
The appendices to the manuscript “A model for leveraging animal movement to understand spatio-1

temporal disease dynamics” serve three functions. First, they give a more formal presentation of the ideas2

presented in the main text. Second, they illustrate extensions of MoveSTIR that highlight its flexibil-3

ity. Third, they provide details on the implementation of MoveSTIR, with reference to the code that4

accompanies the manuscript. While all appendices contribute to increased understanding of MoveSTIR,5

they are not all required for the casual reader/user to interface with MoveSTIR. At the beginning of6

each Appendix, we provide a one sentence summary of the section and whether it is necessary to un-7

derstand MoveSTIR as presented in the main text. We also provide multiple worked examples of Move-8

STIR in the Jupyter notebooks ‘moveSTIR_examples.ipynb’ and ‘moveSTIR_tutorial.ipynb’ available at9

https://github.com/mqwilber/moveSTIR or https://zenodo.org/badge/latestdoi/409263341.10

1 Appendix S1: The contact function Φ(sj(τd), si(τa))11

Summary: This appendix describes the units associated with and possible functional forms for the contact12

function of MoveSTIR. It is recommended for understanding how MoveSTIR is implemented in the main13

text.14

The function δxj(u)(x) in equation 6 in the main text specifies whether or not the location of individual j15

at time u is in location x. However, it does not explicitly reference the area of location x. Considering area16

is important because the density of pathogen encountered by an acquiring host affects the force of infection17

and this density inherently depends on the area of x. Equation 4 in the main text implicitly accounts for18

area by defining β′ = β̃/(Area of x), where β̃ has units area units
time (e.g., m2

hour ). This means that increasing the19

area of x decreases the overall force of infection because it decreases encounters between the acquiring host20

and deposited pathogen, conditional on hosts being in area x.21

We can more generally account for area by writing β′δxj(u)(x) as β̃Φ(xj(u), x) (Gurarie & Ovaskainen22

2013; Martinez-Garcia et al. 2020). The function Φ(xj(u), x) is the contact function. We can write the23

contact function as Φ(sj(τd), si(τa)), where si(τa) and sj(τd) are the locations of the acquiring host i and24

depositing host j at time τa and τd, respectively. The contact function is a probability density function25

that specifies how likely contact is to occur between an acquiring host i at time τa and a present or past26

depositing host j at time τd < τa. The contact function depends on the distance between host i and host j27

(Gurarie & Ovaskainen 2013). There are two types of contact functions that we consider: a top-hat contact28

function and a Gaussian contact function (Gurarie & Ovaskainen 2013; Martinez-Garcia et al. 2020).29

The top-hat contact function is defined in two-dimensional space as30
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Φ(z = si(τa)− sj(τd)) =


1

πα2 if ||z|| < α

0 otherwise
(S1)

where ||z|| is the Euclidean distance between locations sj(τd) and si(τa) (Gurarie & Ovaskainen 2013). The31

top-hat contact function is uniform within a circular area πα2 and zero everywhere else, where α is the32

radius of the circle.33

The Gaussian contact function is defined in two-dimensional space as34

Φ(z = si(τa)− sj(τd)) =
1

4α2
exp(−π||z||2

4α2
) (S2)

where α is the mean distance of the half Gaussian (Gurarie & Ovaskainen 2013). The Gaussian contact35

function decays with distance ||z|| between the acquiring host and depositing host.36

Conceptually, one can think of the contact function in two equivalent ways. First, the depositing host37

deposits a packet of pathogen at a point location and the contact function then modifies how the acquiring38

host encounters and acquires that packet in the local area it searches. Alternatively, one can envision39

the acquiring host at a point location and the contact function instantaneously redistributing deposited40

pathogen across a local area, reducing the density of pathogen that the acquiring host encounters at its41

point location. This latter interpretation has the benefit of highlighting that the contact function could42

include time-dependence to account for the diffusion of the pathogen through space.43

2 Appendix S2: Extending the transmission kernel44

Summary: This appendix describes how the transmission kernel of MoveSTIR can be extended to account45

for additional biological realism. It is not necessary for understanding MoveSTIR as presented in the main46

text.47

There are myriad possibilities for adding additional biological realism to the transmission kernel and48

they will depend on the system under investigation. We consider two extensions here: temporal and spatial49

behavioral filters and pathogen decay that varies in space in time.50

Behavioral and spatial filters: The transmission kernel defined in equation 5 in the main text assumes51

that infected hosts constantly deposit pathogen as they move. Similarly, the kernel assumes that suscep-52

tible hosts constantly acquire pathogen as they move (given pathogen is present at their current location).53

However, acquisition and deposition will often depend on behavioral and spatial context. For example,54

acquisition of strongyle nematodes infecting sheep occurs when a host is feeding (Hayward et al. 2019).55
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Deposition of raccoon roundworm occurs during defecation and typically at specific spatial locations (i.e.,56

latrines, Weinstein et al. 2018). Adding these temporal or spatial filters to the transmission kernel is as57

simple as including additional multiplicative terms in Kai←dj
(τa, τd). These terms specify, probabilistically58

or deterministically, whether a host is engaging in a behavior or is in a spatial location at a given time that59

is conducive to acquisition or deposition. For example, we might re-write the transmission kernel as60

Kai←dj
(τa, τd) =


[β̃πi,foraging(τa)][Φ(sj(τd), si(τa))][λδIj(τd)(I)δsj(τd)(Alatrine)][e

−ν(τa−τd)] for τd ≤ τa

0 otherwise
(S3)

where πi,foraging(τa) is the probability that host i is foraging at time τa and δsj(τd)(Alatrine) is an indicator61

function that specifies whether host j was in the area Alatrine at time τd. In this example, deposition only62

occurs in area Alatrine and acquisition rate is modified by the probability that a host is foraging. Acquisition63

rate could also be modified by climatic variables such as temperature and this would be a simple extension64

of modifying β̃ to β̃(g(τa)) where g(τa) is a function that returns the temperature at time τa. In terms of65

implementation, allowing acquisition to vary with temperature would increase the runtime of the model by66

O(n2), where n is the number of discretized time points of the continuous-time movement trajectory (see67

Appendix S4 for additional details on implementation).68

Empirically informing these filters is more challenging, but possible. For example, recent advances in69

movement methods and technology allow for probabilistic identification of behavioral states directly from70

high-resolution movement data (Edelhoff et al. 2016), such as whether a host is resting, foraging or engaging71

in different movement types such as migration- or home range-related movements. This type of information72

could be used to directly inform the behavioral filter on the transmission kernel. Similarly, if the spatial73

locations of latrines are known a priori, they can be included directly in the kernel as a spatial filter on74

deposition (e.g., specifying that deposition occurs when a host is at a latrine).75

Pathogen decay that varies in space and time: The transmission kernel in equation 5 in the main76

text also assumes that pathogen decay is constant in space and time. However, different aspects of the77

spatial environment (e.g., soil type; Saunders et al. 2012) and temporal environment (e.g., temperature78

and humidity; Fine et al. 2011) can significantly affect the rate of pathogen decay. For example, a priori79

information on the proportional change in pathogen decay rate in different soils types (Saunders et al. 2012)80

and a spatial map of soil types on the landscape on which hosts are moving could be incorporated into the81

transmission kernel by modifying the pathogen survival function e−ν(τa−τd) to e−νs(τd)(τa−τd). The pathogen82

decay rate now depends on the spatial location of the depositing host at the time of deposition. When83
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pathogen decay varies in time, for example due to changes in temperature (Fine et al. 2011), we could84

update the pathogen survival function to e
−

∫ τa
τd

ν(g(κ))dκ where ν(g(κ)) illustrates that pathogen decay rate85

changes with some function of time g(κ), which may be temperature or humidity for example. By working86

directly with the transmission kernel, we can add biologically meaningful modifications and still apply the87

same set of tools to quantify infection risk in space, time, and among individuals (Table 1 in the main text).88

