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1  |  INTRODUC TION

With an increase in globalization, characterized by expanding human 
population and connectivity, species are now spreading beyond 
their natural dispersal capabilities to new areas (Crowl et al., 2008). 
Some of these species are spread accidentally, like aquatic invasive 

species spread by recreational boaters and commercial shipping (Haight 
et al., 2021), whereas others are introduced intentionally, such as 
domestic goats (Capra hircus) brought by sailors as a source of food 
(Campbell & Donlan, 2005; Xu et al., 2014). Although many potentially 
invasive species die during transit or soon after being introduced to 
a new area (Lodge, 1993), some will survive and propagate. These 
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Abstract
Globalization has led to the frequent movement of species out of their native habitat. 
Some of these species become highly invasive and capable of profoundly altering in-
vaded ecosystems. Feral swine (Sus scrofa × domesticus) are recognized as being among 
the most destructive invasive species, with populations established on all continents ex-
cept Antarctica. Within the United States (US), feral swine are responsible for extensive 
crop damage, the destruction of native ecosystems, and the spread of disease. Purposeful 
human- mediated movement of feral swine has contributed to their rapid range expan-
sion	over	the	past	30 years.	Patterns	of	deliberate	introduction	of	feral	swine	have	not	
been well described as populations may be established or augmented through small, un-
documented releases. By leveraging an extensive genomic database of 18,789 samples 
genotyped at 35,141 single nucleotide polymorphisms (SNPs), we used deep neural net-
works to identify translocated feral swine across the contiguous US. We classified 20% 
(3364/16,774) of sampled animals as having been translocated and described general 
patterns of translocation using measures of centrality in a network analysis. These find-
ings unveil extensive movement of feral swine well beyond their dispersal capabilities, 
including individuals with predicted origins >1000 km	away	 from	their	 sampling	 loca-
tions. Our study provides insight into the patterns of human- mediated movement of 
feral swine across the US and from Canada to the northern areas of the US. Further, our 
study validates the use of neural networks for studying the spread of invasive species.
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species are referred to as invasive alien species (IAS) and can cause 
extensive damage to ecosystems, reduce native biodiversity, and intro-
duce novel diseases (Horvitz et al., 2017; Ladin et al., 2023; McCreless 
et al., 2016). For example, invasive predators such as rats (Rattus spp.), 
mice (Mus musculus), domestic dogs (Canis lupus familiaris), feral cats 
(Felis cattus), and feral swine (Sus scrofa × domesticus; synonymous with 
wild pig, feral hog, and feral pig) have nearly worldwide invaded ranges, 
destructive behaviour, and generalist diets that make them highly suc-
cessful and damaging IAS (Capizzi et al., 2014; Doherty et al., 2016, 
2017; Fulgione & Buglione, 2022; Medina et al., 2011). Understanding 
the natural and human- mediated movement patterns of these destruc-
tive species can facilitate efforts to mitigate their spread as well as aid 
eradication efforts (Lodge et al., 2006; Simberloff, 2003).

Molecular methods have been successfully used to track the inva-
sion history of IAS (Cristescu, 2015; Matheson & McGaughran, 2022). 
For example, the global routes of brown rat (Rattus norvegicus) expan-
sion were characterized using molecular population assignment and 
divergence methods (Puckett et al., 2016). These assignment methods 
can either assign or exclude reference populations as the origin of a 
focal individual by using allele frequencies of the given reference pop-
ulations (Cornuet et al., 1999; Latch et al., 2006; Manel et al., 2005; 
Piry et al., 2004). However, many species exhibit a pattern of isolation- 
by- distance (IBD) where individuals closer in geographic space tend 
to be more related. Patterns of IBD reflect spatially continuous popu-
lations rather than clear, distinct populations. Underlying patterns of 
IBD can result in misleading inference of population structure (Perez 
et al., 2018) and make assignment of individuals into their respec-
tive source populations difficult as populations are not well defined. 
Further, as sequencing costs have decreased over time (Goodwin 
et al., 2016), studies are increasingly leveraging large genetic data-
sets that can be computationally challenging with traditional popu-
lation assignment and migrant detection methods (i.e., GENECLASS2 
(Cornuet et al., 1999), STRUCTURE (Pritchard et al., 2000)). Due to 
these challenges, machine learning methods have been adopted as 
a computationally efficient alternative for population genetic analy-
ses (Borowiec et al., 2022; Huang et al., 2023; Korfmann et al., 2023; 
North et al., 2021). For example, deep neural networks (a form of 
machine learning) have been used for genetic analysis to identify the 
geographic origins of modern domestic horses (Librado et al., 2021). 
Machine learning approaches can make predictions using general- 
purpose algorithms that capture patterns present in large datasets 
(Bzdok et al., 2018; Korfmann et al., 2023) and have shown promise 
in assigning individuals to their respective geographic origins using 
genetic data alone (Battey et al., 2020). However, this method has not 
been extensively used to elucidate the movement of IAS.

Feral swine are an IAS native to Europe and Asia. In the United 
States, feral swine have a complex introduction history descending 
from historical livestock husbandry practices combined with more 
recent wild boar introductions from native populations in Europe. 
Domestic swine (Sus domesticus) were first brought to the contigu-
ous US (hereafter referred to as just the US) by Spanish explorers in 
the	1500s	 (Mayer	&	Brisbin	 Jr.,	1991; Zadik, 2005). Subsequently, 
through free- range livestock management practices and ineffective 

enclosures used during a period of European colonization and set-
tlement, self- sustaining feral swine populations became established 
(Mayer	&	Brisbin	Jr.,	1991). In the early 1900s, wild boars were in-
troduced from Europe for hunting and consequently hybridized with 
feral	swine	(Mayer	&	Brisbin	Jr.,	1991). As a result, a large proportion 
of contemporary feral swine populations (~97%) in the US are of hy-
brid origin, representing a hybrid swarm of feral domestic pigs and 
wild	boar	(Mayer	&	Brisbin	Jr.,	1991; Smyser et al., 2020, 2024).

