link function (McCul-
lagh and Nelder 1989). Separate models were fitted 
for Abert’s and Mt. Graham red squirrels. We initially 
considered a random effect (i.e. random intercepts) of 
year in all our models for Abert’s squirrels, but the 
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random variance was consistently estimated as zero, 
so we reported results from our GLMs. When mod-
eling endo/ectoparasite presence in Abert’s squir-
rels and Mt. Graham red squirrels, we included body 
mass and sex as covariates. We conducted all statis-
tical analyses using R software version 4.1.1(R Core 
Team 2021).

Results

Endoparasites—65% (26 males, 39 females) of 
the Abert’s squirrels (n = 100) necropsied harbored 
at least one endoparasite; 36% (five males, three 
females) of Mt. Graham red squirrels (n = 22) har-
bored at least one endoparasite. Helminths were 
effectively found in small intestine in Abert’s squir-
rels and the large intestine in Mt. Graham red squir-
rels. Based on the presence of spicules, needle-like 
mating structures exclusively found in male nema-
todes (Fig. 1) within samples from both squirrel spe-
cies, we identified the initial nematode as Citellinema 
quadrivittati. These spicules represent a distinctive 
morphological feature characteristic of Citellin-
ema spp. As documented by Hall in 1916, Citellin-
ema quadrivittati is characterized by spicules with a 
length of 695  µm. In our analysis, we determined a 

range of spicule lengths from 498 µm to 693 µm, with 
a mean length of 592 µm. PCR amplification of the 
ITS2 rDNA marker (Fig. 2) was performed to further 
characterize the recovered nematodes. A 95% to 99% 
sequence similarity was observed between our ITS2 
rDNA sequences in both squirrels and that avail-
able on the NCBI database of Citellinema spp. The 
phylogenetic relationship of our ITS2 rDNA marker 
revealed the recovered nematodes grouped with other 
Citellinema spp. Nematodes recovered from both 
host squirrels clustered in a single group but showed 
strong divergences between samples (Fig. 2). To ver-
ify if the observed divergence in the analysis of ITS2 
rDNA sequences were due to intraspecific variation, 
we compared it with the divergence of the 28S rDNA 
sequences of nematodes isolated from both squirrels 
(Fig.  3). The analysis of the 28S rDNA marker dis-
played 97% to 100% similarity among the nematode 
samples, suggesting that only one species of Citellin-
ema was isolated.

The second nematode species detected in both 
squirrels species was identified as Trypanoxyuris 
(Rodentoxyuris) sp. In Abert’s squirrels, molecular 
identification through PCR amplification of the 18S 
rDNA marker was employed (Fig.  4) and observed 
a 99% similarity with sequences of this genus avail-
able on the NCBI database. Our analysis revealed 

Fig. 1  Image of the spic-
ules, needle-like mating 
structures found in males 
Citellinema quadrivittati 
in Mt. Graham red squir-
rels (T. f. grahamensis) 
and Abert’s squirrels (S. 
aberti): spicule length was 
626.1 μm. Image taken 
under 400 × magnification 
of C. quadrivittati from a 
Mt. Graham red squir-
rel from the Pinaleño 
Mountains in southeastern 
Arizona, USA
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Trypanoxyuris spp. as a monophyletic sister-group to 
Enterobius spp. (Fig. 4) as the recovered nematodes 
were closely related to Trypanoxyuris (Rodentoxyuris) 
sciuri. For nematodes from Mt. Graham red squir-
rels, experts assessments (Hugot 1984) confirmed 
the presence of a pinworm, most likely Trypanoxy-
uris (Rodentoxyuris) sp., based on an initial image 
(Fig. 5). However, due to the limited number of speci-
mens collected during the endoparasite assessment, 
challenges arose in obtaining further photographic 
evidence and amplifying the 18S rDNA sequence 

for this specific nematode, resulting in unsuccessful 
results in Mt. Graham red squirrels.