3 Appendix S3: Toy examples with the transmission kernel89

Summary: This appendix provides three toy examples that illustrate how the transmission kernel Kai←dj
90

can be used to understand the maximum infection risk experienced by two individuals. It is intended to91

augment the conceptual grasp of MoveSTIR in the main text, but is not strictly necessary for understanding92

MoveSTIR.93

Example 1: Two hosts are in the same place at all times94

Consider the simplest situation when two hosts are in the same place over a time period from tstart = 095

to tend (Fig. S1A). For conceptual understanding, let us assume that there is no decay of the pathogen in96

the environment, such that e−ν(τa−τd) is always one. The transmission kernel is the same for both host 197

experiencing a force of infection from host 2 and vice versa: Ka1←d2
(τa, τd) = Ka2←d1

(τa, τd) = β′λ. We98

can compute the maximum potential force of infection experienced by host 1 from host 2 at any time point99

t (i.e., h1←2(t)) by integrating over host 2’s deposition rate from tstart = 0 to t: h1←2(t) =
∫ t

0
β′λdu = β′λt100

(Table 1 in the main text). Note that β′ has units time−1 and λt is unitless so β′λt is a rate, consistent with101

force of infection. As shown in Fig. S1B, the maximum potential force of infection increases through time.102

This is because, if infected, host 2 is continually depositing pathogen into the environment through time.103

Since we assume in this example that there is no pathogen decay, pathogen will continue to accumulate and104

the instantaneous infection risk experienced by host 1 from host 2 (or vice versa) will continue to increase.105

The potential cumulative infection risk experienced by host 1 from host 2 up to time t (H1←2(t) and vice106

versa) can be calculated by integrating the maximum potential force of infection h1←2(t):
∫ t

0
h1←2(u)du =107 ∫ t

0

∫ u

0
Ka1←d2(u, τ)dτdu (Table 1 in the main text). In this example, we get

∫ t

0
β′λudu = β′λt2/2 (Fig. S1C).108

The cumulative hazard is a monotonically increasing unitless function.109

Example 2: Two hosts are never in the same location at the same time110

In this example, we consider three locations I, II, and III. Hosts 1 and 2 move among these locations from111

tstart = 0 to tend as shown in Fig. S1D, such that hosts are never in the same place at the same time, but112

are in the same place at different times. The maximum potential force of infection felt by host 1 from host 2113
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and host 2 from host 1 are no longer the same. Fig. S1E shows the force of infection functions h1←2(t) and114

h2←1(t). From time tstart = 0 to t1 host 1 is in location I and and host 2 is in location II. Thus, they do not115

experience any force of infection from each other (Fig. S1E). From time t1 to time t2, host 1 is in location116

II and is exposed to pathogens previously deposited by host 2. Because host 2 has left location II and we117

assume no pathogen decay, the force of infection experienced by host 1 from host 2 over t1 to time t2 is the118

constant β′λt1 because host 2 is no longer contributing any additional pathogen. In contrast, from time t1119

to t2, host 2 is in location III where host 1 has not yet visited, so the maximum potential force of infection120

experienced by host 2 from host 1 is still zero. Finally, from t2 to tend host 1 is now in location III and host121

2 is in location II (Fig. S1E). Host 1 experiences a constant force of infection β′λ(t2 − t1) from host 2 based122

on the past pathogen deposited when host 2 was in location II. Additionally, host 2 now experiences a force123

of infection β′λ(t2 − t1) from past pathogen deposited by host 1 when it was in location II from t1 to t2.124

The cumulative force of infection is shown in Fig. S1F.125

Example 3: Two hosts are always together in space, but their location varies through time126

In the third example, two hosts are always in the same location, but that location varies through time127

(specifically, hosts move from location I to II to III, Fig. S1G). The maximum potential force of infection128

experienced by host 1 from host 2 (and vice versa) at time t in tstart = 0 to t1 is β′λt. When hosts move from129

location I to II at time t1, there is initially no pathogen in the environment contributed by either host, so the130

force of infection experienced by host 1 from host 2 (and vice versa) at time t in (t1, t2) is βλ(t− t1) (Fig.131

S1H). Similarly, when hosts move from location II to III, there is again no pathogen in the environment so132

the maximum force of infection experienced by host 1 from host 2 (and vice versa) at time t in (t2, tend) is133

βλ(t− t2) (Fig. S1H). The cumulative force of infection is shown in Fig. S1I.134

4 Appendix S4: Implementing the transmission kernel as a matrix135

Summary: This appendix describes how the transmission kernel of MoveSTIR can be numerically computed.136

It is not necessary for understanding MoveSTIR as presented in the main text.137

The transmission kernel Kai←dj (τa, τd) quantifies the transmission weight between host i who is acquiring138

the pathogen at time τa and host j who deposited the pathogen at time τd. While the transmission kernel is139

defined in continuous time, it will often be practical to work with a discretized version of the transmission140

kernel. We will refer to this discretized version as the transmission matrix Kai←dj .141

To define the transmission matrix Kai←dj
, consider the time interval (t0, tn) where we have recorded host142

movement. We can break the interval into n equally spaced segments with width ∆t such that Kai←dj is an143
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n×n matrix of grid cells with width and height ∆t. For a grid in the matrix Kai←dj bounded by (τa, τa+∆t)144

and (τd, τd + ∆t), we evaluate Kai←dj
(τa, τd) at Kai←dj

(τa + 0.5∆t, τd + 0.5∆t) = kτa,τd , consistent with145

a two-dimensional grid approximation at the grid midpoint. The notation kτa,τd indicates the transmission146

weight felt by the acquiring host at time τa from the depositing host at time τd (approximated at the grid147

midpoint). The units on kτa,τd are time−2. The transmission matrix is148

Kai←dj
=



τ0 τ1 τ2 ··· τn

τ0 k0,0 0 0 · · · 0

τ1 k1,0 k1,1 0 · · · 0

τ2 k2,0 k2,1 k2,2 · · · 0

...
...

...
... · · ·

...

τn kn,0 kn,1 kn,2 · · · kn,n


(S4)

The columns represent host j’s time points who is depositing pathogen and the rows represent host i’s149

time points who is acquiring pathogen. The upper triangle is all zeros as host i cannot feel the force of150

infection of future host j.151

To calculate any of the quantities given in Table 1 of the main text, we just need to sum particular grid152

cells in Kai←dj
. However, we need to be cognizant of the dimensions we are summing over to ensure that we153

account for the grid approximation. For example, to get the force of infection felt by host i from j at time τ2154

(hi←j(τ2)) we need to sum the row τ2 and multiply by ∆t. Multiplying by ∆t accounts for the discretization155

of host j’s trajectory and ensures that hi←j(τ2) has the correct units, namely time−1. If we want to get156

the cumulative hazard felt by host 1 due to host 2 up to τn, we would sum all of the entries in Kai←dj and157

multiply by ∆t2. This accounts for the fact that we are discretizing over host 1’s and host 2’s trajectory and158

ensures that our cumulative hazard is unitless (as it should be). Finally, to calculate the force of infection159

due to direct transmission, where hosts are in the same place at the same time (within ∆t), we could sum160

the main diagonal of Kai←dj
and multiply by ∆t.161

4.1 Combining transmission matrices162

When we are considering multiple hosts within a population, we can combine transmission matrices into163

a larger block matrix that specifies the population-level transmission matrix. For example, consider N164

interacting hosts. We can define the population-level transmission matrix as165
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F =



host1 host2 host3 ··· hostN

host1 0 Ka1←d2
Ka1←d3

· · · Ka1←dN

host2 Ka2←d1 0 Ka2←d3 · · · Ka2←dN

host3 Ka3←d1
Ka3←d2

0 · · · Ka3←dN

...
...