In the US, feral swine cause extensive destruction, including damage 
to crops, property, native species, and ecosystems (Bevins et al., 2014; 
McKee et al., 2020; Tian et al., 2023). Native species such as ground- 
nesting birds (Rollins & Carroll, 2001; Sanders et al., 2020), amphibians 
(Canright et al., 2023), and sea turtles (Engeman et al., 2019) are im-
perilled by feral swine predation as well as their rooting and wallowing 
behaviour (McDonough et al., 2022). Further, feral swine can serve as 
reservoirs for numerous diseases and parasites (Baroch et al., 2015; 
Cleveland et al., 2024; Miller et al., 2017) including bovine tuberculo-
sis, brucellosis (Meng et al., 2009), Trichinella spp. (Hill et al., 2014), and 
pseudorabies (Christy Wyckoff et al., 2009). Feral swine could also fa-
cilitate the spread of emerging foreign animal diseases such as African 
swine fever or foot- and- mouth disease (Brown et al., 2020, 2024; 
Meng et al., 2009). The risk of disease spillover from feral swine into 
livestock as well their extensive damage to crops makes feral swine 
management a priority for protecting food security in the US. Efforts 
to control and remove feral swine populations generally include ex-
clusionary fencing, trapping, ground- shooting, aerial- shooting, and 
telemetered swine (Kilgo et al., 2023; Lavelle et al., 2011; McCann & 
Garcelon, 2008; Schuyler et al., 2002). These efforts have had varied 
degrees of success (McCann & Garcelon, 2008; Parkes et al., 2010). 
However, it is extremely difficult to eradicate established popula-
tions of feral swine due to their highly invasive characteristics. These 
characteristics include being an extreme generalist in habitat and diet 
(Barrios- Garcia & Ballari, 2012; Fulgione & Buglione, 2022), having 
high fecundity (5.43 foetuses/litter and multiple litters/year; Chinn 
et al., 2022; Snow et al., 2020), and their hybrid origins (Barmentlo 
et al., 2024; Fulgione et al., 2016; Smyser et al., 2020, 2024).

Despite being one of the most destructive IAS globally (Lowe 
et al., 2000), contemporary patterns of feral swine movement across 
the US are not well described. In North America, they are broadly 
spread across Canada, creating important threats of invasion to the 
northern border of the US (Aschim & Brook, 2019; Kramer et al., 2024; 
MacDonald & Brook, 2023). Despite having a fairly limited dispersal 
range	(ranging	from	0.5	to	2.4 km;	Casas-	Díaz	et	al.,	2013), feral swine 
have spread to over 30 states across the US—a significant increase 
since the 1980s (Lewis et al., 2019). This rapid range expansion is due, 
in large part, to the intentional translocation of feral swine (Hernández 
et al., 2018; Smyser et al., 2020; Tabak et al., 2017). Further, states 
have differing legislation, monitoring, and enforcement regarding the 
movement of feral swine—which may be reflected in cross- state move-
ment patterns. For example, state policy in Texas accommodates cer-
tain feral swine- related activities including the recreational hunting of 
feral swine year- round and allowing for fenced hunting preserves (4 
Tex. Admin. Code § 55.9). Texas has the largest number of feral swine 
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in the US with a deeply seeded culture in feral swine hunting (Carlisle 
et al., 2022; Connally et al., 2021; Lewis et al., 2019). This hunting cul-
ture likely contributes to the growing population of feral swine through 
the illicit transport of feral swine to augment or introduce populations 
for recreational hunting (Grady et al., 2019). Conversely, Missouri has 
adopted a goal of eradicating feral swine from the state and has passed 
legislation, including the closure of public lands to feral swine hunting, 
as a means of eliminating the value of established populations within 
the state (Missouri Feral Hog Report, 2021). New policies and compre-
hensive control efforts have resulted in a 48.5% decrease in the num-
ber of feral swine- occupied water sheds in Missouri from 2016 to 2021 
(Missouri Feral Hog Report, 2021).

Feral swine exhibit varying degrees of population structure across 
the US (McCann et al., 2018). Some populations are characterized 
by isolated groups of individuals that are relatively genetically simi-
lar while others exhibit a pattern of IBD. For example, populations in 
both Florida and California have been characterized by discrete, lo-
calized clusters (Hernández et al., 2018; Tabak et al., 2017). However, 
feral swine populations in Texas reflect a mix of spatially dispersed and 
weakly resolved clusters that are better described by IBD (Delgado- 
Acevedo et al., 2021; Mangan et al., 2021). To date, no study has eval-
uated widespread patterns of feral swine movement across the US. 
Characterizing movement patterns across the invaded range of IAS 
can inform management in order to improve efforts to mitigate the 
spread and facilitate elimination of established populations (le Roux & 
Wieczorek, 2009). Further, characterizing movements can help differ-
entiate the processes of natural dispersal from those that are the result 
of intentional human- mediated translocation. Thus, management agen-
cies can decide if they should focus their resources on animal move-
ment mitigation or legislation and enforcement of human activities.

The aim of this study was to characterize the widespread patterns 
of movement of an IAS using machine learning and network analy-
ses. Specifically, we characterized patterns of feral swine movement 
across the invaded range within the US, enabling differentiation of 
natural range expansion from human- mediated movement that has 
contributed to the expansion of this destructive species. Our objec-
tives were to leverage a large, genomic database of feral swine to 
(1) characterize patterns of population structure across the invaded
range within the US, (2) identify translocated feral swine using deep
neural networks—focusing on translocations from within the US
as well as from Canada to the US, and (3) characterize broad, spa-
tial patterns of translocation using network analyses and a genetic
distance- based neighbour- joining tree. In turn, these results can be
used for developing management approaches that are tailored to the 
specific challenges posed by invasive species.

