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Abstract
The earlier-developed master equation approach and kinetic cluster methods
are applied to study the kinetics of L10-type orderings in alloys, including the
formation of twinned structures characteristic of cubic–tetragonal-type phase
transitions. A microscopical model of interatomic deformational interactions
is suggested which generalizes a similar model of Khachaturyan for dilute
alloys to the physically interesting case of concentrated alloys. The model is
used to simulate A1 → L10 transformations after a quench of an alloy from
the disordered A1 phase to the single-phase L10 state for a number of alloy
models with different chemical interactions, temperatures, concentrations, and
tetragonal distortions. We find a number of peculiar features in both transient
microstructures and transformation kinetics, many of them agreeing well with
experimental data. The simulations also demonstrate the phenomenon of an
interaction-dependent alignment of antiphase boundaries in nearly equilibrium
twinned bands which seems to be observed in some experiments.

1. Introduction

Studies of microstructural evolution under alloy phase transformations from the disordered
FCC phase (A1 phase) to the CuAu I-type ordered tetragonal phase (L10 phase) attract interest
from both fundamental and applied points of view. A characteristic feature of such transitions
is the formation in the ordered phase of peculiar ‘polytwinned’ structures consisting of arrays
of ordered bands separated by the antiphase boundaries (APBs) lying in the (110)-type planes,
while the tetragonal axes of antiphase-ordered domains (APDs) in the adjacent bands have
‘twin-related’ (100)- and (010)-type orientations [1–7]. The transformation A1 → L10

includes a number of intermediate stages, including the ‘tweed’ stage discussed below.
These transformations are inherent, in particular, to many alloy systems with outstanding
magnetic characteristics, such as Co–Pt, Fe–Pt, Fe–Pd, and similar alloys, and studies of their
microstructural features, for example, the properties and evolution of APBs, are interesting in
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relation to applications of these systems in various magnetic devices for which the structure
and the distribution of APBs can be very important [2–4].

The physical reason for the formation of twinned structures has been discussed by a number
of authors [8–11], and it is explained by the elimination of the volume-dependent part of elastic
energy for such structures. However, theoretical treatments of the kinetics of A1 → L10

transformation seem to be rather scarce as yet. Khachaturyan and co-workers [12] discussed
the kinetics of tweed and twin formation using a 2D model in a square lattice with a number
of simplifying approximations: a mean-field-type kinetic equation; a phenomenological
description of the interaction between elastic strains and local order parameters; an isotropic
elasticity; an unrealistic interatomic interaction model (with the nearest-neighbour interaction
being weaker by an order of magnitude than more distant interactions); etc. In spite of all these
assumptions, some features of the evolution found by Khachaturyan and co-workers [12] agree
qualitatively with experimental observations [2–4]. This may illustrate a low sensitivity of
these features to the real structure and interactions in an alloy. However, such an oversimplified
approach is evidently insufficient for studying the details of the evolution and their dependence
on the characteristics of an alloy, such as the type of interatomic interaction, concentration,
temperature, etc, which seem to be of most interest for both applications and physical studies
of the problem.

In this work we investigate the kinetics of the A1 → L10 transition using the microscopical
master equation approach and the kinetic cluster field method [13, 14]. Earlier this method
was used to study A1 → L12-type transformations [15] as well as early stages of the
A1 → L10 transition when the deformational interaction Hd due to the tetragonal distortion
of the L10 phase is still insignificant as regards the evolution [16]. Here we consider all
stages of this transition, including the tweed and twin stages when the interaction Hd becomes
important. To this end we first derive a microscopical model for Hd which generalizes the
analogous model of Khachaturyan for dilute alloys [10] to the physically interesting case of
concentrated alloys. Then we employ the kinetic cluster field method to simulate A1 → L10

transformation in the presence of deformational interaction Hd for a number of alloy models
with both short-range and extended-range chemical interactions at different temperatures,
concentrations, and tetragonal deformations. The simulations reveal a number of interesting
microstructural features, many of them agreeing well with experimental observations [2–4].
We observe, in particular, a peculiar phenomenon of an interaction-dependent alignment of
orientations of APBs within twin bands which was earlier discussed phenomenologically [11].
The simulations also show that the type of microstructural evolution strongly depends on
the interaction type as well as on the concentration c and temperature T . In particular,
drastic, phase-transition-like changes in morphology of APBs within twin bands can occur
with variation of c or T in the short-range-interaction systems.

The paper is organized as follows. In section 2 we derive a microscopical expression for
the deformational interaction Hd in concentrated alloys. In section 3 we describe our methods
of simulation of the A1 → L10 transition which are similar to those used earlier [15, 16]. In
section 4 we investigate the transformation kinetics for the alloy systems with an extended or
intermediate interaction range, and in section 5, that for the short-range-interaction systems.
Our main conclusions are summarized in section 6.

2. Model for deformational interaction in concentrated alloys

2.1. Hamiltonian

We consider a binary substitutional alloy AcB1−c. Various distributions of atoms over lattice
sites i are described using the sets of occupation numbers {ni} where the operator ni = nAi
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is unity when the site i is occupied by atom A and zero otherwise. The effective Hamiltonian
Heff describing the energy of these distributions has the form

Heff =
∑
i>j

vijninj +
∑

i>j>k

vijkninjnk + · · · (1)

where vi...j are effective interactions.
The interactions vi...j include the ‘chemical’ contributions vc

i...j which describe the
energy changes under the replacement of some atoms A by atoms B in the rigid lattice,
and the ‘deformational’ interactions vd

i...j related to the difference in lattice deformation
under such a replacement. A microscopical model for vd in dilute alloys was suggested
by Khachaturyan [10]. The deformational interaction in concentrated alloys can lead to some
new effects that are absent in the dilute alloys, in particular, to the lattice symmetry changes
under phase transformations, such as the tetragonal distortion under L10 ordering. Earlier
these effects were treated only phenomenologically [12]. Below we describe a microscopical
model for calculations of vd which generalizes Khachaturyan’s approach [10] to the case of
concentrated alloys.

Let us denote the position of site k in the disordered ‘averaged’ crystal as rk . Because
of the randomness of a real disordered or partially ordered alloy the actual atomic position
(averaged over thermal vibrations) is not rk but rk + uk where uk is the ‘static displacement’.
Supposing this displacement to be small, we can expand the ‘adiabatic’ (averaged over rapid
phonon motion) alloy energy H = H {ni,uk} to second order in uk:

H = Hc{ni} −
∑
k

uαkF
αk + 1

2

∑
k,l

uαkuβlAαk,βl (2)

where α and β are Cartesian indices and the summation over repeated Greek indices is
implied here and below. The term Hc{ni} in (2) describes interactions in the undistorted
average crystal lattice, i.e. chemical interactions vc

i...j mentioned above; Fαk can be called the
generalized Kanzaki force; and Aαk,βl is the force constant matrix. Both quantities Fαk and
Aαk,βl are certain functions of occupation numbers ni , and their evaluation needs some further
approximations.