...
... · · ·

...

hostN KaN←d1
KaN←d2

KaN←d3
· · · 0


(S5)

Summing over the host1 row, for example, yields a new transmission matrix Ka1←
∑

j∈N−1
dj

which166

gives the transmission weight (units time−2) felt by host 1 from all other hosts. Taking the row sums167

of Ka1←
∑

j∈N−1
dj

and multiplying by ∆t yields a vector giving the force of infection felt by host 1 from all168

other hosts combined at any given time. The block matrix F will play an important role in calculating R0,169

as we describe in Appendix S7.170

5 Appendix S5: Using other forms of spatial and temporal data171

with MoveSTIR172

Summary: This appendix presents the details for how MoveSTIR can be applied to other commonly collected173

forms of animal movement data. It is not necessary for understanding MoveSTIR as presented in the main174

text.175

There are three classes of data describing spatial and temporal interactions and co-occurrences that can176

be used with MoveSTIR: continuous space-discrete (high resolution) time, discrete (low resolution) space-177

continuous time, and discrete (low resolution) space-discrete (low resolution) time. Some examples of these178

data types are as follows179

1. Continuous space-discrete (high-resolution) time: These data include VHF tags, GPS tags, and180

Argos tags. Using these devices, continuous spatial data are obtained at specific time fixes (e.g., every181

30 minutes). Data of this type are the primary focus of our analyses in the main text.182

2. Discrete (low resolution) space-continuous time: These data include proximity loggers, radio-183

frequency identification devices (RFID), and some forms of camera traps. Proximity loggers and RFIDs184

can be deployed on individual hosts and will activate when two hosts are within a pre-determined185

separation distance and record the duration – but not the location – of a resulting contact (Stehlé186

et al. 2011b; Drewe et al. 2012). These devices can also be placed in spatial locations of interest, where187
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they will activate when hosts are within a certain minimum distance and record the time a host spends188

at the location (Lavelle et al. 2016). Similarly, camera traps can be set up at specific spatial locations189

and be activated by motion senors to take photos when hosts are within some detection distance of the190

camera. They can be programmed to take a nearly continuous series of photos while the animal is in191

the detection range, allowing for a near continuous-time delineation of when an animal was at a given192

location. There are, however, a range of different setups for camera traps and some would be better193

categorized as discrete space-discrete time data as described below (see Hamel et al. 2013; Burton et al.194

2015, for a discussion of camera trap sampling designs).195

3. Discrete (low resolution) space-discrete (low resolution) time: These data include spatially196

explicit capture-recapture data (SECR) where marking can be done through pit tags, photo ID, toe-197

clipping, polymers and pigments, and many other techniques. When individuals are captured or198

recaptured, their general (e.g., the specific pond where they were captured) or specific (e.g., exact199

location of hair snare) location and time of capture are recorded (Royle et al. 2014). Long-term time200

series of SECR can provide information on how hosts are moving between discrete locations on the201

landscape (e.g., between different ponds) (Royle et al. 2014; Cayuela et al. 2017; Silk et al. 2021). In202

addition, previous analyses that use home range overlap to derive contact networks (e.g., Godfrey et al.203

2010; Godfrey 2013; Springer et al. 2017) can be considered a discrete space-discrete/continuous time204

application and are thus special cases of MoveSTIR.205

In the main text we focused on using continuous space-discrete (high resolution) time GPS data with206

MoveSTIR. In the following sections we show that MoveSTIR can be applied to discrete (low resolution)207

space-continuous time data and discrete (low resolution) space-discrete (low resolution) time. The key step208

for using these data with MoveSTIR is understanding how they can be interpolated into continuous time and209

then framed as a transmission kernel. From MoveSTIR’s perspective, it does not matter if space is discrete210

or continuous.211

5.1 Discrete (low resolution) space-continuous time data212

For this data type, we will focus on contact data obtained from proximity loggers/RFIDs. When proximity213

loggers are deployed on individual hosts, they typically provide only temporal information and no spatial214

information (i.e., we do not know where in space a contact is occurring, but know when it occurs and for215

how long; Yang et al. 2020). Spatial information can be obtained from proximity loggers if they are placed216

on environmental resources, such as latrines, water sources, or feeding stations (Lavelle et al. 2016; Silk217

et al. 2018; Yang et al. 2020). In these situations, contacts are recorded when a host is at or near this218
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spatial location. This type of information can be used to at least partially inform indirect contact rates (Silk219

et al. 2018; Wilber et al. 2019). Following Silk et al. (2018), we will refer to host-host contacts recorded220

by proximity loggers as social contacts and host-environment contacts as spatial contacts. As we will show,221

social and spatial contacts from proximity logger data can be directly converted into a transmission kernel222

and modeled with MoveSTIR.223

We can visualize pairwise social contact data from proximity loggers as the line plot shown in Fig. S2A.224

The x-axis in this plot is time and the y-axis specifies whether or not two hosts are in proximity of each225

other over a given time interval (solid if they are, no line if they are not). From pairwise contact data alone,226

we do not know how hosts are moving while they are in proximity to each other. At one extreme, they may227

remain in the same location over the duration of the contact. At the other extreme, they may move together228

through space over the duration of the contact. We will assume that when in contact, hosts remain in the229

same location.230

We can relate social contact data from proximity loggers or RFIDs directly to the transmission kernel of231

MoveSTIR. Specifically, consider the term in our transmission kernel δxj(u)(xi(t)) that determines whether232

the acquiring host i at time t is in the same spatial location as the depositing host j at time u. We break233

δxj(u)(xi(t)) into two components: δsocial(τa, τd) and δspatial(τa, τd). To calculate δsocial(τa, τd) from host234

to host contacts (e.g., the Host 1 - Host 2 line in Fig. S2A), social contacts occurring over a period of235

time tm to tn are represented by right triangles extending off of the diagonal of the transmission kernel (or236

transmission matrix when we discretize, Fig. S2B). The reasons for this are two-fold. First, the diagonal of237

the transmission matrix represents direct contacts that occur when hosts are in the same place at the same238

time. Second, because we assume that direct contacts occur in the same location, at the end of the contact239

duration tn host i will feel force of infection from pathogen deposited by host j prior to tn, but after tm.240

The triangle emerging off the diagonal accounts for this potential indirect contact associated with a direct241

contact of non-zero duration. If we instead assumed that hosts were moving in space while in contact with242

each other, δsocial(τa, τd) would reduce to only the diagonal of the transmission matrix.243

To incorporate spatial contacts through shared environmental resources (e.g., host 1 contacting a location244

following a contact by host 2; δspatial(τa, τd)), we can represent the proximity logger data as a simplified245

movement trajectory for each host. As an example, assume there are two spatial resource locations where246

we have placed proximity loggers, location A and B. We know when and how long hosts were at locations247

A and B from the data we collected. We also know when hosts were not at A and B, which we will refer to248

as O. Two (discretized) movement trajectories might look like (also, see Fig. S2C):249
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Host 1: OOOAOOBBBO