The most abundant intestinal trichostrongylid 
in Abert’s squirrels and Mt. Graham red squirrels 
was Citellinema sp. (Abert’s squirrel n = 48: Sanger 
sequences and morphological confirmations; Mt. 
Graham red squirrel n = 5: Sanger sequences). Abert’s 
squirrels exhibited an overall prevalence of 48% 
and a mean intensity of 2.6 ± 0.05 (Table  1), while 
Mt. Graham red squirrels had a prevalence of 23% 
and a mean intensity of 3.4 ± 0.11 (Table 1). Abert’s 

Fig. 2  Phylogenetic tree of ITS2 rDNA based on maximum 
likelihood method of Abert’s squirrel (S. aberti) and Mt. 
Graham red squirrels (T. f. grahamensis) from the Pinaleño 
Mountains in southeastern Arizona, USA. According to AIC 
the best-fit model for ITS2 sequencing was HKY + G4. Aqua 
colored rectangle shows Citellinema spp. Smaller blue rectan-
gle shows Citellinema quadrivattati samples. Asterisks repre-

sent other samples from that host which have been morpholog-
ically identified as Citellinema quadrivattati. Taxa colored red 
are Mt. Graham red squirrels and bold taxa are Abert’s squir-
rels. Nodes (numbers) are associated with Bootstrap values 
based on 1,000 replicates. Bootstrap values less than 70 are not 
shown. The scale bar at the bottom left indicates the number of 
nucleotide substitutions (0.06)
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squirrels harbored 127 confirmed nematodes of Cit-
ellinema sp., while Mt. Graham red squirrels har-
bored 17. Regarding Trypanoxyuris (Rodentoxyuris) 
sp. in Abert’s squirrels (n = 2: Sanger sequences), 
the overall prevalence appeared lower at 2%, with a 
mean intensity of 1.5 (Table  1). A smaller number 
of PCR products underwent Sanger sequencing for 

this nematode. Abert’s squirrels had three confirmed 
Trypanoxyuris (Rodentoxyuris) sp. None of the host 
related factors tested affected the presence of endo-
parasites in Abert’s squirrels nor in Mt. Graham red 
squirrels (p > 0.05) (Table 2).

Ectoparasites—Abert’s squirrels and Mt. Gra-
ham red squirrels did not share any ectoparasite 

Fig. 3  Phylogenetic tree of 28S rDNA based on maximum 
likelihood method of Abert’s squirrel (S. aberti) and Mt. Gra-
ham red squirrels (T. f. grahamensis) from the Pinaleño Moun-
tains in southeastern Arizona, USA. Analysis showing that 
samples from this study are grouping together. According to 
AIC the best-fit model for 28  s sequencing was TPM3u + I. 
Dark pink rectangles represent sister group Heligmosomum 
spp. The lighter pink rectangle symbolizes a representative 

subset of samples of Citellinema quadrivattati. Asterisks rep-
resent other samples from that host which have been morpho-
logical identified as Citellinema quadrivattati. Taxa colored 
red are Mt. Graham red squirrels and bold taxa are Abert’s 
squirrel. Nodes (numbers) are associated with Bootstrap values 
based on 1,000 replicates. Bootstraps values less than 70 are 
not shown. The scale bar at the bottom left indicates the num-
ber of nucleotide substitutions (0.009)
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species. Among the 113 Abert’s squirrels, a total 
of 53 males and 36 females (79%) harbored an 
ectoparasite. Abert’s squirrels hosted two species 
of fleas: Opisodasys robustus and Anomiopsyllus 
sp. The Anomiopsyllus fleas were not common, only 
occurring in two individual Abert’s squirrels. One 
host was a reproductive male collected in March 
2014, and the other host was a reproductive female 
collected in May 2019. Additionally, one species 

of louse was found on 37% of Abert’s squirrels: 
Neohaematoinnus sciurinus. The most abundant 
ectoparasite was the flea Opisodasys robustus with 
an overall prevalence of 51% and a mean intensity 
of 5.2 ± 0.37 (Table  1). The final model revealed 
that male Abert’s squirrels, rather than females, 
were more likely to be parasitized by ectoparasites 
(p < 0.001). However, body mass did not affect 
the presence of ectoparasites in Abert’s squirrels 

Fig. 4  Phylogenetic tree of 18S rDNA based on maximum 
likelihood method of Abert’s squirrel (S. aberti) from the 
Pinaleño Mountains in southeastern Arizona, USA. Accord-
ing to the AIC the best-fit model for 18  s sequencing was 
TVM + I + G4. The light-yellow rectangle represents the Tryp-
anoxyuris spp., while the green rectangle includes three sam-
ples from this study that are grouped together within the Tryp-
anoxyuris spp. category. Furthermore, one sequence labeled 

Trypanoxyuris (Rodentoxyuris) sp. from the GenBank database 
closely aligns with our sequences within the green rectangle. 
Bold taxa are the Abert’s squirrel. None of the PCR amplifica-
tion attempts for Mt. Graham red squirrels (T. f. grahamensis) 
yielded successful sequences. Nodes (numbers) are associated 
with Bootstrap values based on 1,000 replicates. Bootstraps 
values less than 70 are not shown. The scale bar at the bottom 
left indicates the number of nucleotide substitutions (0.03)
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(p > 0.05) (Table 2). Among the 24 Mt. Graham red 
squirrels examined, a total of four males and four 
females (33%) harbored an ectoparasite. The flea 
Orchopeas caedens had an overall prevalence of 
37% and a mean intensity of 6.0 ± 0.18 (Table 1). A 
solitary mite specimen, belonging to the family Gly-
cyphagidae, was recovered from a female squirrel 
captured during the spring of 2005. In Mt. Graham 

red squirrels none of the tested factors influenced 
ectoparasite presence (p > 0.05) (Table 2).