2  |  METHODS

2.1  |  Feral swine sample collection and genotyping

Biological samples (n = 18,789)	 were	 collected	 from	 feral	 swine	
throughout their invaded range within the US as an extension of 

damage management and disease surveillance efforts led by the 
USDA along with cooperative agencies. Overwhelmingly, samples 
were collected by USDA- Animal and Plant Health Inspection Service- 
Wildlife Services personnel. Feral swine were lethally removed 
through trapping or targeted sharpshooting from 2001 to 2022 
as an extension of control efforts to reduce threats to agriculture, 
natural resources, property, and the health of humans and livestock. 
To identify potential translocations from Canada to the US, biologi-
cal samples were collected from feral swine in Alberta (n = 13)	and	
Saskatchewan (n = 14),	 Canada	 by	 the	University	 of	 Saskatchewan	
under Animal Use Protocol Number 21050024. DNA extraction was 
performed by GeneSeek (Neogen Corporation [Lincoln, Nebraska, 
USA]) using various biological sample types (hair, pinna, and kid-
ney) and the MagMax™ DNA Multi- Sample Ultra Kit (Thermo Fisher 
Scientific Inc. [Walthan, MA, USA]). Genetic samples were genotyped 
using	 GeneSeek's	 Genomic	 Profiler	 (GGP)	 for	 Porcine	 80 k	 array	
(68,516 loci; Illumina BeadChip microarray [San Diego, CA] licensed 
exclusively to GeneSeek, a Neogen Corporation, [Lincoln, NE]) and 
aligned to the Sscrofa 11.1 genome assembly (Warr et al., 2020).

As part of our quality control process, we removed individuals 
presumed to be escaped or released domestic pigs from production 
farms or the pet trade (i.e., Vietnamese potbellied pigs). To distinguish 
domestic pigs from genetically typical feral swine, we estimated the 
ancestry profiles of individuals based on the methods described in 
Smyser et al. (2020) and removed any individual with a combined 
ancestry of >0.4 from domestic pig breeds (Berkshire, Hampshire, 
Chester White, Duroc, Landrace, Yorkshire/Large White, Meishan, 
and miniature Siberian). Once individuals presumed to be escaped 
or released domestic pigs were removed, we conducted standard 
genotype quality control filters using PLINK 2.0 (Chang et al., 2015). 
First, we removed loci that were unmapped or non- autosomal based 
on the Sscrofa11.1 reference genome assembly (Warr et al., 2020). 
We then removed loci with call rates <0.95 or minor allele frequen-
cies <0.05. Individuals were removed for downstream analyses if 
they were missing >5% of their genotype data. The resulting set of 
individual genotypes was considered the ‘master’ dataset. The mas-
ter dataset was further pruned to create the ‘training’ dataset by 
removing related individuals as well as individuals sampled in close 
proximity to one another (described in the Section 2.3).

2.2  |  Population structure

We used two approaches to characterize population genetic struc-
ture across the invaded range of feral swine in the US. First, we used 
the ‘snmf’ function in the R package LEA (Frichot & François, 2015) 
to independently characterize population structure for each state. 
We delineated genetic clusters within each state as states repre-
sent the spatial extent to which management actions are conducted 
and policy decisions are made. Further, state- level analyses allow us 
to capture more fine- scale patterns of population structure com-
pared to a national- level analysis (Oyler- McCance et al., 2022). We 
chose the optimal number of genetic clusters (K) per state using the 
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cross- entropy criterion—where a smaller cross- entropy value or a 
plateau of values across values of K indicates the best supported 
K (Frichot & François, 2015). Second, we used principal component 
analysis (PCA) to visualize patterns of genetic structure. Specifically, 
single nucleotide polymorphism (SNP) genotypes were imported 
into R (R Core Team, 2023) using the ‘read. PLINK’ function in the 
R	package	adegenet	(Jombart,	2008;	Jombart	&	Ahmed,	2011), and 
a PCA was conducted using the ‘dudi.pca’ function in the R pack-
age ade4 (Dray & Dufour, 2007). To avoid bias in the PCA caused 
by the presence of related individuals and high variance in sam-
ple size (McVean, 2009; Novembre & Stephens, 2008; O'Connell 
et al., 2019), we conducted this analysis using only the individuals 
included in the training data (see below).

2.3  |  Identifying translocations

2.3.1  |  Training	data

We used a deep neural network, implemented in the software 
Locator (Battey et al., 2020), to identify feral swine translocations. 
The deep neural network was trained on a set of geo- referenced 
individuals (the training dataset). This trained model was then used 
to make predictions regarding the geographic origins of individuals 
based solely on their genotypes. However, it is important to remove 
bias from this training data to get accurate predictions. To create 
the training dataset, we first removed highly related individuals 
from the master dataset to (1) ensure that familial groups would not 
skew allele frequencies for a given geographic region and (2) ensure 
that if a translocation has occurred, it is more likely that a higher 
frequency of individuals from the source population remains com-
pared to the recipient location of the translocation. Similar to our 
genetic clustering analysis using LEA, estimates of relatedness were 
independently calculated for each state to best capture fine- scale 
patterns of population structure. To estimate relatedness (r), we 
used the ‘pcair’ and ‘pcrelate’ functions in the R package GENESIS 
(Gogarten et al., 2019). These functions implement a PCA- based 
method that corrects for population structure that may be present 
within the dataset (Conomos et al., 2016). We identified the number 
of principal components to retain using the ‘nCng’ function in the R 
package nFactors (Raiche & Magin, 2022). The individual with the 
greatest number of relatives was selected and all other individuals 
with	a	relatedness	coefficient ≥ 0.177	(reflective	of	second-		or	first-	
degree relatives; Manichaikul et al., 2010) to this focal individual 
were removed. Second, we reduced the spatial bias in the training 
dataset as densely sampled areas can result in Locator functioning 
more like an assignment test in which samples are categorized ac-
cording to their source population rather than their geographic ori-
gin (Battey et al., 2020). We removed individuals that were within 
5 km	 of	 each	 other	 using	 the	 function	 ‘thin’	 from	 the	 R	 package	
spThin (Aiello- Lammens et al., 2015). This process was implemented 
with 20 repetitions of the randomization algorithm. Most of the feral 
swine samples had precise geographic coordinates; however, some 