Below, we consider ordering phase transitions at the fixed mean concentration c. Changes
of elastic constants and phonon spectra under such transitions are usually small [18]. Therefore,
the force constant matrix Aαk,βl can be reasonably well approximated with the simple ‘average
crystal’ approximation: Aαk,βl{ni} → Aαk,βl{c} ≡ Aαk,βl . To approximate the Kanzaki force
Fαk we first formally write it as a series in the occupation numbers ni :

Fαk{ni} = Fαk
0 +

∑
i

F
αk,i
1 ni +

∑
i>j

F
αk,ij

2 ninj + · · · . (3)

Equilibrium values of displacements uk = ue
k{ni} at the given distribution {ni} are determined

by the minimization of energy (2) over uk , and the constant Fαk
0 in (3) affects only the reference

point ue
k{0} in the function ue

k{ni}. This constant can be determined, for example, from the
condition of vanishing of mean static displacements in the averaged crystal at some c = c0,
which implies the relation 〈Fαk{ni}〉c=c0 = 0 where the symbol 〈· · ·〉 means the statistical
averaging over an alloy. The constants Fαk

0 are insignificant in what follows, and below they
are omitted to simplify formulae.

In writing an explicit expression for the contribution HK (to be called for brevity the
‘Kanzaki term’) of the occupation-dependent Kanzaki forces in energy (2), one should consider
that due to the translation invariance it can include only differences of displacements (uk −ui ),
(uk − uj ), etc. Therefore, this term should have the form

HK =
∑
k,i

(ui − uk)f
k,i
1 ni +

∑
k,ij

(ui − uk)f
k,ij

2 ninj + · · · (4)
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where f k,i1...im
m ≡ f k

m are some parameters describing the interaction of lattice deformations
with site occupations.

Representation (4) for HK as a sum of contributions of m-site ‘clusters’ proportional to
products ni1 · · · nim is analogous to similar cluster expansions for the ‘chemical’ Hamiltonian
Hc{ni} in (2). These expansions have been widely discussed, in particular, in connection
with first-principles calculations of chemical interactions vc

i1...im
≡ vc,m; see e.g. [19]. The

calculations have shown that the values of the m-site interactions vc,m in most alloys rapidly
decrease with increase of m, and the pairwise interaction vc,2 is usually dominant (though the
possible importance of many-particle interactions related, in particular, to the charge-transfer
effects is also debated [17]). It is natural to expect a similar rapid convergence to also be typical
for the expansion (4). Therefore, below, we omit many-site interactions f k

m with m > 2 in
equation (4). At the same time, in estimates of parameters f k

m for real alloys below, we combine
some model assumptions about f k

m with use of available experimental data on the variations of
lattice deformations with concentration and orderings, and such estimates may also implicitly
include the contributions of many-site interactions f k

m.
For what follows it is convenient to proceed from the functions uk = u(rk), ni = n(ri ),

f k,i
1 = f1(rk − ri ), f

k,ij

2 = f2(rk − ri , rj − ri ), and Aαk,βl = Aαβ(rk − rl) in equations (2)
and (4) to their Fourier components in the average crystal lattice. Then the energy (2) takes
the form

H = Hc{ni} +
1

N

∑
k

u−k

(
nkf1k +

∑
R

σR
k fR

2k

)
+

1

2N

∑
k

uα
−kA

αβ

k u
β

k . (5)

Here N is the total number of crystal cells, the summation over k is within the Brillouin zone
of the averaged crystal, and we use the following notation:

uk =
∑

r

u(r)e−ik·r nk =
∑

r

n(r)e−ik·r σR
k =

∑
r

n(r)n(r + R)e−ik·r

f1k =
∑

r

f1(r)(1 − e−ik·r) fR
2k =

∑
r

f2(r,R)(1 − e−ik·r)

A
αβ

k =
∑

r

Aαβ(r)e
−ik·r.

(6)

If one adopts a commonly used model of ‘central’ Kanzaki forces in which forces f k,i
1 and

f
k,ij

2 in (4) are supposed to be proportional to the vector rki = (rk − ri ), the vector functions
f1k and f2k in (6) can be expressed via two scalar functions, ϕ1 and ϕ2:

f1k =
∑

r

rϕ1(r)(1 − e−ik·r) fR
2k =

∑
r

rϕ2(r,R)(1 − e−ik·r). (7)

2.2. Elastic energy for disordered and ordered phases

The functions ϕ1 and ϕ2 in (7) determine the dependence of equilibrium lattice parameters on
concentration or ordering. To show this, we first note that the homogeneous deformation uαβ

is described in terms of Fourier components uk with small k → 0, while functions f1k and
f2k in equations (5) and (6) at small k are linear in k. Thus the contribution of homogeneous
deformations to the Kanzaki term in (5) is proportional to Fourier components uαβ

k of the elastic
strain uαβ = (∂uα/∂xβ + ∂uβ/∂xα)/2 for k → 0 and, according to first equation (6), these
components are related to uαβ as

u
αβ

k |k→0 = i(kβu
α
k + kαu

β

k)|k→0 = Nuαβ. (8)

At small k the force constant matrix A
αβ

k in (5) is bilinear in k, and the last term of (5)
corresponds to the standard expression for the elastic energy bilinear in uαβ and linear in
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the elastic constants cαβγ δ; see e.g. [10]. Therefore, the total contribution of terms with the
homogeneous elastic strain uαβ to energy (5) (to be called ‘the elastic strain energy’ Eel) can
be written as

Eel = −uαβ

(
A

αβ

1 n0 +
∑
R

A
αβ

2RσR
0

)
+ 1

2N"cαβγ δuαβuγ δ. (9)

Here" is the volume per atom in the average crystal; quantitiesAαβ

1 andA
αβ

2R are expressed
via functions ϕ1 and ϕ2 in (7) as

A
αβ

1 =
∑

r

xαxβϕ1(r) A
αβ

2R =
∑

r

xαxβϕ2(r,R) (10)

where xα is the Cartesian component of vector r = (x1, x2, x3); and n0 or σR
0 is the Fourier

component, nk or σR
k , at k = 0. According to equation (6), the operator n0 or σR

0 is the sum
of a macroscopically large number N of similar terms. Thus within the statistical accuracy
each of these operators can be replaced by its average value:

n0 = N〈n(r)〉 = Nc σR
0 = N〈n(r)n(r + R)〉. (11)

The last average in (11) can be expressed via mean occupations of sites and their correlators.
In an ordered alloy there exist several non-equivalent sublattices s with the lattice vectors rs

and mean occupations cs = 〈n(rs)〉, and so the last average in (11) includes averaging over all
sublattices s:

〈n(r)n(r + R)〉 =
∑
s

νs (cscsR + KsR) . (12)

Here csR is the mean occupation 〈n(r)〉 for r = rs + R; νs = Ns/N is the relative number of
sites in the sublattice s; and KsR is the correlator of occupations of sites located at r = rs and
at r = rs + R:

KsR = 〈[n(rs) − cs] [n(rs + R) − csR]〉. (13)