Host 2: AAOOBBBBBB

We can interpret host 1’s trajectory as follows. Host 1 is somewhere other than location A over the first250

three time steps (we do not know where) and then arrives in location A at time step four. Following time251

step 4, it again goes somewhere else. Host 1 arrives in location B by time step 7 and remains there through252

time step 9. Finally, it leaves location B and goes somewhere else. One can similarly convert the data shown253

in Fig. S2A to these types of movement trajectories.254

For our purposes, these trajectories are conceptually identical to the spatial movement trajectories s(t)255

we have been using with MoveSTIR in the main text. We can use them to evaluate whether host 1 is in256

the same location as past or present host 2 (and vice versa, Fig. S2C). The only nuance is that when both257

hosts have a value of O, it does not count as the same location because O simply means “not a known258

spatial location”. By combining δspatial(τa, τd) and δsocial(τa, τd) with a logical “OR”, we have fully specified259

δxj(u)(xi(t)) from proximity logger or RFID data (Fig. S2D). Now all of the analyses described in the main260

text for MoveSTIR apply.261

5.2 Discrete space-discrete time data262

Spatially explicit capture-recapture (SECR) data, whether from pit tags, camera traps, or other marking263

strategies, are a common form of (potentially coarse) resolution discrete space-discrete time movement data264

(Royle & Young 2008; Royle et al. 2009; Cayuela et al. 2017). For example, we might envision marked265

amphibians inhabiting a series of ponds and repeated surveys recapturing amphibians at different ponds266

within a metapopulation (Cayuela et al. 2020). There is a rich statistical literature on inference from SECR267

data and we will not attempt to review that here (e.g., Royle & Young 2008; Royle et al. 2009, 2014; Cayuela268

et al. 2017). Importantly, these statistical approaches allow us to infer the expected location of individuals269

not observed during a given primary/survey period, but observed at later primary periods (Royle & Young270

2008; Cayuela et al. 2017). What this means is that after fitting the appropriate statistical model to our271

SECR data, we can obtain predictions in discrete space and time about where hosts are and when they are272

there (Fig. S3A). To use these data with MoveSTIR, we now need to represent them in continuous time.273

Recall that MoveSTIR applies equally well to discrete or continuous space. We will focus our example on274

SECR where animals are captured and recaptured in discrete habitat patches that form a metapopulation.275

The simplest option to convert our SECR data to continuous time is to assume that the spatio-temporal276

data follow a step function. With this assumption, a host resides in a given patch until the time of its next277
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observation and, if the host is in a new patch at the next observation, the host immediately moves to this278

new patch from the previous patch. This is consistent with many metapopulation models where transit time279

between patches is assumed to be instantaneous (Wilber et al. 2020). Another step function approximation280

would be to use a midpoint rule such that if a host transitions from patch I to patch II somewhere between281

time t1 and t2, then we assume the transition occurred at the halfway point of the time interval (Fig. S3B).282

Moreover, if transit time between patches is expected to be long relative to the duration of infection, then283

transit time may be critical to consider to capture among-patch epidemiological dynamics (Cross et al. 2005).284

In this situation, one could add information on the host’s transit by including a straight-line path between285

patches and allowing hosts to traverse the path over some pre-specified time determined by the distance286

between patches and the average speed the animal moves. Whether a step function or something more287

complicated is used, the key point is that there are reasonable approaches we can use to represent SECR288

data in continuous time and discrete space.289

From MoveSTIR’s perspective, once we have made the conversion to continuous time there are no fun-290

damental differences between the SECR data and the GPS movement data we discuss in the main text.291

Therefore, we can represented the SECR data as pairwise transmission kernels and apply all of the tools of292

MoveSTIR (Fig. S3C,D).293

One subtle point worth mentioning is that we need to consider the areas of the habitat patches among294

which hosts are moving. As discussed in Appendix S1, acquisition rate scales inversely with area given295

density-dependent contacts between hosts and pathogen in a local area. Therefore, the force of infection296

should be explicitly written as297

hi←j(t, xi) =

∫ t

0

β̃

Axi

λδxj(u)(xi)δIj(u)(I)e
−ν(t−u)du (S6)

where xi ∈ {x1, x2, . . . , xn} is a discrete set of patches, each with a unique area Axi
. The key assumption298

here is that the deposited pathogen is well-mixed within a habitat patch such that, given the same number299

of individuals, larger patches have lower densities of pathogen leading to lower acquisition rates. This is300

consistent with host-pathogen metapopulation models (Wilber et al. 2020).301

6 Appendix S6: Using MoveSTIR to explore the epidemiological302

consequences of contact networks303

Summary: This appendix provides an example of how MoveSTIR can be represented as a static and dynamic304

contact network. It is not required for understanding the results presented in the main text, though supports305
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statements therein.306

In the main text, we provide empirical examples to show how MoveSTIR can be used to explore the307

structure of the direct and indirect contact networks defined by movement trajectories. Here, we use a308

simple simulated example to illustrate how MoveSTIR can be used to ask the question: how do static,309

weighted networks differ in their epidemiological predictions than dynamic, weighted networks (e.g., Stehlé310

et al. 2011a; Springer et al. 2017)? We use simulated data of five hosts moving on a landscape (Fig. S4).311

We define the following transmission kernel to compute maximum potential infection risk312

Kai←dj
(τa, τd) =


[β̃λ][Φ(sj(τd), si(τa))][e−ν(τa−τd)] for τd ≤ τa

0 otherwise
(S7)

where Φ(sj(τd), si(τa)) is the top-hat contact function that only allows transmission to occur when an313

acquiring host is within some minimum distance of the present or past depositing host. In this example,314

we set that distance to be 0.71 units. We set pathogen decay rate as 0.1 time−1, acquisition rate β̃ = 1.5315

area units
time , deposition rate λ = 1.5 time−1, and loss of infection rate γ = 0.11 time−1.316

From these data, we used MoveSTIR to build two contact networks. First, we built a static contact317

network of maximum potential infection risk. To calculate the static edge weights between individual hosts318

in this network, we computed the average of the maximum potential force of infection felt by host i from319

host j over the movement trajectory (h̄i←j(t), Table 1 in the main text). The resulting weighted, static320

network is shown in Figure S5A-B.321

Second, we built a dynamic, weighted contact network based on the movement trajectories of the five hosts322

(Fig. S5C-D). Fig. S5C gives a visual representation of each pairwise transmission kernel Kai←dj
(τa, τd) (a323

single kernel is a grid in Fig. S5C) that together define the population-level transmission kernel F (Appendix324

S4) and the dynamic contact network. Fig. S5D shows a simplified representation of the dynamic contact325

network, where we discretized host movement into ten equally spaced temporal nodes that together span326

the entire movement trajectory. The edges represent the average force of infection felt by host i from host327

j over the given time step (0 through 9, Fig. S5C). Now we can ask: how do our predictions regarding328

epidemiological dynamics change when we use the weighted, static contact network (Fig. S5A) compared to329

the dynamic contact network (Fig. S5C-D)?330

We first calculated R0 for both networks and they were nearly identical (see Appendix S7 for R0 cal-331

culations). The dynamic contact network predicted R0 = 1.44 and the static contact network predicted332

R0 = 1.45. However, we began to see divergence between R0 in the static and dynamic network as we333

increased the loss of infection rate γ. Specifically, the static, weighted network began to underestimate R0334
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compared to the dynamic network. In this situation, higher-order, time-dependent interactions defined by335

host movement trajectories, which were not captured by the static network, were increasingly important for336

transmission. This was because hosts were likely to lose the infection over the course of their movement tra-337

jectory and the invasion of the pathogen in the population depended more strongly on where hosts were and338

when they were there. This brief example shows how MoveSTIR can be used to expand our understanding339

of when dynamic networks predict different epidemiological dynamics than static, weighted networks.340