Discussion

This study finds shared endoparasites in both squir-
rel species, primarily Citellinema sp., along with 

Fig. 5  Image taken under 
400 × magnification of a 
male oxyurid: most likely a 
Trypanoxyuris (Rodentoxy-
uris) sp. from a Mt. Graham 
red squirrels (T. f. graha-
mensis), from the Pinaleño 
Mountains in southeastern 
Arizona, USA

Table 1  Macroparasite species harbored by Abert’s squir-
rels and Mt. Graham red squirrels in the Pinaleño Moun-
tains in southeastern Arizona, USA. Both molecular (Sanger 
sequences) and morphological confirmed identifications were 
included in calculating prevalence and mean intensity for both 
host species. Endo = number of squirrels sampled for endo-

parasites; ecto = number of squirrels sampled for ectopara-
sites. Ectoparasite counts are set in italic when the number of 
infected hosts < 10. SE = Standard Error. We were not able to 
obtain sequence data for pinworms (Trypanoxyuris (Roden-
toxyuris) sp.) in Mt. Graham red squirrels although they were 
present

Abert’s squirrel (n = 113)
endo = 100 ecto = 113

Mt. Graham red squirrel (n = 24)
endo = 22 ecto = 24

Macroparasite species Prevalence (%) Intensity ± SE Prevalence (%) Intensity ± SE

Helminths
 Citellinema sp. 48 2.6 ± 0.05 23 3.4 ± 0.11
 Trypanoxyuris (Rodentoxyuris) sp. 2 1.5 Present -

Arthropods
 Opisodasys robustus 51 5.2 ± 0.37 - -
 Anomiopsyllus sp.  > 1 1 - -
 Neohaematoinnus sciurinus 37 5.9 ± 0.04 - -
 Orchopeas caedens – – 37 6.0 ± 0.18
 Glycyphagidae – – > 1 1
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distinct ectoparasite communities. The presence of 
Citellinema quadrivittati, a nematode belonging to 
the Trichostrongylidae superfamily, was observed in 
both Abert’s squirrels and Mt. Graham red squirrels. 
Citellinema quadrivittati is widely distributed and 
typically inhabits the digestive systems, specifically 
the stomach and/or small intestine, of plant-feeding 
vertebrates (Mehlhorn 2016). Transmission of these 
nematodes occurs through oral uptake of larvae by a 
suitable host (Anderson 2000; Melhorn 2016). Con-
versely, the pinworm Trypanoxyuris (Rodentoxyuris) 
sp. exhibited a lower prevalence in both squirrel spe-
cies. Trypanoxyuris (Rodentoxyuris) sp. are members 
of the order Oxyurida and are common in lizards, tor-
toises, marsupials, rodents, and primates (Anderson 
2000). Transmission of the pinworm usually require 
fecal–oral transmission, but hosts can also digest 
eggs from the environment or ingest during groom-
ing (Anderson 2000; Romeo et  al. 2015; Santicchia 
et al. 2020). Importantly, both these nematodes have 
been identified in other Sciuridae species, indicating a 
lengthy co-evolutionary history as generalist parasites 
of squirrels (Anderson 2000; Mehlhorn 2016; Santic-
chia et al. 2020) (Table S2). To gain a better under-
standing of spillover dynamics, it’s crucial to consider 
the intricate life cycles of macroparasites involving 
multiple host species (Hatcher and Dunn 2011). This 
becomes particularly relevant in warmer climates, 
where elevated temperatures can expand the habi-
tats of reservoir hosts, increase vector populations, 
intensify biting frequencies, enhance survival rates, 

and accelerate parasite transmission through vectors 
(Froeschke et al. 2010).