In a disordered alloy all sites are equivalent. Thus, cs = csR = c; νs = 1; and both index s

and the summation over s in (12) are omitted.
Using equations (11) and (12) one can rewrite the elastic strain energy (9) as

Eel = −Nuαβ

[
A

αβ

1 c +
∑
R

∑
s

νs (cscsR + KsR) A
αβ

2R

]
+ 1

2N"cαβγ δuαβuγ δ. (14)

The correlator KsR in equation (14) can be calculated using that or another method of statistical
theory. However, for most alloy systems of practical interest, in particular, at c- and T -values
not close to the thermodynamic instability points Ts , the correlators KsR are small and can be
neglected. Then equation (14) is simplified:

Eel = −uαβ

[
NA

αβ

1 c +
∑
r,R

c(r)c(r + R)A
αβ

2R

]
+ 1

2N"cαβγ δuαβuγ δ. (15)

Equilibrium values of uαβ in the absence of applied stress are determined by the minimization
of energy Eel with respect to uαβ which gives

"cαβγ δuγ δ = A
αβ

1 c +
1

N

∑
r,R

c(r)c(r + R)A
αβ

2R. (16)

Equation (16) enables one to express the equilibrium strain uαβ via the concentration, order
parameters, and the interaction parameters A

αβ

1 and A
αβ

2R, and it can also be used to estimate
these interaction parameters from experimental data on uαβ(c, T ).
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Let us consider equations (15) and (16) in particular cases. For a disordered phase with
c(r) = c, equation (16) takes the form

"cαβγ δuγ δ = A
αβ

1 c + A
αβ

2 c2 (17)

where A
αβ

2 = ∑
R A

αβ

2R. If the disordered phase has a cubic symmetry (as for the FCC or BCC
alloys), quantitiesAαβ

1 andA
αβ

2 are proportional to the Kronecker symbol δαβ , and equation (17)
determines the concentrational dilatation u(c) = uαα(c) − uαα(0):

u(c) = (A1c + A2c
2)/"B. (18)

Here B = (c11 + 2c12)/3 is the bulk modulus; cij are the elastic constants in Voigt’s notation;
and coefficients A1 and A2 are expressed via functions ϕ1 and ϕ2 in (7), (10):

A1 =
∑

r

ϕ1(r)r
2/3 A2 =

∑
r,R

ϕ2(r,R)r2/3. (19)

The linear-in-c term in (18) corresponds to the Vegard law while the term with A2 describes
the non-linear deviations from this law. Such deviations were observed for many alloys, and
these data can be used to estimate A2-values, but in these estimates one should also take into
consideration a possible concentration dependence of the bulk modulus B.

For the ordered phase, the mean occupation c(r) can be written as a superposition of
concentration waves corresponding to certain superstructure vectors kp [10]:

c(r) = c + 1
2

∑
p

[
ηp exp(ikp · r) + η∗

p exp(−ikp · r)
]

(20)

and amplitudes ηp can be considered as order parameters. After the substitution of
expressions (20) for c(r) and c(r + R) in equation (15) the linear-in-ηp terms vanish due to
the crystal symmetry, and the first term of (15) becomes the sum of the ordering-independent
term and the term bilinear in the order parameters:

Eel = −Nuαβ

(
A

αβ

1 c + A
αβ

2 c2 +
∑
p

qαβpp|ηp|2
)

+ 1
2N"cαβγ δuαβuγ δ. (21)

Here quantities qαβpp have a different form in the cases (a) when the superstructure vector kp

is half of some reciprocal-lattice vector g and thus both the order parameter ηp and all factors
exp(ikp · r) in (20) are real, and (b) when kp �= g/2:

(a) kp = g/2: qαβpp =
∑
r,R

xαxβϕ2(r,R) exp(ikp · r) (22)

(b) kp �= g/2: qαβpp = 1
2

∑
r,R

xαxβϕ2(r,R) cos(kp · r). (23)

The coefficients qαβpp in (21) (to be called the ‘striction’ coefficients, in analogy with
the terminology used in the ferroelectricity or magnetism theory) are commonly used in
phenomenological theories of lattice distortions under orderings [8–12]. Equations (22), (23),
and (10) provide the microscopic expression for these coefficients via the functionϕ2 describing
non-pairwise Kanzaki forces in equations (5)–(7).

2.3. Striction effects in the L12 and L10 phases

Let us apply equations (20)–(22) to the case of L10 or L12 ordering in FCC alloys which are
described by means of three real order parameters ηα [10, 15]. Equation (20) here take the
form

c(r) = c + η1 exp(ik1 · r) + η2 exp(ik2 · r) + η3 exp(ik3 · r) (24)
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where kα = gα/2 is the superstructure vector corresponding to ηα:

k1 = [100]2π/a k2 = [010]2π/a k3 = [001]2π/a. (25)

In the cubic L12 structure one has |η1| = |η2| = |η3|, η1η2η3 > 0, and four types of ordered
domain are possible. In the L10-ordered structure with the tetragonal axis α, a single parameter
ηα is present which is either positive or negative, and so six types of ordered domain are possible.

The striction coefficients for L10 or L12 ordering are determined by equation (22). Due
to the cubic symmetry of the ‘average’ FCC crystal, there are only two different striction
coefficients, q1111 and q1122 (and those obtained from them by the cubic symmetry operations),
which for brevity will be denoted as q11 and q12, respectively:

q11 =
∑
r,R

x2
1ϕ2(r,R) exp(ik1 · R) q12 =

∑
r,R

x2
1ϕ2(r,R) exp(ik2 · R). (26)

The variation of the elastic constants cαβγ δ with ordering is usually small [18], and for simplicity
it will be neglected. Then minimizing energy (21) with respect to uαβ we obtain the expressions
for the lattice deformations induced by ordering (24):

u = q+(η
2
1 + η2

2 + η2
3)/"c+ ε = q−[η2

1 − (η2
2 + η2

3)/2]/"c−
ζ = q−(η2

2 − η2
3)/"c−.

(27)

Here u = u11 +u22 +u33 describes the volume change; ε = u11 −(u22 +u33)/2 is the tetragonal
distortion; ζ = u22 − u33 is the shear deformation; and q± or c± are linear combinations of
striction or elastic constants:

q− = q11 − q12 c− = c11 − c12 q+ = q11 + 2q12 c+ = c11 + 2c12. (28)

For the L12 ordering, the values |η1| = |η2| = |η3| = η are the same, so just the volume
striction u = 3q+η

2/"c+ is present, while in the L10-ordered domain with η2 = η3 = 0 one
has both the volume and the tetragonal striction:

u = q+η
2
1/"c+ ε = q−η2

1/"c−. (29)

Therefore, using experimental data on the lattice distortions and order parameters under L12

and L10 orderings, one can estimate the striction coefficients q11 and q12 and thus the non-
pairwise Kanzaki interaction ϕ2 in equations (26).