sample coordinates reflected nearby landmarks or county centroids 
rather than the specific sampling location. This resulted in multiple 
samples having the same geographic coordinates when in reality 
they were sampled from different localities. To accommodate this 
sampling artifact, we introduced variation to the geographic coordi-
nates using the base R function jitter (factor of 65) prior to spatially 
thinning the dataset (R Core Team, 2023). This resulted in an aver-
age	distance	of	10.1 km	between	the	sampling	location	and	jittered	
coordinates	(SD = 3.9 km).	Lastly,	we	incorporated	27	unrelated	indi-
viduals from Canada into the training dataset (13 from Alberta and 
14 from Saskatchewan). Including individuals from Canada allowed 
us to evaluate origins of feral swine outside of the US. However, we 
lacked fine- scale spatial data for Canadian samples and, therefore, 
used the centroid of the respective provinces as sampling locations.

2.3.2  | Workflow

To identify translocations, we first assigned all feral swine in the 
master dataset to unique genetic clusters based on their admixture 
proportions from the LEA analysis. We then iteratively predicted the 
geographic origin of all feral swine by running each genetic cluster 
independently. To do so, we created an iterative workflow to imple-
ment Locator that encompasses the following steps (Figure 1):

1. Select a genetic cluster (i.e., a focal cluster) to use as the test 
dataset for Locator and remove all individuals represented in 
this genetic cluster from the training data. Given that Locator 
generates predictions based on the genotypes of the training 
data, predicted origins would likely resemble the sampling lo-
cation if individuals from the same genetic cluster were pres-
ent in the training data, even when they are the result of a 
translocation event.

2. Predict the origin of each individual in the focal cluster 5 times. 
This is done by using a different subset of individuals from the 
training dataset to train and validate 5 separate neural networks 
(90% of the training data is used for training the neural network 
while 10% of the training data is set aside for model validation).

3. Remove individuals that yielded high variance among the predic-
tions from the 5 Locator iterations.

a. Estimate the point with the maximum density of predicted lo-
cations using the ‘kde2d’ function from the R package MASS 
(Venables & Ripley, 2002).

b. Calculate the distance between each prediction and the maxi-
mum density point.

c.	 Remove	all	individuals	where	≥3	of	the	5	predictions	were	lo-
cated	more	than	200 km	from	the	maximum	density	point.	High	
variance between predictions could indicate a high degree of 
admixture from geographically disparate populations or recent 
translocation to multiple areas from the same source popula-
tion. In either of these circumstances, high variance between 
predictions indicates a low confidence in the individual's pre-
dicted origin.
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4. Categorize remaining individuals as either ‘resident’ or
‘translocated’.

a. Resident individuals were defined as those that had a predicted 
location (using the coordinates from the maximum density
point)	within	200 km	of	the	respective	sampling	location	or	had
a maximum density point located in the same state as the sam-
pling location.

b. Translocated individuals were those that had a predicted
location (using the coordinates from the maximum density
point) >200 km	of	the	sampling	location	and	had	a	maximum
density point found in a different state than the sampling
location.

5. Repeat steps 1–4 for all genetic clusters.

We ran an additional analysis to highlight in- state translocations 
by redefining resident individuals as those that had a predicted loca-
tion	within	200 km	of	their	respective	sampling	location	and	trans-
located individuals as those that had a predicted location >200 km	
away from their sampling location. This separate analysis allowed 
us to identify wide- ranging feral swine movement within a given 

state as well as those that originated out- of- state (Supplementary 
Methods in Appendix S1).

2.4  |  Translocation networks

Individuals classified as translocated were used to build a network 
with the ‘graph_from_data_frame’ function in the R package igraph 
(Csardi & Nepusz, 2006). Nodes in the network represented states 
and the lines connecting nodes (referred to as edges) represented a 
translocation between the states. To characterize general patterns 
of translocations across states, we calculated several measures of 
centrality within the R package igraph (Csardi & Nepusz, 2006). 
Measures of centrality included degree, which sums all connections 
between the nodes. Since feral swine movement is directional (i.e., 
feral swine are moving from one state to another), we also changed 
the ‘mode’ argument for the ‘degree’ function in igraph to include 
all incoming and outgoing connections (the sum of all connections 
adjacent to the focal node), incoming connections only, and outgo-
ing connections only. This allowed us to characterize which states 