7 Appendix S7: From transmission risk to infection dynamics341

Summary: This section describes how the transmission kernel can be linked to dynamic epidemiological342

models. It is necessary reading to understand how to derive epidemiological quantities such as R0 from343

MoveSTIR.344

7.1 Specification of individual-level model345

To link our transmission kernels Kai←dj (τa, τd) to population-level disease dynamics, we re-construct our346

motivating model from equation 1 in the main text as a continuous-time, discrete-state Markov process, where347

the discrete states are Hi,S ,Hi,I for i ∈ N , representing whether individual host i is Susceptible or Infected348

at time t. Importantly, a fundamental component of this model is the transmission kernel Kai←dj (τa, τd).349

The model is350

dpHi,S
(t)

dt
= −pHi,S

(t)
∑

j∈N−i

∫ t

0

K ′ai←dj
(t, u)du+ γpHi,I

(t)

dpHi,I(t)

dt
= pHi,S

(t)
∑

j∈N−i

∫ t

0

K ′ai←dj
(t, u)du− γpHi,I

(t)

(S8)

where pHi,S
(t) and pHi,I

(t) are the probabilities of host i being susceptible or infected at time t, respectively,351

and K ′ai←dj
(t, u) = [β̃][Φ(sj(τd = u), si(τa = t))][λpHj,I

(u)][e−ν(t−u)] for u < t. The only difference from352

the transmission kernel discussed in the main text is that we have replaced the indicator function δIj(τd)(I)353

with the probability that host j is infected at time u < t, pHj,I
(u). As before, key components of the354

transmission kernel, such as contact formation and duration across a direct to indirect continuum, can be355

directly estimated from movement data. We again assume that hosts who lose infection are immediately356

susceptible. However, equation S8 could easily be updated to include hosts that permanently recover from357

infection or die due to natural or disease-induced mortality (e.g., by adding a “Recovered” or “Mortality”358

class). Similarly, adding an additional “Exposed” class would be a simple extension (though we would need359
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to update our calculations for R0 given below).360

As an example, consider the case where we know when a host died. This information is often provided by361

GPS collaring technology. Without changing the structure of equation S8, we could update the transmission362

kernel to363

K ′ai←dj
(t, u) = [β̃][Φ(sj(τd = u), si(τa = t))][δAj(u)(Alive)][λpHj,I

(u)][e−ν(t−u)] for u < t

where δAj(u)(Alive) evaluates to one if host j is alive at time u and zero otherwise. This ensures that dead364

hosts do not contribute to the force of infection felt by host i.365

For some host-pathogen dynamics, such as wild pig and African swine fever (Pepin et al. 2020), dead366

hosts continue to contribute to infection through depositing pathogen via the carcass. We again assume367

that the time of death is known and occurs at dτ . We also assume that carcasses are removed from the368

environment at rate c and deposit pathogen at rate λcarcass. We could then update the transmission kernel369

to370

K ′ai←dj
(t, u) =[δAj(u)(Alive)][β̃] [Φ(sj(τd = u), si(τa = t))]︸ ︷︷ ︸

Contact with living host

[pHj,I
(u)][λe−ν(t−u)]+

[δAj(u)(Dead)][β̃] [Φ(sj(τd = dτ ), si(τa = t))]︸ ︷︷ ︸
Contact with carcass

[pHj,I
(dτ )e

−c(t−dτ )]︸ ︷︷ ︸
Carcass decay

[λcarcasse
−ν(t−u)]︸ ︷︷ ︸

Pathogen deposition and decay

for dτ , u < t

Note that sj(τd = dτ ) assumes that host j remains where it was when it died at time dτ . It is also possible371

to consider the situations where we do not know the time of death dτ within the MoveSTIR framework. We372

will explore these situations in a future study.373

7.2 R0, individual-level R0,i, and pairwise R0,i↔j: derivation and perturbations374

We can use equation S8 to estimate key epidemiological quantities, such as the fundamental reproductive375

number R0. In the context of our model, R0 can be interpreted as the expected number of individuals infected376

by an average infected individual over its infected lifetime. When R0 > 1, the pathogen can successfully377

invade the host population. When R0 ≤ 1, the pathogen fails to invade the host population. To calculate378

R0 from equation S8, we invoke a periodicity assumption where we assume that at the completion of the379

observed host movement trajectories the hosts immediately begin repeating the same movements. This might380

be a reasonable assumption if movement data were collected, say, over the course of a year for a migratory381
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species where we expect similar movements in the following year. However, movement data often are not382

collected over a biologically meaningful “period”. Thus, it may be unreasonable (or completely impossible383

given the location of the host at the end of the movement trajectory relative to the start) to assume that hosts384

will immediately “restart” their movement trajectory following the completion of the observed movement385

trajectory. However, this periodicity assumption is still useful as it allows us to ask: given the movement we386

have observed, is the resulting dynamic contact network sufficient to allow a small amount of pathogen to on387

average increase by the end of the observed movement trajectory? Regardless of our ability to extrapolate388

beyond the observed movement trajectories (which may augment or reduce the overall potential for pathogen389

invasion), the periodicity assumption allows us to explore the implications of observed movement patterns390

on disease dynamics. This periodicity assumption has been previously used to compute pathogen invasion391

thresholds on dynamic networks (Valdano et al. 2015; Leitch et al. 2019).392

To compute R0 for equation S8, we use the h-state approach described in Diekmann et al. (2013) and393

expand our number of state variables to account for a time-in-the-movement-trajectory h-state for each394

individual i. In other words, we index each state variable Hi,S or Hi,I by t and expand our state space.395

While t is technically continuous leading to an infinite state space, in practice we work with t discretized over396

n equally spaced intervals of time yielding a finite space (though the state space could potentially be quite397

large). Note that the expanded state space model does not change anything about the dynamics of equation398

S8, it just allows us to draw on standard approaches to compute R0 (Diekmann et al. 2013). We then399

linearize the expanded state space model about the disease free equilibrium for equation S8, resulting in a400

Jacobian matrix J. Next, we decompose the resulting Jacobian matrix into J = F+U. The matrix F defines401

how one infected host type produces infected hosts of other types. This matrix is identical to F defined in402

equation S5 and is completely defined by our transmission matrices. The matrix U defines the rate at which403

infected hosts of all types leave the infected class (Diekmann et al. 2013). The next-generation matrix is404

then given by R = ∆t2F(I−U)−1 (Bacaër 2009) where I is an identity matrix of the same dimension as U.405

The ∆t2 ensures that R is unitless and is needed because we discretize time. The dominant eigenvalue of R406

gives R0.407

The matrix U is given by the block diagonal matrix408
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U =



host1 host2 host3 ··· hostN

host1 Γ 0 0 · · · 0

host2 0 Γ 0 · · · 0

host3 0 0 Γ · · · 0

...
...

...
... · · ·

...

hostN 0 0 0 · · · Γ


(S9)

where 0 is an n× n and Γ is the n× n matrix409

Γ =



τ0 τ1 τ2 ··· τn

τ0 0 0 0 · · · 1− γ∆t

τ1 1− γ∆t 0 0 · · · 0

τ2 0 1− γ∆t 0 · · · 0

...
...

...
... · · ·

...