2.4. The short-range Kanzaki force model

Below we suppose for simplicity the interactionϕ2(r,R) to be short ranged, i.e. significant only
when each of three relative distances r , R, and |r − R| does not exceed the nearest-neighbour
distance ρ = a/

√
2. Then this function can be written as

ϕ2(r,R) = δr,ρδR,ρ

(
ϕaδ|r−R|,0 + ϕbδ|r−R|,ρ

)
(30)

where δr,ρ is the Kronecker symbol equal to unity when r = ρ and zero otherwise while
ϕa and ϕb are the interaction parameters. The assumption (30) is analogous to that used by
Khachaturyan [10] for the pairwise Kanzaki interaction ϕ1(r) in (7):

ϕ1(r) = ϕ1δr,ρ (31)

where the constant ϕ1 is estimated from experimental data on concentrational dilatation.
First-principles estimates of lattice distortions in dilute alloys [20] seem to imply that the
assumption (31) yields the correct order of magnitude of ϕ1(r). Therefore, the analogous
assumption (30) for ϕ2(r,R) should be reasonable, too. Let us also note that the term
with ϕa in (30) corresponds to the two-site interaction between the occupations ni and nj

of neighbouring sites i and j and their relative dilatation (ui − uj ), while the term with
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ϕb describes the three-site interaction between the occupations ni and nj and the relative
displacement (uk − ui ) of the third adjacent site k.

Substituting equation (30) into (26), we obtain the explicit expression for coefficients qik

via parameters ϕa and ϕb in (30):

q11 = −2a2ϕa q12 = −4a2ϕb. (32)

The coefficient f1k in equations (5) and (6) for model (31) has the form [10]

f1k = 4ϕ1i
3∑

α=1

aα sin(k · aα)
∑
β �=α

cos(k · aβ) (33)

where aα is eαa/2 and eα is the unit vector along the main crystal axis α. The function fR
2k

in (5), (6) for model (30) is the sum of two terms:

fR
2k = fR

ak + fR
bk. (34)

Here, fR
ak is ϕaδR,ρR

(
1 − e−ik·R), while the function fR

bk for R equal to Rα + Rβ (where Rα

is aα or (−aα), Rβ is aβ or (−aβ), and β �= α) can be written as

fR
bk = 2ϕb

[
R +

(
ia′ sin(k · a′) − Rα cos(k · a′)

)
e−ik·Rα

+
(
ia′ sin(k · a′) − Rβ cos(k · a′)

)
e−ik·Rβ

]
(35)

where a′ is [eα · eβ]a/2.
Relations (7), (30)–(35) together with (18) and (32) provide a simplified model for the

Kanzaki term HK in equations (4) and (5). This model will be used below in simulations of
A1 → L10 transitions. To get an idea of the actual scale of parameters of this model, let us
estimate quantities qik , ϕa , and ϕb in equations (30) and (32) for the alloys Co–Pt for which
detailed data on the lattice distortions under L12 and L10 orderings are available [25,26]. The
volume changes u under the L12 ordering in CoPt3 and L10 ordering in CoPt both appear
to be very small [1, 25, 26]: u � 10−3. According to equations (27) and (29), this implies
the relation q12 � q11/2. The value q− = (q11 − q12) for CoPt can be estimated from the
second of equations (29) using data from [26] for η1 and ε at T = 0.84 Tc: η1 � 0.4;
ε � −0.04 (with the thermal expansion effect subtracted); and for the atomic volume:
" = "(Tc + 0) � 13.8 Å3. Using also for the elastic constant c− = (c11 − c12) its value for
FCC platinum, c− � 0.97 Mbar [27], we obtain q− � 2.6 × 104 K. Combining this with the
above-mentioned relation q12 � q11/2 and using equation (27), we find ϕa � 2 × 104 K/a2

and ϕb � 5×103 K/a2. Let us also note that the ordering-induced elastic energy per atom εord
el

in the CoPt alloy is small: εord
el � "c−ε2/6 � 30 K, which is much less than the L10 ordering

temperature Tc � 1100 K.

2.5. Effective deformational interactions

The equilibrium values of displacements ue
k = ue

k(ni) are found by the minimization of
energy (5) over uk. Substituting these ue

k into equation (5), we obtain the effective Hamiltonian
H = Hc + Hd where the deformational interaction Hd can be written as

Hd = − 1

2N

∑
k

(
n−kf∗

1k +
∑
R

σR
−kfR∗

2k

)
Gk

(
nkf1k +

∑
R

σR
k fR

2k

)
= Hd2 + Hd3 + Hd4. (36)

Here the matrix Gk = G
αβ

k is the inverse of the force constant matrix A
αβ

k , and the matrix
product aBc means the sum aαBαβbβ . The terms Hd2, Hd3, and Hd4 in (36) describe the
pairwise, three-particle, and four-particle deformational interactions, respectively:
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Hd2 = 1
2

∑
r,r′

n(r)12(r − r′)n(r′)

Hd3 = 1
2

∑
r,r′

∑
R

n(r)1R
3 (r − r′)n(r′)n(r′ + R)

(37)

Hd4 = 1
2

∑
r,r′

∑
R,R′

n(r)n(r + R)1
R,R′
4 (r − r′)n(r′)n(r′ + R′) (38)

where the potential 12, 1R
3 , or 1R,R′

4 is given by the expression{
12(r);1R

3 (r);1R,R′
4 (r)

}
= − 1

N

∑
k

eik·r{f∗
1kGkf1k; f∗

1kGkfR
2k + fR∗

2k Gkf1k; fR∗
2k GkfR′

2k

}
. (39)

As the matrix Gk in (39) at small k includes the well-known ‘elastic singularity’ [10]:
Gk ∼ 1/k2, each of the terms Hd2, Hd3, and Hd4 in (36) includes the long-ranged elastic
interaction. The formation of twinned structures discussed below is determined by the four-
particle interaction Hd4. The rest of the deformational interactions, Hd2 and Hd3, for the
single-phase L10 ordering under consideration, lead just to some quantitative renormalizations
of chemical interaction Hc in (5) which are usually small and insignificant. Therefore,
below, we retain in the deformational interaction (36) only the last term Hd4. Let us also
note that each term in the sum (38) for Hd4 at fixed r and r′ has the order of magnitude of
the above-mentioned ordering-induced elastic energy εord

el which is usually small. Thus the
interaction Hd4 can be significant only because of ‘coherent’ contributions of many sites r and
r′ due to the long-ranged elastic interaction. Therefore, local fluctuations of occupations
n(r) in the interaction Hd4 are insignificant, and it can be treated in the ‘kinetic mean-
field approximation’ (KMFA) [13–15] which neglects such fluctuations and corresponds to
the replacement in (38) of each occupation operator n(r) by its mean value c(r) = 〈n(r)〉
where 〈· · ·〉 means averaging over the space- and time-dependent distribution function [13–15].
Therefore, in considerations of A1 → L10 transformations below, we approximate the total
effective Hamiltonian H in (5) by the following expression:

H = Hc + Hd4 = Hc{n(r)} + 1
2

∑
r,r′,R,R′

c(r)c(r + R)1
R,R′
4 (r − r′)c(r′)c(r′ + R′) (40)

where the potential 1R,R′
4 (r) is given by equation (39).