Before the introduction of Abert’s squirrels to the 
Pinaleño Mountains, limited knowledge existed about 
parasites in Mt. Graham red squirrels. It is plausible 
that either or both squirrels may have already car-
ried the endoparasites prior to the introduction. In 
New Mexico, C. quadrivittati occurs in sympatric 
populations of Abert’s squirrels and southwestern red 
squirrels, but only Abert’s squirrels harbor the pin-
worm, Enterobius sciuri (Patrick and Wilson 1995). 
The pinworm E. sciuri occurs in other squirrels in 
North America (Sciurur niger, Glaucomys volans, S. 
carolinensis) (Rausch and Tiner 1948; Parker 1968; 
Parker and Holliman 1971; Davidson 1976). The tax-
onomy of E. sciuri remains unclear and it is difficult 
to discern differences between E. sciuri and Trypan-
oxyuris (Rodentoxyuris) sp. (Hugot 1984, 1999; Cam-
eron 1932; Popiołek et al. 2009). In North America, 
neither E. sciuri nor Trypanoxyuris (Rodentoxyuris) 
sp. has been reported in the red squirrel (T. hudsoni-
cus) or southwestern red squirrel (T. fremonti) in any 
areas where overlap occurs with other squirrel spe-
cies (Patrick and Wilson 1995; Hope et  al. 2016). 
Other rodent species present on Mt. Graham along-
side Abert’s and Mt. Graham red squirrels (e.g., rock 
squirrels, spotted ground squirrels, Mexican wood 
rats, and deer mice) could potentially host incidental 
parasites and act as reservoirs for certain parasites. 
Given that these rodent species are native to this area 
and coexistence within this ecosystem, these occur-
rences may not strictly qualify as spillover. Unfor-
tunately, this particular region lacks prior research 
on the parasite fauna of these rodents, in contrast to 
other regions in the USA with more thoroughly docu-
mented parasite profiles (Table S3).

Detecting Trypanoxyuris (Rodentoxyuris) sp. in 
both host species depicts the potential for parasite 
transmissions between Abert’s squirrels and Mt. Gra-
ham red squirrels through parasite spillover. In Italy, 
Romeo et  al. (2021) demonstrated that the spillover 
of a foreign nematode from an introduced species can 
lead to reduced survival in a native mammal, adding 
to the growing body of evidence indicating potential 
detrimental effects on native species’ fitness caused 
by less-studied forms of competition from invasive 
or introduced species (Romeo et  al. 2021). Simi-
larly, in North America, the nematode S. robustus is 
suspected to contribute to competition between two 

Table 2  Generalized linear model results of ectoparasites and 
endoparasites presence/absence of Abert’s squirrel and Mt. 
Graham red squirrels. Both host species are from the Pinaleño 
Mountains in southeastern Arizona, USA. SE = Standard Error

Coeffi-
cients

Estimates SE Z value P

Abert’s squirrels
 Ectopara-

site
Sex (male) 2.595 0.845 3.070 < 0.001
Body mass −0.002 0.004 −0.460 0.646

 Endopar-
asite

Sex (male) −0.866 0.523 −1.657 0.097
Body mass 0.005 0.004 1.097 0.273

Mt. Graham red squirrels
 Ectopara-

site
Sex (male) −0.048 0.900 −0.053 0.958
Body mass −0.031 0.022 −1.431 0.152

 Endopar-
asite

Sex (male) 0.673 0.976 0.689 0.491
Body mass −0.041 0.026 −1.572 0.116
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species of North American flying squirrels (Glauco-
mys) (Krichbaum et  al. 2010). Studies suggest that 
S. robustus can diminish the survival and productiv-
ity of northern flying squirrels (G. sabrinus) while 
having no effect on southern flying squirrels (G. vol-
ans) (Weigl 1969; Krichbaum et al. 2010). Although 
instances of rare pathogenicity from foreign parasites 
through spillover are documented in only a few cases 
in the literature, the majority of interactions between 
parasites and their hosts result in a balanced coexist-
ence, with parasites rarely causing significant harm-
ful impact (Seilacher et al. 2007; Barnard and Behnke 
1990). While our results do suggest the possibility of 
parasite spillover from Abert’s squirrels to Mt. Gra-
ham red squirrels, caution is warranted as present data 
do not conclusively demonstrate a negative impact on 
Mt. Graham red squirrel individuals. The parasites we 
have encountered are relatively ubiquitous and may 
not necessarily have damaging consequences for the 
fitness of Mt. Graham red squirrels.