F I G U R E  1 Translocations	were	
identified by using deep neural networks 
to predict the geographic origin for all 
feral swine (Sus scrofa) in the master 
dataset. The neural networks were trained 
using a subset of the master dataset that 
underwent additional filtering criteria 
(training dataset). Predictions were 
generated by independently running 
each genetic cluster through the iterative 
workflow.
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received translocations from the greatest number of states (more 
incoming connections) and which states were the source of trans-
locations to the greatest number of states (more outgoing connec-
tions). To gauge the influence of a state within the translocation 
network, we calculated the eigenvector centrality. With this metric, 
states with a higher eigenvalue centrality value were connected to 
other states that also have high connectivity. We calculated close-
ness centrality to characterize how close a state was in the network 
to other states. In this measure, states with higher closeness cen-
trality were also more central in the network. We also calculated 
the reach of each state, which is similar to the degree centrality 
measure; however, instead of calculating connections with adjacent 
nodes, the reach metric can calculate k steps out. For our translo-
cation network, we used a normalized reach calculation with k = 2	
(i.e., calculated to two connections out from the focal node). This 
was executed using the igraph function ‘ego_size’ and ‘vcount’ as 
(ego_size(network,k)- 1)/(vcount(network)- 1). The numerator of the 
equation, ego_size(network,k)- 1, calculated the number of nodes 
that were included in a network composed of 2 nodes of separation 
from the focal node. We then subtracted 1, to remove the focal node 
from this count. The second part of the equation ‘vcount(network)- 1’ 
calculated the total size of the full network (i.e., the number of ver-
tices in the network) minus the focal node. By dividing the reach of 
a focal node, a state in this case, by the total number of nodes in the 
entire network, we normalized the reach score. Lastly, we calculated 
the betweenness centrality. This metric measured the extent that a 
focal node falls on the shortest path between other pairs of nodes. 
In other words, states with a high betweenness value likely had more 
influence within the translocation network. To identify redundancy 
between the measures of centrality, we calculated the Pearson's 
correlation coefficient between all measures using ‘cor’ function in 
base R (R Core Team, 2023). To identify whether state size or the 
number of bordering states a given state has can explain patterns 
of centrality, we created a series of linear models using the base R 
function ‘lm’ (R Core Team, 2023).

2.5  |  Genetic distance and neighbour- joining tree

We expected translocation patterns to be complex, reflecting a pro-
cess by which some states serve as a source to multiple other states. 
In such cases, we expected genetic similarity between all locations 
that receive translocations from the same source. This genetic simi-
larity could make it difficult for the neural network to predict the 
origin of translocations. To elucidate the complex patterns of trans-
location produced by the neural network, we generated a neighbour- 
joining tree using the genetic distance between all genetic clusters 
identified in our LEA genetic clustering analysis. European wild 
boars were included as an outgroup (n = 17;	Yang	et	al.,	2017). We 
estimated pairwise genetic distance between genetic clusters using 
the ‘gl.dist.pop’ function in the R package dartR (Gruber et al., 2018). 
We generated the neighbour- joining tree using the ‘aboot’ func-
tion in the R package poppr using Nei's Genetic Distance between 

populations with 1000 bootstrap replicates across loci (Kamvar 
et al., 2014; Nei, 1972).

3  |  RESULTS

3.1  |  Feral swine sample collection and genotyping

A total of 541 feral swine were removed prior to analyses due to 
either being domestic swine (n = 515)	or	having	a	low	genotype	call	
rate (n = 26).	After	quality	control	filters	for	individuals	and	loci	were	
conducted, a total of 18,248 individuals with 35,141 loci were in-
cluded in the master dataset. These samples were spatially distrib-
uted across both the established range of feral swine in the US and 
newly invaded area (Figure 2). After additional filtering to remove 
highly related individuals and reduce spatial bias, the training dataset 
was composed of 4100 feral swine across 38 states (n = 4073)	and	
two provinces in Canada (n = 27).

3.2  |  Population structure

State- based genetic clustering, executed in LEA, allowed us to de-
tect fine- scale patterns of population structure. We identified some 
genetic clusters with strong genetic associations (genetic cohesive-
ness) whereas other areas were widespread and highly admixed. 
Using the highest proportion of cluster assignment, we categorized 
all feral swine into 122 unique genetic clusters across the 38 states 
(range = 1–10	 genetic	 clusters/state;	 mean = 3.21	 genetic	 clusters/
state; Table S1). Among states with limited sampling (n < 10),	we	as-
signed all individuals from that state to a single genetic cluster. For 
our second approach using PCA, we found that the first component 
explained 2.451% of variation in the genetic information for all feral 
swine while the second explained 1.652%. We detected some wide 
regional differentiation, particularly differentiation of the Midwest 
(Illinois, Iowa, Michigan, Wisconsin, Minnesota, Indiana, Ohio, 
Kansas, and Missouri), the south Atlantic (Florida, Maryland, North 
Carolina, Virginia, Georgia, South Carolina, and West Virginia), 
and the south central (Arkansas, Oklahoma, Alabama, Mississippi, 
Louisiana, Texas, Kentucky, and Tennessee) portions of the US 
(Figure 3). However, genotypes from western states lacked strong 
association to a particular area, likely due to the fact that many west-
ern states (besides California) are newly invaded areas and may re-
flect introduction pressure from varying sources.

3.3  |  Identifying translocations

A total of 91,240 geographic origins were predicted for all feral 
swine (n = 18,248)	using	Locator	(5	predictions	per	individual).	These	
predictions were used to identify potentially translocated individu-
als and identify their spatial origin. We used the known sampling 
location and the predicted location from Locator to estimate the 
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prediction error of the neural network. Among individuals used 
for model validation, a strong correlation was observed between 
sampling location and predicted origin (latitude R2	mean = .892	and
range = 0.757–0.969;	 longitude	 R2	 mean = .924	 and	 range = 0.798–
0.983; Figure S1). Further, the prediction error was low for all itera-
tions of Locator with a median validation error ranging from 0.130 
to 0.547 degrees.