Let us comment on the correspondence between the deformational interaction Hd4 in (40)
and the phenomenological expression for this elastic energy used by Chen et al [12]. Their
phenomenological expression corresponds to the ‘long-wavelength limit’ of Hd4 in which
functions Gk and f2k in (39) are replaced by their expansions at small k while the products
c(r)c(r + R) and c(r′)c(r′ + R′) in (40) are replaced by c(r)2 and c(r′)2. Therefore
(saying nothing about the unrealistic models for interactions and ordering used in [12]),
the phenomenological approach cannot describe features of the evolution in the short-range-
interaction systems for which the characteristic inhomogeneities, APBs, have a microscopical
width w � a [15, 16].

3. Models and methods of simulation

To simulate A1 → L10 transformations in an alloy with the Hamiltonian (40), we use
the methods described in [15] and [16], to be referred to as I and II, respectively. The
evolution of the atomic distributions is described by the kinetic tetrahedron cluster field method
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(KTCFM) [15] in which mean occupations ci = c(ri ) = 〈n(ri )〉 averaged over the space- and
time-dependent distribution function obey the kinetic equation (I.10):

dci/dt = 2
∑
j

Mij sinh[β(λj − λi)/2]. (41)

Here β = 1/T is the inverse temperature; Mij is the generalized mobility; and λi = λi{cj } is
the local chemical potential equal to the derivative of the generalized free energy F {ci} defined
in [13, 14] with respect to ci : λi = ∂F/∂ci .

The expression for Mij = Mij {ck} employed in our simulations is given by equation (I.12)
with the asymmetrical potential ui taken as zero for simplicity:

Mij = γnn[cicj (1 − ci)(1 − cj )]
1/2 (42)

where γnn is the configurationally independent factor in the probability of an atomic exchange
Ai ↔ Bj between neighbouring sites i and j per unit time defined by equation (I.3). The
simulation results below are presented in terms of the reduced time t ′ = tγnn. To get an idea
of the real timescale of the evolution one can use, for example, the relation between our model
γnn and the diffusivity D(T ) in dilute FCC alloys [21]:

D(T ) = a2γnn (43)

where a is the lattice constant. For example, for the Co–Pt alloys, using high-temperature
estimates of diffusivity D(T ) = D0 exp(−A/T ) [22]: D0 � 0.6 × 10−4 m2 s−1 and
A � 2.8 eV, we obtain at T near the critical temperature Tc � 1100 K: γnn(T ) �
40 exp[30(T − Tc)/T ] s−1 (though the estimate is evidently very crude).

The local chemical potential λi in (41) is the sum of the chemical and the deformational
term, λc

i and λd
i . The deformational contribution λd

i = λd
i (ri ) is the variational derivative of

the second term in (40) with respect to ci = c(ri ):

λd
i (r) = δHd4/δc(r) = 2

∑
r′,R,R′

c(r + R)1
R,R′
4 (r − r′)c(r′)c(r′ + R′). (44)

The chemical contribution λc
i includes only chemical interactions vc

ij , and in the KTCFM it
has the form [15]

λi = T ln
ci

1 − ci
+
∑
j,n>1

T ln(1 − cjg
ij
n ) +

∑
{jkl}∈tY,i

T ln
[
y
ijkl

i (1 − ci)/ci

]
(45)

where the second and the third term describe the contribution of non-nearest and nearest
chemical interactions, respectively. The summand in the second term corresponds to the
interaction vc

ij = vn between sites i and j which are nth neighbours in the lattice, and the

function g
ij
n is expressed in terms of the Mayer function fij = exp(−βvc

ij ) − 1 as follows:

gij
n = 2fij

Rij + 1 + fij (ci + cj )
Rij = {

[1 + (ci + cj )fij ]2 − 4cicjfij (fij + 1)
}1/2

. (46)

The summand in the last sum in (45) corresponds to the contribution to λi of the tetrahedron
of neighbouring sites i, j, k, l, and the notation {jkl} ∈ tY, i means that the summation is
performed over four ‘non-overlapping’ tetrahedra which contain site i and have no common
edges. The quantity y

ijkl

i = yα
i {cs} is determined by a system of equations:

ci = yα
i ∂ ln Zα/∂y

α
i (47)

where Zα is the partition function for the cluster α, which is a polynomial in yα
s with s equal

to i, j , k, or l:

Zα = 1 +
∑

s=i,j,k,l

yα
s + ζ

∑
s<s ′

yα
s y

α
s ′ + ζ 3

∑
s<s ′<s ′′

yα
s y

α
s ′y

α
s ′′ + ζ 6yα

i y
α
j y

α
k y

α
l (48)
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and ζ = exp(−βv1). Equations (47) for yα
s in each cluster α form a system of four algebraic

equations which is easily solved using Newton’s method.
For the chemical interaction vc

ij = vn we employ the five alloy models used in I and II:

(1) The second-neighbour interaction model with the nearest-neighbour interaction v1 =
1000 K (in units of the Boltzmann constant kB) and v2/v1 = ε = −0.125.

(2) The same model with ε = −0.25.
(3) The same model with ε = −0.5.
(4) The fourth-neighbour interaction model with vn estimated by Chassagne et al [23] from

their experimental data for disordered Ni–Al alloys: v1 = 1680 K, v2 = −210 K,
v3 = 35 K, and v4 = −207 K.

(5) The fourth-neighbour interaction model with v1 = 1000 K, v2/v1 = −0.5, v3/v1 = 0.25,
and v4/v1 = −0.125.

The effective interaction range Rint for these models monotonically increases with the
model number. Therefore, a comparison of the simulation results for these models enables
one to study the influence of Rint on the microstructural evolution. The critical temperature
Tc for the phase transition A1 → L10 in the absence of deformational interaction Hd4 (which
seems to have little effect on Tc in our simulations) for models 1, 2, 3, 4, and 5 is 614, 840,
1290, 1950, and 2280 K, respectively [24].

For the Kanzaki force fR
2k entering the expression (39) for the potential 1R,R′

4 (r) in (44)
we use equations (34) and (35). The interaction parameters ϕa and ϕb in these equations can be
expressed via spontaneous deformations u and ε using equations (29) and (32). For simplicity
we assume the volume striction to be small (as it is for the Co–Pt alloys mentioned above):
u � 0, while the tetragonal distortion will be characterized by its maximum value εm in a
stoichiometric alloy, i.e. by the value ε in (29) at η1 = 0.5. Therefore, interactions ϕa and ϕb

in our simulations are determined by the relations

ϕa = −a(c11 − c12)εm/3 ϕb = a(c11 − c12)εm/12. (49)

For the lattice constant a in (49) we take a typical value a � 4 Å, and for the elastic constant
(c11 − c12), the value 0.97 Mbar corresponding to FCC platinum [27].