τn 0 0 0 · · · 0


(S10)

The term ∆t is needed because we discretize time into n equally spaced intervals. The term in the upper410

right-hand corner reflects the periodicity assumption – infected hosts at the end of the movement trajectory411

τn start again at the beginning τ0 if they do not lose their infection.412

We can also compute additional useful metrics, such as individual R0,i and pairwise R0,i↔j . We define413

individual R0,i as the expected number of new infections produced by infected host i over its infected lifetime414

when density-dependent processes are absent. We define R0,i↔j as the expected number of host i (or j)415

infections produced by host i (or j) over the sequence host i → host j → host i (or host j → host i → host416

j) when density-dependent processes are absent. Because we assume there is no self-reinfection, a pathogen417

has to be able to complete this cycle to persist and invade.418

We can understand individual R0,i and pairwise R0,i↔j by using a blocked representation of R419

R =



host1 host2 host3 ··· hostN

host1 0 R1,2 R1,3 · · · R1,N

host2 R2,1 0 R2,3 · · · R2,N

host3 R3,1 R3,2 0 · · · R3,N

...
...

...
... · · ·

...

hostN RN,1 RN,2 RN,3 · · · 0


(S11)
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A useful property of the R matrix is that Ri,j and Rj,i are independent of any hosts other than i and j.420

In other words, if we calculated R with only hosts i and j, then Ri,j and Rj,i would be the same as if we421

calculated R with N hosts and extract Ri,j and Rj,i. Thus, the dominant eigenvalue of the sub-matrix422

 0 Ri,j

Rj,i 0

 , (S12)

is pairwise R0,i↔j and it is robust to the inclusion or exclusion of individual hosts other than i and j.423

Examining R0,i↔j allows us to understand how particular pairwise interactions contribute to pathogen424

persistence.425

Individual R0,i provides another useful summary of R. When loss of infection rate is low relative to the426

time period over which movement was tracked, we can approximate R by taking the dominant eigenvalues427

of Ri,j and Rj,i (Ri,j and Rj,i, respectively) and defining a matrix Rreduced428

Rreduced =



host1 host2 host3 ··· hostN

host1 0 R1,2 R1,3 · · · R1,N

host2 R2,1 0 R2,3 · · · R2,N

host3 R3,1 R3,2 0 · · · R3,N

...
...

...
... · · ·

...

hostN RN,1 RN,2 RN,3 · · · 0


(S13)

Summing the columns of Rreduced yields an approximation to individual-level R0,i, defining the average429

number of infections in other hosts produced over the infected lifetime of host i. This can be a useful metric430

for identifying hosts that produce many infections. Note, however, that if R0,i > 1 for some i this does431

not mean that the pathogen can invade. Because we assume there is no self-reinfection, other hosts in the432

population must also produce infections for pathogen invasion. Similarly, examining Ri,j and Rj,i is useful433

as it can highlight key asymmetries in pairwise infection risk (e.g., Fig. S6).434

We do repeat, however, that Rreduced only approximates the dynamics of R when the loss of infection435

rate is low relative to the length of the movement trajectory, such that once a host is infected it tends to436

stay infected over an iteration of the movement trajectory. If this is not the case, Rreduced can significantly437

underestimate the capacity of a pathogen to invade. To check the robustness of the approximation, we have438

found it worthwhile to compare the dominant eigenvalues of Rreduced and R.439
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7.3 Perturbations and R0440

The number R0 has important properties when applying MoveSTIR to empirical data. Specifically, elastic-441

ities of R0 (i.e., proportional changes in R0 due to proportional changes in underlying individual, spatial,442

or temporal parameters in the model) are invariant to the exact values of acquisition rate β̃ and deposition443

rate λ. Thus, we do not need to know the absolute values of these parameters – which are often difficult to444

estimate directly – to test the relative contributions of individual hosts, locations, times, and direct versus445

indirect transmission to pathogen invasion risk.446

We can calculate the elasticity of R0 (or R0,i↔j) to lower level parameters in the same way one would447

with matrix models and integral projection models (IPMs) (Caswell 2001; Ellner et al. 2016). Namely, we448

can directly perturb entries in our transmission matrix or perturb lower-level parameters contributing to449

each entry in the transmission matrix (e.g., perturb characteristics of the movement trajectory). As with450

matrix models and IPMs, the possible permutations of sensitivity analysis are enormous.451

7.4 A simulated example with five hosts452

We explored a simulated example of five hosts moving on a landscape (Fig. S6A) to demonstrate how453

MoveSTIR can combine the transmission kernel and dynamic epidemiological models to ask prospective454

questions regarding the role of individual, spatial, and temporal processes on pathogen invasion dynamics.455

In this example we assumed that infected hosts that lose infection were immediately susceptible, though this456

could easily be extended to include a Recovered or Exposed class. We used a transmission kernel similar to457

equation S7 and we chose our rates of deposition (λ), acquisition (β̃) and pathogen decay ν such that R0 > 1458

(specifically, R0 = 1.42). This meant that our hypothetical pathogen could invade the five host “population”459

given the observed movement trajectories and the dynamic direct to indirect contact network they defined460

(Fig. S6B).461

In this example, we could identify which individuals were contributing most to pathogen invasion. Host462

1, host 4, and host 5 all infected, on average, greater than one other individual over the time period of463

the movement trajectory, while host 2 and host 3 infect less than one host (Fig. S6C). However, removing464

host 5 or 4 lead to significantly larger reductions in pathogen invasion potential than removing host 1, 2,465

or 3 (Fig. S6C). This was because the symmetry in pairwise interactions between host 4 and 5 meant that466

pairwise R0,4↔5 = 1.26 > 1, while the asymmetry in pairwise interactions between host 1 and 2 lead to467

R0,1↔2 = 0.5 < 1.468

In addition, we could use MoveSTIR to identify spatial locations contributing to pathogen invasion risk469

without extensive spatial simulation. Rather, we could simply perturb entries in the transmission kernel470
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that were within some spatial area of interest A and ask how these perturbations change R0. Fig. S6D471

shows a map of the spatial areas that were most important to overall R0. Consistent with our analysis of472

pairwise R0,i↔j , we saw that the most important area for population-level R0 occurred where there were473

interactions between host 4 and host 5 (Fig. S6D). In contrast, areas where hosts other than host 4 and474

5 interacted were significantly less important for overall R0. Spatial elasticity of R0 can directly identify475

regions on the landscape that might be optimal management targets for reducing pathogen persistence or476

linked to resource covariates on the landscape to predict such locations. Using MoveSTIR, we could further477

identify the sensitivity of R0 to moments in time, direct and indirect transmission, or any other dimensions478

and lower-level parameters of the transmission kernel.479

8 Appendix S8: Application of MoveSTIR to wild pig movement480

trajectories481

Summary: This appendix provides the details for how we analyzed the pig data in the main text.482

8.1 Fitting continuous-time movement models to movement trajectories483

We used the R package ctmm (Calabrese et al. 2016) to fit continuous-time movement models to the observed484

pig movement trajectories. As our purpose here was to demonstrate the type of inference we can make using485

MoveSTIR given continuous-time movement trajectories, we did not perform any model comparison with486

the ctmm package. Rather, we used the function ctmm.guess to generate initial parameters for the CTMM487

model and fit the model with these initial parameters (see the script fit_and_predict_ctmm.R). We then488

used the fitted CTMM model to interpolate the host trajectories to five minute intervals.489

8.2 Analyzing spatio-temporal infection risk of wild pigs from ASFV using490

MoveSTIR491

Given the continuous-time movement trajectories fit using ctmm (discretized to five minute intervals), we then492

applied MoveSTIR to estimate pairwise transmission kernels Kai←dj
(τa, τd) for all pairs of pigs (19 × 19 - 19493

= 342 transmission kernels). To estimate the transmission kernels, we needed the following parameters: the494

acquisition rate β′, the deposition rate λ, the pathogen decay rate ν, and the contact function with parameter495