A total of 1474 individuals were removed for downstream anal-
ysis due to high prediction variance across iterations (at least 3 of 
the	5	predictions	were	more	than	200 km	away	from	the	maximum	
density point). Of the remaining 16,774 individuals, a total of 3364 
individuals were identified as translocated whereas 13,410 individ-
uals were identified as residents (Figure S2). If we account for in- 
state translocations, we identified 4378 individuals as translocated 
(1014 from in- state and 3364 from out- of- state) and 12,396 resident 
individuals (Figures S3 and S4). All individuals sampled from Iowa 
(n = 7),	 Maine	 (n = 3),	 Michigan	 (n = 24),	 Minnesota	 (n = 1),	 Nevada	
(n = 30),	New	York	(n = 19),	Utah	(n = 2),	Washington	(n = 5),	and	West	
Virginia (n = 134)	were	identified	as	translocated.	Further,	a	high	pro-
portion of individuals sampled from Arizona (71.4%), Illinois (95.5%), 
Kentucky (77.4%), New Mexico (77.6%), Pennsylvania (81.5%), 
and Virginia (88.4%) were classified as translocated (Figure S2). To 

visualize broad trends of where translocated individuals originated, 
we plotted the maximum density point for all predicted origins at 
two different distance classes (Figure 4). When investigating the dis-
tribution of all predicted origins, the majority of translocations orig-
inated from coastal Georgia, Florida, the border between Oklahoma 
and Texas, and south- central Texas. A similar pattern was observed 
when	evaluating	only	 translocations	originating	 less	 than	1000 km	
from their sampling location indicating that many translocations 
occur within the general region from where they were sampled. 
However, when we examined only translocations that originated 
greater	than	1000 km	from	their	sampling	location,	the	highest	den-
sity of translocations shifted from Georgia to south- central Texas 
(Figure 4). Further, we detected 11 long- distance translocation 
events from Saskatchewan and Alberta, Canada to Michigan (n = 3),	
Ohio (n = 1),	and	Tennessee	(n = 7).

3.4  |  Translocation networks

Measures of centrality were calculated for all states. Closeness 
centrality for Colorado, Maine, Minnesota, Utah, and Washington 
could not be calculated as they were not the predicted origin of any 

F I G U R E  2 Feral	swine	(Sus scrofa) samples were collected across their invaded range in the contiguous United States. The dark blue 
area indicates their historic range (1982) while the light blue area indicates their contemporary range (2021). Dark grey circles represent 
individuals in the master data set. Orange circles represent individual feral swine that were used to train the neural network to identify 
translocations. Additional samples from Alberta and Saskatchewan, Canada were added to the training dataset in order to identify 
translocations from Canada to the United States.
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translocations. To allow for the comparison of all centrality metrics, 
these states were removed prior to calculating the correlation be-
tween centrality metrics. We found two groups of highly correlated 
measures	of	 centrality	 (cor > .8).	 The	 first	 group	was	 composed	of	
four measures of centrality: (1) the degree of incoming connec-
tions (degree in), (2) eigenvalue, (3) degree of all directions (total de-
gree), and (4) normalized reach (Figure S5). The second group was 
composed of total degree, normalized reach, betweenness, degree 
out (only outgoing connections), and closeness. Due to this high 

correlation, only betweenness, degree out (only outgoing connec-
tions), and degree in (only incoming connections) will be reported as 
these were among the lowest correlated and relevant for character-
izing patterns of translocation.

Broadly, translocation networks revealed a higher degree of 
movement from the established range of feral swine in the south- 
central and south Atlantic regions of the US (Figure 5a). The ma-
jority of connections reflected regional translocation of feral swine 
(≤1000 km;	Figure 5b). Texas was identified as a major source for 
translocations in terms of betweenness (269) and the number of 
outgoing	 connections	 (degree	 out = 93).	 These	 values	 were	 mark-
edly higher than the other states identified as common sources 
of	 translocation	 (betweenness = Tennessee	 (93),	 Georgia	 (87)	 and	
Florida	 (86);	 degree	 out = Florida	 (17	 connections),	Oklahoma	 (14),	
Arkansas (14), Georgia (12), and Louisiana (12 connections); Figure 5). 
Tennessee was identified as a hotspot for receiving translocations 
based on measures of betweenness (93) and degree in (17). Many of 
the newly invaded states were the result of long- distance translo-
cation (>1000 km;	Figure 5c). New Mexico, Arizona, South Carolina, 
Kansas, West Virginia, Kentucky, Illinois, Nevada, Oregon, Vermont, 
Maine, Utah, Washington, Minnesota, and Colorado all had low be-
tweenness (<10; Figure S6 and Table S2) and Colorado, Minnesota, 
Vermont, Oregon, Washington, Utah, Maine, Nevada, Arizona, New 
Mexico, and Iowa had low degree in centrality—indicating only 1–3 
origins per state. Patterns of centrality could not be explained by 
either state size or the number of bordering states for a given state 
(Figure S7).

3.5  |  Genetic distance and neighbour- joining tree

The neighbour- joining tree estimated from Nei's genetic distance 
(mean = 0.13;	range = 0.01–0.38;	Figure S8) revealed a few key pat-
terns. As expected, we observed regional patterns of genetic similar-
ity (Figure 6). For example, we observed close genetic relationships 
among the south Atlantic states of Georgia, South Carolina, Virginia, 
West Virginia, North Carolina, and Florida as well as states from the 
south- central region of the US (Mississippi, Alabama, Tennessee, 
Louisiana, and Kentucky; Clades D, E, and I; Figure 6). Samples from 
California and Nevada formed a subclade within Clade I. We observed 
close genetic relationships among a subset of states from the south- 
central, western, and Midwest regions (Texas, Oklahoma, Kansas, 
Arkansas, Missouri, New Mexico, Colorado, and Kansas; Clade G). 
Much like the translocation network, we observed long- ranging 
translocations in the neighbour- joining tree. Specifically, we see a 
close genetic relationship between populations sampled in western 
states (California, Washington, Nevada, Arizona, and Oregon) with 
populations sampled from the south Atlantic and south- central re-
gions (Clade I). This indicates a history of translocation between the 

F I G U R E  3   Principal Component Analysis (PCA) showing broad patterns of population genetic structure of feral swine (Sus scrofa) 
across the contiguous United States. Points represent individual genotypes and are colour- coded based on the state from which they were 
sampled. Geographic regions are represented by similar colour palettes.