For the force constant matrix Ak (which determines the matrix Gk = (Ak)
−1 in

equation (39)) we use the model described in [15, 28]. It corresponds to a Born–von Karman
model with the first- and second-neighbour force constants only, and the second-neighbour
constants are supposed to correspond to a spherically symmetrical interaction. This model
includes three independent force constants which are expressed in terms of elastic constants
cik , and these constants were chosen equal to those of FCC platinum [27]: c11 = 3.47 Mbar,
c12 = 2.5 Mbar, and c44 = 0.77 Mbar.

As was discussed in I and II, the transient partially ordered alloy states can be described
using either mean occupations ci = c(ri ) or local order parameters η2

αi and local concentrations
ci defined by equations (I.24) and (I.25). The simulation results below are usually presented as
the distributions of quantities η2

i = η2
1i +η2

2i +η2
3i , to be called the ‘η2-representation’, and these

distributions are similar to those observed in experimental transmission electron microscopy
(TEM) images [15].

Our simulations were performed on FCC simulation boxes of sizes Vb = L2 × H (where
L and H are given in units of the lattice constant a) with periodic boundary conditions. We
used both quasi-2D simulations with H = 1 and 3D simulation with H ∼ L. For the given
coordinate z = na (with n = 0 for 2D simulation) each of the figures below shows all FCC
lattice sites lying in two adjacent planes, z = na and z = (n + 1/2)a. The point (x, y) with
(x/a, y/a) equal to (l, m), (l + 1/2,m), (l + 1/2,m + 1/2), or (l, m + 1/2) in the figures
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corresponds to the lattice site with (x/a, y/a, z/a) equal to (l, m, n), (l + 1/2,m, n + 1/2),
(l + 1/2,m + 1/2, n), or (l, m + 1/2, n + 1/2), respectively. Therefore, at Vb = L2 × H the
figure shows 4L2 lattice sites.

The simulation methods were the same as in I and II. In simulations of A1 → L10

transformation the initial as-quenched distribution ci(0) was characterized by its mean value
c and small random fluctuations δci ; usually we used δci = ±0.01. The distributions of
initial fluctuations δci for the given simulation box volume Vb were identical for all models
and the same as that used in II. The sensitivity of the simulation results to variations of these
initial fluctuations δci was discussed in II and was found to be insignificant for the features of
evolution discussed below.

4. Kinetics of A1 → L10 transformations in systems with an extended or intermediate
interaction range

As discussed in I, II, and below, features of microstructural evolution under A1 → L10 and
A1 → L12 transitions sharply depend on the effective interaction range Rint in an alloy. In
this section we discuss A1 → L10 transitions for the systems with an extended or intermediate
interaction range, such as our models 5 and 4, while the short-range-interaction systems are
considered in the next section.

Some results of our simulations are presented in figures 1–8. The symbol A or A in
these figures corresponds to an L10-ordered domain with the tetragonal axis c along (100)
and the positive or negative value, respectively, of the order parameter η1; the symbol B or
B corresponds to that for the c-axis along (010) and the order parameter η2; and the symbol
C or C corresponds to that for the c-axis along (001) and the order parameter η3. Figure 8
shown in the c-representation illustrates the occupation of lattice sites for each domain type.
The APB separating two APDs with the same tetragonal axis (i.e. APDs A and A, B and B
or C and C) will be for brevity called the ‘shift-APB’, and the APB separating the APDs with
perpendicular tetragonal axes will be called the ‘flip-APB’.

4.1. Stages of A1 → L10 transformation

Before discussing figures 1–8 we recall the general ideas about the formation of twinned
structures [1–11]. To avoid discussing the problems of nucleation, in this work we consider
transformation temperatures T lower than the ordering spinodal temperature Ts . Then the
evolution under A1 → L10 transition includes the following stages [2–6]:

(i) The initial stage of the formation of the finest L10-ordered domains when their tetragonal
distortion still has little effect on the evolution and all six types of APD are present in
microstructures in the same proportion. It corresponds to the so-called ‘mottled’ contrast
in TEM images [5, 6].

(ii) The next, intermediate stage which corresponds to the so-called ‘tweed’ contrast in
TEM images. The tetragonal deformation of the L10-ordered APDs here leads to the
predominance of the (110)-type orientations of flip-APBs, but all six types of APD (i.e.
APDs with all three orientations of the tetragonal axis c) are still present in microstructures
in comparable proportions [2–4].

(iii) The final, polytwinned stage when the tetragonal distortion of the L10-ordered APDs
becomes the main factor in the evolution and leads to the formation of (110)-type oriented
twin bands. Each band includes only two types of APD with the same c-axis, and these
axes in the adjacent bands are ‘twin’ related, i.e. have alternate (100) and (010) orientations
for the given set of the (110)-oriented bands [2–4].
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Figure 1. Temporal evolution of extended-interaction-range model 5 under the phase
transformation A1 → L10 shown in the η2-representation for the simulation box sizeVb = 1282×1
for the maximum tetragonal distortion parameter |εm| = 0.1, c = 0.5, the reduced temperature
T ′ = T/Tc = 0.7, and the following values of the reduced time t ′ = tγnn: (a) 10; (b) 20;
(c) 50; (d) 100; (e) 250; and (f) 280. The grey level varies linearly with η2

i = η2
1i + η2

2i + η2
3i

between its minimum and maximum values, η2
min < 10−4 and η2

max � 0.20, from completely dark
to completely bright as shown in the inset. The symbol A, A, B, B, C or C indicates the type
of the ordered domain as described in the text. The thick, the thin, and the single arrow indicate
the fusion-of-domain process, the quadruple junction of APDs, and the splitting APB process,
respectively, as discussed in the text.

The thermodynamic driving force for the (110)-type orientation of flip-APBs is the gain in
the elastic energy of adjacent APDs: at other orientations this energy increases with the growth
of an APD proportionally to its volume [8–11]. For an APD with the characteristic size l and
the surface Sd , this elastic energy Ev

el ∼ c−ε2Sdl begins to affect the microstructural evolution
when it becomes comparable with the surface energy Es ∼ σSd where σ is the APB surface
tension. The ‘tweed’ stage (ii) corresponds to the relation Ev

el ∼ Es or to the characteristic
APD size

l0 ∼ σ/c−ε2 (50)

and so this size sharply increases with decreasing distortion ε.
Figures 1–7 illustrate quasi-2D simulations for which microstructures include only edge-

on APBs normal to the (001) plane. The elimination of the volume-dependent elastic energy
mentioned above is here possible only for the (100)- and (010)-oriented APDs separated by
the (110)- or (11̄0)-oriented APBs, while in the (001)-oriented APDs C and C this elastic
energy is always present. Therefore, the tweed stage (ii) in these simulations corresponds to
both the predominance of (110)- or (11̄0)-oriented APBs separating domains A or A from
B or B and the decrease of the portion of domains C and C in the microstructures. In the
3D case each of three possible types of a polytwin, those without (001)-, (100)-, or (010)-
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Figure 2. As figure 1, but for intermediate-interaction-range model 4 at T ′ = 0.67, η2
max � 0.23,

and the following values of t ′: (a) 10; (b) 20; (c) 50; (d) 100; (e) 250; and (f) 500.

oriented APDs, can be formed in the given part of an alloy stochastically due to the local
fluctuations of composition [1–7]. This is illustrated, in particular, by the 3D simulation
shown in figure 8, while quasi-2D simulations reproduce the formation of only one of the
polytwin types mentioned above.