α. As discussed in the main text, we used a top-hat contact function (Appendix S1) with distance α between496

1-10m and a pathogen decay rate of ν = 1/5 days−1 = 1/(24× 60× 5) minutes−1. As is often the case with497

wildlife pathogens, we did not have estimates of β′ or λ. However, we can still make inference on relative498
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force of infection among individuals, time, and space using MoveSTIR as β′ and λ are multipliers in our499

transmission kernel (equation 5 in the main text) and cancel when computing relative infection risk. Thus,500

we set β′ and λ to be unity and only made inference on relative infection risk in time, space, and across501

individuals. All of our analyses can be reproduced using the script movestir_pig_movements.ipynb.502

8.3 A SIR model for African Swine Fever503

To make inference on R0 for the ASFV-wild pigs system, we defined a SIR model given by504

dpHi,S
(t)

dt
= −pHi,S

(t)
∑

j∈N−i

∫ t

0

K ′ai←dj
(t, u)du

dpHi,I(t)

dt
= pHi,S

(t)
∑

j∈N−i

∫ t

0

K ′ai←dj
(t, u)du− θpHi,I

(t)

dpHi,R(t)

dt
= θpHi,I

(t)

(S14)

where θ is the recovery rate and pHi,R(t) is the probability that a host is in the recovered class at time t.505

Previous models have included an exposed class when modeling ASFV dynamics (e.g., Pepin et al. 2020).506

However, because this exposed class is relatively short (e.g., 4 days; Pepin et al. 2020) compared to the life507

span of a pig (on the order of years), we did not expect this exclusion to significantly affect our calculations508

of R0 (Keeling & Rohani 2008). Because recovery rate θ plays the same role as the loss of infection rate γ in509

equation S8, calculating R0 for equation S14 is the same as for equation S8, replacing γ with θ. Moreover,510

because we were interested in relative R0 values (i.e., ratios of R0 values), the exact value of θ does not affect511

any of our conclusions as it cancels out in the ratio.512

9 Appendix S9: Home range overlap analyses as a special case of513

MoveSTIR514

Summary: This section provides a derivation of why home range overlap analyses can be considered as a515

special case of MoveSTIR. It is not required for understanding the results presented in the main text, but516

supports statements therein.517

An often-used approach to derive contact networks from movement data relies on defining edge weights518

between individuals based on some metric of home range overlap (e.g., Godfrey et al. 2010; Springer et al.519

2017; Noonan et al. 2021). Home range overlap analyses are a special case of MoveSTIR. Here, we demon-520

strate the workflow needed to analyze home range overlap within the MoveSTIR framework, referencing the521
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wild pig movement data we use in the main text.522

Area of home range overlap523

We assume that we start with movement data (e.g., GPS fixes) to which we can apply previously developed524

software to estimate home ranges and utilization distributions (UD) (e.g., using the R package adehabitatHR,525

Calenge 2006). For example, for the 19 pigs analyzed in the main text we had GPS fixes every 30 minutes for526

each individual for up to three months. We calculated the 95% UD of each pig using the kernelUD function527

in the adehabitatHR package (Calenge 2006). In our analysis, we compute 95% UDs based on the entire528

collaring period of the pigs.529

We then calculated the home range overlap between two individuals. There are multiple metrics with530

which to compute overlap (Fieberg & Kochanny 2005; Winner et al. 2018). To directly connect to MoveSTIR,531

we define home range overlap as the area of overlap given by the boundaries of two individual’s 95% UDs.532

We used this approach when calculating the area of overlap for the home ranges of pigs used in the main text.533

However, we also explored different metrics of home range overlap, such as the Bhattacharyya Coefficient,534

the volume of intersection of the utilization distributions, and the proportion of home range overlap (Fig.535

S7).536

Given estimated home ranges and home range overlap for each pair of individuals, we then estimated537

potential contact and transmission. For potential contact to occur in the area of overlap, two events need to538

happen. First, both individuals need to have previously been in or currently be in the area of overlap. Based539

on an individual’s UD and the assumption that individuals move independently (an assumption which we540

relax below), the probability that both individual i and j are in the area of overlap AO is pi,AO × pj,AO,541

where pi,AO =
∫
m=(x,y)∈AO

UDi(m)dm – the integral of the UD of individual i within the area of overlap,542

where m = (x, y) are spatial coordinates within the area of overlap. In the simplest case where the UD is543

uniform we obtain pi,AO = Area of overlap
Area of 95% UD for host i . We used the uniform assumption for the pig data in the544

main text in order to specifically test how ignoring fine-scale movements within an individual’s home range545

could affect emergent contact networks and epidemiological dynamics.546

The second event that needs to occur is that current or past individuals within the area of overlap need547

to come into contact with each other and potentially transmit infection. Assuming random walks within the548

area of overlap (but not necessarily within the host’s home range), increasing the area of overlap makes it549

less likely that two hosts will contact each other. This is for the same reason described in equation S6 – the550

acquisition rate β′ = β̃
Area of overlap scales inversely with the area of overlap.551

We now have all the information needed to apply MoveSTIR to our analysis of home range overlap.552
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Conceptually, we can think of our analysis as a discrete-space metapopulation model (as in equation S6)553

where contact and transmission can only occur when both hosts are in the area of overlap defined by the554

home ranges. We can write our force of infection equation as555

hi←j(t, xi) =

∫ t

−∞

β̃

AxArea of overlap

λδxi(t)(xArea of overlap)δxj(u)(xArea of overlap)δIj(u)(I)e
−ν(t−u)du (S15)

where δxi(t)(xArea of overlap)δxj(u)(xArea of overlap) are two indicator variables that ensure both host i at time556

t and host j at time u are in the area of overlap such that transmission can potentially occur. The spatial557

trajectories xi(t) and xj(t) alternate between two locations: the area of overlap and the remaining area of558

the home range for the individual not contained in the area of overlap. The term AxArea of overlap gives the559

area measure (e.g., in m2) of the area of overlap xArea of overlap.560

Individual movement occurs probabilistically between the area of overlap and the rest of the home561

range and we assume that it has obtained a stationary distribution. The variables δxi(t)(xArea of overlap)562

and δxj(u)(xArea of overlap) are random variables that take the values 1 (host in area of overlap) or 0 (host not563

in area of overlap) and given a stationary assumption are independent of t and u. In this situation, taking564

the expectation of equation S15 with respect to time leads to565

h̄i←j =

(
β̃

AxArea of overlap

)(
λ

ν

)
[pi,AOpj,AO + Cov(δxi(xArea of overlap), δxj (xArea of overlap))] (S16)

where we set δIj(u)(I) = 1. The variables pi,AO and pj,AO are the probabilities that i and j are in the area566

of overlap, respectively. The term Cov(δxi
(xArea of overlap), δxj

(xArea of overlap)) accounts for the covariance567

in the use of the area of overlap and is zero if hosts move independently. Thus, using the area of home568

range overlap and MoveSTIR we can directly compute the edge weights for a static contact network defining569

maximum potential infection risk.570
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Figure S1: Three examples of how the force of infection (FOI) experienced by host 1 from host 2 (and
vice versa) and the cumulative force of infection can be inferred from host movement trajectories using the
transmission kernel Ka2←d1