F I G U R E  4 Feral	swine	(Sus scrofa) translocations were identified 
across the invaded range in the contiguous United States. Each 
point represents the predicted origin of a translocation event. 
Warmer colours represent a higher density of translocations 
relative to cooler colours. Similar patterns of translocation were 
observed when considering all translocation events (a) and regional 
translocations	(those	that	are	≤1000 km	from	their	sampling	
locations; b) while we identified Texas and Georgia as dominant 
sources of long- distance translocations (those that are >1000 km	
from their sampling locations; c).
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F I G U R E  5 Feral	swine	(Sus scrofa) translocations were characterized between states using a directional network. Edges between nodes 
depict the presence of a translocation between states (nodes). The node size represents the movement of feral swine away from the focal 
node	(degree	out).	Networks	were	generated	for	all	translocation	events	(a),	regional	translocation	events	(only	translocations	≤1000 km	
from their sampling locations; b), and long- distance translocation events (those that are >1000 km	from	their	sampling	locations;	c).
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Pacific and Atlantic coasts. Populations from newly invaded areas 
of the US originated from various regions. Further, we see samples 
from Indiana group with samples from Alabama and Louisiana (Clade 
H) revealing the south- central origins of those northern populations. 
Samples from Illinois showed associations with California (Clade I)
as well as Texas, Arkansas, and New Mexico (Clade G) indicating
multiple translocations from different origins. Although geographi-
cally distant, Wisconsin showed strong associations with Oregon
populations within Clade I, likely a result of translocations from the
same geographic origin. A subset of populations from New York and
Pennsylvania were genetically similar to those found in Oklahoma
and Texas (Clade G). Populations in Northern states (Pennsylvania,
Michigan,	Ohio,	New	York,	Vermont,	New	Jersey,	New	Hampshire)
generally grouped together with the Canadian provinces (Alberta
and Saskatchewan) and were more closely related to pure European
wild boar than other feral swine populations from the US (Clades A,
B, and C).

4  |  DISCUSSION

Understanding the movement patterns of IAS is critical in taking 
steps to mitigate their spread. In this study, we leveraged genomic 
data and machine learning to characterize drivers of invasive species 

expansion. In implementing this approach, we successfully identified 
and characterized patterns of human- mediated feral swine translo-
cations. As removing established populations of feral swine is dif-
ficult and does not curtail their range expansion when movement 
is facilitated by humans, management efforts should be focused 
on mitigating the introduction of feral swine into new areas. In this 
study, we have highlighted the potential sources of translocated 
individuals to newly invaded areas and have shown that transloca-
tions across state borders are widespread and frequent. With this 
information, management strategies can be tailored to mitigate 
the anthropogenic spread of feral swine. For instance, movement 
information can be used to inform invasive species management 
models (ISMMs; Thompson et al., 2021) and prioritize management 
efforts (Baker, 2017; Pepin et al., 2020). Legislation, enforcement, 
and monitoring are integral components of an effective response 
for states, particularly those on the front of the invaded range, to 
reduce human- mediated movements of feral swine and expansion 
of their distribution.

Broad, regional patterns of genetic structure were identified 
using PCA and were consistent with patterns of genetic structure 
described in McCann et al. (2018) (Figure 3). Similar to previous 
work characterizing genetic structure of feral swine in Florida 
(Hernández et al., 2018), California (Tabak et al., 2017), and Texas 
(Delgado- Acevedo et al., 2021; Mangan et al., 2021), we found 

F I G U R E  5 	(Continued)
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several areas across the contiguous United States that exhibited 
weak genetic structure (patterns of IBD) whereas other areas 
reflected more distinct, isolated genetic clustering. Feral swine 
dispersal	 in	 North	 America	 ranges	 from	 0.5	 to	 2.4 km	 (Casas-	
Díaz	 et	 al.,	2013); therefore, weak genetic structure could be a 
result of close, interconnected genetic populations with dispersal 
between them (stepping- stone model) or could be facilitated by 
translocation. Despite weak genetic structure in some regions of 
the US, the deep neural network created by Locator frequently 
predicted the origin of a sample with less than 1 degree of error 
from the sampling location. As predictions made by Locator are 
estimated to be accurate within 3.16 to 4.09 generations of dis-
persal (Battey et al., 2020), our validation error is slightly higher 
than expected but sufficient to characterize broad- scale patterns 
of feral swine movement. Further, estimates of dispersal for newly 
established populations could be higher based on the number of 
feral swine translocated and the habitat quality of the new area 
(Clontz et al., 2023).

Despite low validation error within the deep neural networks, 
the neural network was not without its limitations. A total of 
20.7% of samples were removed from the translocation analysis 
due to high variability in the predicted origins for a given individual 
among Locator iterations. Highly variable predictions could occur 
for several reasons. For example, if a translocated feral swine is 
released into an area with an established population and breeds 
with a resident individual, the offspring would have genetic as-
sociations to the disparate geographic locations of both parents 
and result in high spatial variance among predictions. Conversely, 
if a specific genetic population is used as a source for translo-
cations to multiple other regions, it may be difficult to pinpoint 
which region is the source using only genetic data. Specifically, 
Locator could assign an animal to either the original source or the 
opposing seeded population. Neural networks are also influenced 
by bias in the data used for training the network and spatial bias 
can lead to higher prediction error (Battey et al., 2020; Rehmann 
et al., 2024). We conducted ‘downsampling’ to reduce spatial bias 
present in the training data by removing related individuals as well 
as individuals in close proximity; however, some areas were still 
overrepresented in the training data (Figure S9). Although this may 
have impacted the predicted origin of individuals, we identified 
Texas as one of the biggest sources of translocation even though it 
had a relatively low sampling density based on the size of the state 
(Figure S10). Conversely, Missouri had a relatively low degree out 
measure of centrality (i.e., it was not a large contributor of translo-
cations) but had a higher sampling density compared to Texas. This 
leads us to believe that sample bias had a limited impact on our 
predictions. Further, a balance between having enough samples 