The distortion parameter |εm| = 0.1 for the simulations shown in figures 1–3 was chosen
such that the APD size l0 in equation (50) characteristic for manifestations of elastic effects has
the scale typical for real CoPt-type alloys. In particular, if we make the conventional assumption
that the APB energy σ is proportional to the transition temperature Tc: σ ∼ Tcf (T ′) where f

is some function of the reduced temperature T ′ = T/Tc, then using the relation εm = ε/4η2
1

and the parameters ε, η1, and Tc for CoPt and for our models mentioned above, we find that
the right-hand side of equation (50) for models 5 and 4 at |εm| = 0.1 is close to that for the
CoPt alloy at similar T ′-values within about 10%. Therefore, the microstructures at both the
initial stage (i) and the tweed stage (ii) can be reproduced by figures 1–3 with no significant
distortion of scales. With further growth of an APD its size l becomes comparable with the
simulation box size L, and the periodic boundary conditions begin to significantly affect the
evolution. Therefore, the later stages of transformation can be more adequately simulated if
we reduce the characteristic size l0 in equation (50) using the larger values of the parameter
εm, such as |εm| = 0.15 − 0.2 used in the simulations shown in figures 4–8.

4.2. Features of evolution at the initial and tweed stages

Let us first discuss figures 1–3 corresponding to a ‘realistic’ distortion parameter |εm| = 0.1.
The initial stage (i) in these figures corresponds to frames 1(a), (b), 2(a), (b), and 3(a), (b);
the tweed stage (ii) corresponds to frames 1(c), (d), 2(c)–(e), and 3(c); and the twin stage (iii)
corresponds to frames 1(e), (f), 2(f), and 3(d).
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Figure 3. As figure 2, but at T ′ = 0.92, η2
max � 0.14, and the following values of t ′: (a) 10; (b)

50; (c) 100; and (d) 200.

The detailed consideration of the initial stage for models 4 and 5 neglecting the
deformational effects [16] revealed the following features of evolution:

(a) The presence of abundant processes of fusion of in-phase domains which are among the
main mechanisms of domain growth at this stage.

(b) The presence of peculiar long-living configurations, the quadruple junctions of APDs (4-
junctions) of the type A1A2A1A3 where A2 and A3 can correspond to any two of four
types of APD different from A1 and A1.

(c) The presence of many processes of ‘splitting’ of a shift-APB into two flip-APBs which
lead to either the fusion of in-phase domains mentioned in point (a) (s → f process) or
the formation of a 4-junction mentioned in point (b) (s → 4j process).

Figures 1–3 show that all these microstructural features are also present when the
deformational effects are taken into account, and not only at the initial stage (i) but also at the
tweed stage (ii). In particular, the beginning and the end of an s → f process (marked by the
single and the thick arrow, respectively) can be followed in frames 1(a)–(d); 1(d) and (e); 2(b)
and (c); 2(c) and (d); and 3(a) and (b). The fusion with the disappearance of an intermediate
APD which initially separates two in-phase domains to be fused [16] can be followed in the
lower right part of frames 1(a) and (b) and in the upper right part of frames 2(b) and (c)
(which is marked by a thick arrow in frames 1(b) and 2(c), respectively). A number of long-
living 4-junctions marked by thin arrows are seen in frames 1(a)–(d), 2(a)–(c), and 3(a). An
s → 4j process can be followed in the lower right part of frames 1(a)–(c). The processes and
configurations (a), (b), and (c) can also be seen in figures 4–7 discussed below.

Frames 2(a)–(e) also display some (100)-oriented and thin conservative APBs. As
discussed in [16] and below, such APBs are most typical of the short-range-interaction systems
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Figure 4. As figure 1, but at |εm| = 0.15, η2
max � 0.21, and the following values of t ′: (a) 10;

(b) 20; (c) 50; (d) 150; (e) 172; and (f) 350. Frame 2(d) is shown in the η2
2-representation: the

grey level varies linearly with η2
2i between its minimum and maximum values, η2

2 min < 10−7 and
η2

2 max � 0.21, from completely dark to completely bright.

where they have a low surface energy (being zero for the stoichiometric nearest-neighbour
interaction model) unlike other, non-conservative APBs. For increase of the interaction range,
as well as temperature, or deviation from the stoichiometric composition, the anisotropy in
the APB surface energy sharply decreases [16]. Therefore, in figure 2 (and figure 5 below)
corresponding to intermediate-range-interaction model 4 the conservative APBs are few but
observable, while for extended-range-interaction model 5 in figure 1, as well as at elevated T

or for significant ‘non-stoichiometry’ δc = (0.5 − c) in figures 3 or 6 for model 4, such APBs
are absent entirely.

Comparison of figures 2 and 3 reveals the sharp dependence of microstructural evolution
on the transformation temperatureT . Upon elevating this temperature to values near the critical
temperature Tc: (Tc − T ) � 0.1 Tc, both flip- and shift-APBs notably thicken, the anisotropy
in their surface energy falls off, while the characteristic size of the initial APDs (formed after
a rapid quench A1 → L10) increases. The latter change is related to an increase at T → Tc

of the characteristic wavelength for the ordering instability which is due to the narrowing of
the interval of effective wavenumbers q = k − ks near the superstructure vector ks for which
the ordering concentration waves are unstable at T < Tc.

Frames 1(c), (d), 2(c)–(e), and 3(c) show the evolution at the tweed stage. They illustrate,
in particular, the kinetics of the (110)-type alignment of APBs between APDs A or A and B
or B at this stage, as well as a ‘dying out’ of (100)-oriented APDs C and C. These frames
also show that in the simulation with a realistic distortion parameter |εm| = 0.1 (fitted to
the structural data for CoPt), the APD size l0 (50) characteristic of the tweed stage is about
(20–40) a. This agrees with the order of magnitude of this size observed in the CoPt-type
alloys FePt and FePd [2–4].
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Figure 5. As figure 2, but at |εm| = 0.15, η2
max � 0.24, and the following values of t ′: (a) 10;

(b) 20; (c) 50; (d) 170; (e) 200; and (f) 700.

Figure 6. As figure 5, but at c = 0.44, η2
max � 0.20, and the following values of t ′: (a) 10; (b) 20;

(c) 50; (d) 400; (e) 750; and (f) 1100.
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Figure 7. As figure 1, but at |εm| = 0.2, T ′ = 0.88, η2
max � 0.17, and the following values of t ′:

(a) 10; (b) 20; (c) 30; (d) 50; (e) 300; and (f) 400.