(τa, τd). All examples assume that there is no pathogen decay. A.-C. Example 1
assumes that hosts 1 and 2 are in the same location (location II) from time tstart = 0 to tend. D.-F. Example
2 assumes that hosts are never in the same place at the same time. G.-I. Example 3 assumes that hosts are
always in the same location as each other, but are moving to different locations through time. For all plots,
the interval ∆t is the same between 0 to t1, t1 to t2, and t2 to tend.
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Figure S2: Example of how proximity logger data can be represented as a transmission kernel (or a discretized
transmission matrix). This means that proximity logger data can be used directly within the MoveSTIR
framework, regardless of whether there is spatial information associated with the proximity logger data. A.
A visual representation of proximity logger data that contains information on social and spatial contacts.
Social contacts occur when two hosts are in direct contact (e.g., Host 1 - Host 2). The solid lines indicate
when Host 1 and Host 2 are in proximity of each other and are experiencing a direct contact. Typically,
the spatial location of these contacts is unknown. We just know when the contact starts and how long it
lasts (the length of the black lines). Proximity logger data can also provide information on spatial contacts.
If loggers are placed on both hosts and specific locations of interest (e.g., Location A), then we obtain
information on when hosts contact specific locations and for how long (e.g., Host 1 - Location A). This
allows for specification of indirect, spatial contacts occurring between two hosts. B.-D. We can represent
the proximity logger data shown in A. as a transmission matrix. We first consider social contacts (B.), which
are given along the diagonal of the transmission matrix (black grids indicate contact, white grids indicate no
contact, and the shaded upper triangle indicates that the current acquiring host cannot contact the future
trajectory of the depositing host). Here, we assume that over the duration when hosts experience a social
contact they remain in the same location, though we do not know where that location is. This assumption
means that there is also the potential for indirect contact to occur over the duration of the direct contact,
leading to the filled off-diagonals in B. We can also consider spatial contacts that occur when individuals are
in the same place at the same or different times (C., contacts are shown by black grid cells). For example,
when host 1 is in location A at time 8, it experiences indirect contact with pathogen deposited by host 2
when host 2 was in location A at time 0 and 1. Taking the union (logical “OR”) of plots A. and B. yields the
transmission matrix in C. that accounts for both social and spatial contacts. For clarity, we do not account
for the decay of the pathogen in the environment in this example.
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Figure S3: An illustration of how to convert spatially explicit capture-recapture (SECR) data into a trans-
mission kernel. A. A spatial representation of SECR data from coarse spatial locations (i.e., habitat patches).
Marked hosts are recaptured in distinct habitat patches (e.g., ponds) at relatively coarse time resolutions.
For example, the time between primary periods (and thus potential captures) might be weeks or months.
While we show points within a patch in different locations, this is strictly for visual purposes. B. We can
assign a simple continuous-time representation to the SECR data by allowing the spatio-temporal dynamics
to follow a step function. Here, we use a midpoint approximation where we assume that if a host moves
patches between primary period t1 and t2, for example, it does so at the midpoint of the time interval. In B.,
we slightly stagger the colored lines for Host 1 and Host 2 so they can be visualized. C.-D. Once we have the
continuous time-discrete space representation of our SECR data, we can convert the data into transmission
kernels. Black grids show intervals when and where potential contacts occurred and white grids show when
and where contacts did not occur. Gray grids indicate where direct and indirect contact could not possibly
occur because the acquiring host cannot contact the future trajectory of the depositing host. Plots C. and
D. show the discretized transmission matrices (discretized every 0.5 units of a time step) for host 2 acquiring
infection from host 1 (C.) and for host 1 acquiring infection from host 2. For example, in D. we see that
when host 1 returns to location I near time 4, it can still experience an indirect contact from host 2 that
potentially deposited pathogen in location I at time 1. For simplicity, we do not account for pathogen decay
in this example.
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Figure S4: Simulated trajectories of five hosts moving on a landscape. We use these simulated data in Fig.
S5.
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Figure S5: A. The static representation of the host movement trajectories shown in Fig. S4. The colors of
the grid cells are the average force of infection experience by host i from host j over the time period of the
movement trajectory. B. A static, weighted network representation of the matrix shown in A. The thickness
of the edges represent the directional force of infection shown in A. H1 = host 1, H2 = host 2, H3 = host 3,
H4 = host 4, and H5 = host 5 as shown in Fig. S4. C. Each grid cell shows a pairwise transmission kernel of
the host movement trajectories shown in Fig. S4. A. can be recovered by integrating each grid cell in C. over
the acquisition and deposition dimensions and dividing by the length of the movement trajectory. This yields
the average force of infection felt by host i from host j over the length of the movement trajectory (see Table
1 in the main text for calculation). D. A simplified dynamic network representation of the transmission
kernel shown in C. Each colored node represents a host as shown in B., and numbers represent a discrete
time interval along the movement trajectory (ten total intervals). Arrows indicate how hosts at one time
point contribute to the force of infection of other hosts at different time points. Edges between nodes of the
same color indicate that once infected, an infected host has the potential to remain infected through time.
Finally, the edge from 9 to 0 indicates the periodicity assumption necessary to compute R0 (see Appendix
S4; Valdano et al. 2015) – at the end of the trajectory, hosts start again at the beginning.
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Figure S6: A. Simulated movement of five hosts on a landscape. B. An example simulation of infection
dynamics happening on the observed movement trajectories in A. The simulation uses the individual-level
epidemiological model described in Appendix S7. Because R0 > 1, during the growth phase of the pathogen
in the population we see an increase in the probability that a host is infected from the start to the end
of the movement trajectory (straight colored lines). However, the probability that a host is infected may
increase or decrease over this time period depending on movement (colored dashed line). For this example,
the transmission kernel had similar form given in equation S7. We let acquisition rate β̃ = 1.5 spatial units

time ,
λ = 1.5 time−1, pathogen decay rate ν = 0.1 time−1, and recovery rate γ = 0.11 time−1. The contact
function Φ(sj(τd), si(τa)) follows a top-hat function where the acquiring host must be within 0.71 units of
the past or present depositing host for a contact to occur. C. Each matrix entry describes the average
number of infected hosts of type i (rows) produced by host j (columns) over host j’s time infected. The
numbers above the columns give the column sums which are individual-level R0,i: the average number of
hosts of all types infected by host j over its time infected (see Appendix S7 for calculations). The numbers to
the right give the percent reduction in R0 when the given individual is removed from the landscape. D. The
elasticity of R0 to perturbations of the transmission kernel in different spatial locations on the landscape.
For each grid cell in the plot, we perturbed the acquisition experienced by all hosts at any time in this area
by δ = 0.001 and re-calculated R0,perturbed. We calculated elasticity as R0,perturbed−R0

δR0
(Merow et al. 2014).

Higher values (darker red colors) correspond with a larger proportional change in R0 given changes in force
of infection in the focal area.
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A. Overlap based on the Bhattacharyya coefficient B. Overlap based on proportion of home range

C. Overlap based on the volume of intersection of utilization distributions D. Direct + indirect contact network from MoveSTIR

Figure S7: A.-C. Contact networks built using different metrics of home range overlap. For all metrics used
in A.-C., the unweighted network structures are identical. However, different overlap metrics put different
weights on the edges between nodes, where nodes represent individual pigs. All of these metrics of home
range overlap are defined in the function kerneloverlaphr in the R package adehabitatHR (A. BA, B. HR,
and C. VI Calenge 2006). D. The direct and indirect contact network predicted by MoveSTIR and shown
in Figure 5C in the main text. The numbers within each node indicate how much removing that individual
pig reduces R0 defined by the network. Regardless of the metric of home range overlap used in A.-C.,
accounting for fine-scale host movements and contacts with MoveSTIR (D.) led to significantly different
predictions regarding how individual pigs contributed to pathogen invasion (as seen by proportional changes
in R0). Note that unlike in the main text, we could not directly compare overall R0 among A.-D. as the
units were not the same across the different overlap metrics.
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