to properly train the model and reducing sampling bias could lead 
to reduced prediction error (Rehmann et al., 2024). Specifically, 
excessive down- sampling can reduce mean prediction bias, but 
increase prediction error (Rehmann et al., 2024). Despite these 
challenges, we were able to characterize a clear pattern of trans-
location across the US by pairing our translocation results with 
a neighbour joining tree of the genetic distance between genetic 
clusters. The neighbour- joining tree served as a compliment to 
elucidate the complicated relationships among feral swine pop-
ulations with admixed origin or when populations are established 
from similar genetic populations.

Similar to the translocation network, the neighbour- joining tree 
highlighted the extent of regional movement as well as revealed 
patterns of long- ranging translocations (>1000 km).	For	instance,	an	
Illinois population was predicted to have originated from Texas in 
the translocation network. The neighbour- joining tree showed as-
sociations with Texas populations and with Missouri (Clade F) sug-
gesting these populations could have come from a common source 
(Figure 6). Similarly, the translocation network identified potential 
translocations from Canada to Michigan, Ohio, and Tennessee. 
The neighbour- joining tree confirmed strong associations between 
Michigan, Ohio, and Canada. These populations were also more 
genetically similar to European wild boar than to the other feral 
swine populations in the US. The only other documented translo-
cation from Canada to the US was a free- ranging wild pig eutha-
nized in New York in 2017 with a Saskatchewan ear tag that proved 
it originated from Saskatchewan, Canada in 2004 and escaped from 
a New York animal sanctuary (Michel et al., 2017). The neighbour- 
joining tree conflicted with the translocation network in some re-
lationships. For example, 30 individuals from Ohio were predicted 
to be from California based on the translocation network, but Ohio 
individuals have strong association with other Midwestern states 
in the neighbour- joining tree. Further, the translocation network 
predicted the source of Oregon translocations was Texas; however, 
the neighbour- joining tree showed Oregon populations in Clade I 
more closely related to south Atlantic states and a subset of south- 
central states that do not include Texas. However, these popula-
tions may have ancestral sources from Texas themselves. Lastly, the 
neighbour- joining tree highlights the degree of relatedness among 
all populations in the US. This helps identify possible translocations 
that have been in isolation and those that have a high degree of on-
going gene flow.

Overall, we found that feral swine are being translocated 
across the US with many states receiving translocations from just 
a few states (1–3), while others receive from greater than 10 states 
(Tennessee, Texas, Ohio, Georgia, Alabama, Virginia, and Missouri). 
We found that areas in Georgia, southern Oklahoma, central Texas, 

F I G U R E  6   A neighbour- joining tree showing the relationships between different genetic clusters of feral swine (Sus scrofa) from across 
the contiguous United States. Relationships are based off of Nei's genetic distance and branch support is based off of 1000 bootstrap 
iterations.	Only	branches	with	≥50%	bootstrap	support	were	retained.	A	group	of	17	European	wild	boars	were	used	as	an	outgroup.	
Coloured circles on the branch tips correspond to a state or province and states from specific regions share a colour palette. A total of nine 
clades were identified (vertical bars with letters A–I).
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southern Louisiana, and central Florida were hotspots for the origi-
nation of translocations. However, if we focus on only long- distance 
translocations	(greater	than	1000 km	from	sampling	location),	cen-
tral and northern Texas as well as Florida are the main sources of 
translocations (Figure 5). This pattern is also reflected in our net-
work analysis with Texas, Louisiana, Georgia, Arkansas, Florida, and 
Oklahoma having the highest degree out centrality values. However, 
it is important to note that Texas had a notably higher value of de-
gree out centrality compared to the next highest state and had a 
substantially higher measure of betweenness than any other state. 
This suggests that Texas serves as an important source for trans-
locations across the United States (serving as a source to 26 of the 
38 states we investigated) and has a disproportionate impact on the 
spread of feral swine. It is possible that the difference in state legis-
lation pertaining to the possession and transport of feral swine, as 
well as local hunting culture, can explain these patterns of transloca-
tion pressure. Further studies are needed to quantify the sociologi-
cal factors that influence translocation rates.

In this study, we have demonstrated how genetics and neural 
networks can be effectively used to characterize patterns of IAS 
movement. By understanding the patterns of IAS movement, we 
can aid and inform management efforts to improve food security 
and mitigate ecological destruction. We found that there is sub-
stantial human- mediated movement across the contiguous United 
States and have documented long- distance translocation from 
core invaded areas (Texas) to emergent populations (Pennsylvania 
and New York). Models have shown that much of the central and 
eastern regions of the US are vulnerable to invasion by feral swine 
in the future (Miller et al., 2023), and we characterized transloca-
tions as a source to many of these areas. Preventing the spread of 
feral swine is vital to protecting biodiversity and native species 
as well as controlling the spread of disease (Brown et al., 2020). 
Further, targeted mitigation efforts are the most impactful way to 
manage IAS. However, feral swine regulations and management 
vary among states and are influenced by social and cultural fac-
tors (Smith et al., 2023), which can challenge efforts to mitigate 
translocation. It is our hope that the results of this study help 
target limited resources available for controlling this destructive 
IAS towards mitigating the spread and ongoing introductions from 
identified core source areas.
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