The presence of distinct ectoparasite species in 
Abert’s squirrels and Mt. Graham red squirrels sug-
gests that spillover has not taken place. Transmis-
sion of fleas, lice, and mites between hosts takes 
place through direct contact, the fecal–oral route, 
and mutual grooming (Bitam et  al. 2010; Duboscq 
et al. 2016; Sundar et al. 2017). The fleas O. robus-
tus and Anomiopsyllus sp. detected on Abert’s squir-
rels were previously reported in Abert’s squirrels in 
New Mexico (Baker 1898; Jordan 1925; Holland 
1965; Barnes et al. 1977; Patrick and Wilson 1995), 
and the flea identified in Mt. Graham red squirrels, 
O. caedens, has been previously reported in south-
western red squirrels and Abert’s squirrels in New 
Mexico (Jordan 1925; Patrick and Wilson 1995; Hope 
et  al. 2016). The louse, Neohaematopinus sciurinus 
(Superfamily: Anoplura) found on our Abert’s squir-
rels has been previously reported in Abert’s squirrels 
native to Colorado (Mjöberg 1910) and on Sciurus 
niger, S. carolinensis, and other squirrels outside the 
United States (Mjoberg 1910; Ferris 1923; Durden 
and Musser 1994) (Table S2). The mite identified on 
Mt. Graham red squirrel belonged to the Glycyphagi-
dae family and was previously found on Douglas’ 
squirrels (Tamiascuiurus douglasii) in Oregon (Pence 
and Webb 1977). Our results suggest a new host and 
geographic record for the Glycphagidae mite from 
Mt. Graham red squirrels in Arizona.

The variation in parasite loads between Abert’s 
squirrels and Mt. Graham red squirrels could stem 
from distinct behavioral and social traits demon-
strated by these species. Notably, the Abert’s squirrel 
population on Mt. Graham engages in more commu-
nal nesting, a behavior that enhances the likelihood 
of parasite transmission and acquisition (Edelman 
and Koprowski 2007). The presence of co-occurring 
small mammals could lead to increased parasite 
transmission among species, potentially affecting the 
overall parasite loads and diversity in Abert’s and Mt. 
Graham red squirrels. Previous studies have revealed 
a lower incidence of endo/ecto parasites in Abert’s 
squirrels (Patrick and Wilson 1995). Our analysis 
revealed a trend: male Abert’s squirrels exhibited a 
higher susceptibility to ectoparasite infestations in 
comparison to their female counterparts. This finding 
may arise from interactions, home ranges, seasonal-
ity, habitat preferences, and breeding patterns, result-
ing in sex-specific discrepancies in parasite loads 
among Abert’s squirrels (Hillegrass et al. 2008; Mer-
rick and Koprowski 2016; Mazzamuto et  al. 2020). 
This pattern can also be attributed to breeding sea-
son behaviors: male Abert’s squirrels, engaging in 
increased social interactions, contrast with females 
that choose solitary nesting to prioritize lactation 
resources (Edelman and Koprowski 2007). In the 
context of vertebrates, males tend to carry heavier 
parasite burdens (Isomursu et  al. 2006; Perez-Orella 
and Schulte-Hostedde 2005; Hillegrass et  al. 2008). 
This well-documented pattern reinforces the impor-
tance of considering gender-based susceptibility in 
the context of host-parasite interactions.

Conclusions

Our study raises questions about squirrel host-parasite 
co-evolution and emphasizes the necessity for spe-
cific nematode DNA primers. Long-term research is 
essential for a thorough exploration of the role of par-
asites and their transmission in biological invasions 
(Prenter et  al. 2004). Understanding parasite trans-
mission routes and their consequences helps identify 
factors that jeopardize species survival. Management 
strategies should prioritize controlling introduced 
species that carry foreign parasites, as exemplified by 
the Abert’s squirrel removal program (Bergman et al. 
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2021), and monitoring parasite loads in native ranges 
remains vital (Kelly et al. 2009). Habitat conservation 
efforts are pivotal in reducing parasite transmission 
by addressing crowding and disease susceptibility 
between introduced and native species (Tompkins and 
Poulin 2006). Proactive monitoring and comprehen-
sive research on parasite infection and transmission 
enable timely responses to potential spillover effects 
(Romeo et  al. 2021). In addition, it is important to 
adopt an all-encompassing perspective when investi-
gating the impact of climate on parasite distribution 
and survival, as this approach could reveal insightful 
mechanisms underlying observed variations in para-
site patterns. With the increasing global movement 
of non-native species, vigilance becomes imperative 
in managing the introduction of exotic pathogens or 
vectors to new regions or hosts (Daszak et al. 2000). 
As ecosystems continually evolve with novel interac-
tions, the collaboration between invasion ecologists 
and parasitologists is vital in addressing emerging 
challenges (Dunn and Hatcher 2015).
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