Figure 8. As figure 3, but for 3D simulation with Vb = 522 × 30 at |εm| = 0.2 and shown in
the ‘c-representation’: the grey level varies linearly with ci between its minimum and maximum
values, cmin � 0.04 and cmax � 0.96, from completely dark to completely bright. The upper three
frames correspond to the plane z = 10 a and the following values of t ′: (a) 10; (b) 20; and (c) 325.
The lower three frames correspond to t ′ = 325 and the following planes: (d) y = 0; (e) y = 10 a;
and (f) y = 36 a.
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Figure 9. As figure 1, but for the short-range-interaction model 1 at |εm| = 0.15, c = 0.5, T ′ = 0.9,
η2

max � 0.24, and the following values of t ′: (a) 30; (b) 40; (c) 60; and (d) 120.

4.3. Microstructural evolution at the twin stage

As mentioned, the final, twin stage of the transformation can be more adequately simulated
with the larger values of the parameter |εm| which are employed in the simulations shown in
figures 4–8. Before discussing these figures we note some typical configurations observed in
experimental studies of transient twinned microstructures [2–4] seen, for example, in figures 5,
6, 9, and 2 in [2–4] and [12], respectively:

(1) semi-loop-like shift-APBs adjacent to the twin band boundaries;
(2) ‘S-shaped’ shift-APBs stretching across the twin band; and
(3) short and narrow twin bands (for brevity to be called ‘microtwins’) which lie within the

larger twin bands and usually have one or two shift-APBs near their edges.

Comparing our results with experiments one should consider that due to the limited size of
the simulation box the twin bandwidth d in our simulations has the same order of magnitude as
the APD size l0 (50) characteristic of the tweed stage, while in experimentsd usually far exceeds
l0 [2–4]. Therefore, the distribution of shift-APBs within twin bands in our simulation is usually
much closer to equilibrium than in experiments. In spite of this difference, the simulations
reproduce all of the characteristic transient configurations (1)–(3) and elucidate the mechanisms
of their formation. In particular, both the semi-loop and the S-shaped shift-APBs are formed
from regular-shaped approximately quadrangular APDs (characteristic of the beginning of the
twin stage) due to the disappearance of adjacent APDs which are ‘wrongly oriented’ with
respect to the given twin band. The formation of semi-loop configurations is illustrated by
frames 1(d)–(f), 5(d), (e), and 7(b), (c); while the formation of S-shaped APBs can be seen in
frames 2(d)–(f), 4(d)–(f), 5(d), (e), and 7(b), (c). The formation and evolution of microtwins is
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illustrated by frames 4(c), (d) and 5(c), (d). These frames show that the microtwin is actually
a small and narrow APD for which deformational effects are strong enough to align its flip-
APBs along the (110)-type directions. However, the standard mechanism of coarsening via the
growth of larger APDs at the expense of smaller ones leads to the shrinking and eventually to
the disappearance of a microtwin which is usually accompanied by the formation of S-shaped
and/or semi-loop shift-APBs. The latter is illustrated by frames 4(d)–(f) and 5(d), (e). Let us
also note that the microtwin configuration shown in frame 4(d) is strikingly similar to that seen
in the central part of the experimental figure 2 in [12].

Let us now discuss the final, ‘nearly equilibrium’ microstructures shown in the last frames
of figures 1–8. A characteristic feature of these microstructures is a peculiar alignment of
shift-APBs: within a (100)-oriented twin band in a (110)-type polytwin the APBs tend to align
normally to some direction n = (cosα, sin α, 0) characterized by a ‘tilting’ angleα between the
band orientation and the APB plane. Figures 1–8 show that this tilting angle is not very sensitive
to the variations of temperature or concentration but it sharply depends on the interaction type,
particularly on the interaction range. For extended-range-interaction model 5 this angle is close
to π/4 (slightly exceeding this value), while for intermediate-range-interaction model 4 it is
notably less than π/4. A similar alignment of APBs for the short-range-interaction systems is
illustrated by figures 9–11 where the tilting angle is close to zero.

A phenomenological theory of this interaction-dependent tilting of APBs within nearly
equilibrium twin bands has been suggested in [11]. The tilting is explained by the competition
between the anisotropy of the APB surface tension σ and a tendency to minimize the total APB
area within the given twin band which corresponds to α = π/4. For the alloy systems with
both the intermediate and the short interaction range the surface tension σ(α) is minimal at α =
0 [11,16]. Thus for such alloy systems the tilting angle is less thanπ/4, and it decreases with the
decrease of the interaction range. For the extended-range-interaction systems the anisotropy
of the APB surface tension is weak [15,16], and so the tilting angle is close to π/4. Therefore,
the comparison of experimental tilting angles with theoretical calculations [11] can provide
both qualitative and quantitative information on the effective chemical interactions in an alloy.

The alignment of shift-APBs discussed above seems to be clearly seen in the experimental
microstructure for CoPt shown in figure 5 of [1] where the tilting angle is notably less than
π/4. It can indicate that the effective interactions in CoPt have an intermediate interaction
range. This agrees with the usual estimates of these interactions for transition metal alloys;
see e.g. [19, 23, 29].

Comparison of figures 4 and 7 illustrates the influence of temperature T on the evolution.
Elevating T , we again observe a thickening of APBs, as well as a coarsening of initial APDs.
Frames 7(d)–(f) also illustrate a process of ‘transverse coarsening’ of twin bands via a shrinkage
and disappearance of some microtwinned bands. Such transverse coarsening appears to be seen
in a number of experimental microstructures, for example, in figure 6 in [3] or figure 2 in [12].
Frames 7(d)–(f) show that the thermodynamic driving force for such transverse coarsening is
mainly the gain in the surface energy of shift-APBs due the decrease of their total area in this
process.

Figures 5 and 6 illustrate the concentration dependence of the evolution. The non-
stoichiometry δc = (0.5 − c) affects the evolution similarly to temperature T : for increase
of both δc and T all APBs thicken, while shift-APBs become less stable with respect to flip-
APBs [16]. The latter leads to an enhancement of processes of splitting of shift-APBs as well
as of the transverse coarsening mentioned above; this is illustrated by frames 6(b)–(f).

Some results of a 3D simulation with Vb = 522×30 are presented in figure 8. In this figure
we employ the c-representation (described in the caption) in which the regions containing the
vertical or horizontal lines (that is, the vertical or horizontal crystal planes filled by A atoms)
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correspond to the APDs with the (100)- or (010)-oriented tetragonal axis, respectively, while
the checkered regions correspond to the APDs with the tetragonal axis normal to the plane of
the figure. This simulation aimed mainly to complement 2D simulations with an illustration
of geometrical features of 3D microstructures. Figure 8 illustrates, in particular, a stochastic
formation of different polytwin sets with three possible types of orientation mentioned above.
The limited size of the simulation box prevents us from carrying out a detailed consideration
of the evolution with this 3D simulation. Therefore, below, we discuss only the problem of a
3D orientation of tilted shift-APBs in final, ‘nearly equilibrium’ microstructures.

Let us consider a (100)-oriented twin band in the form of a plate of height h, length l,
and width d in the direction (001), (110), and (11̄0), respectively, with d � h � l (which is a
typical form of twin bands observed in TEM experiments [1–7]). The equilibrium orientation
of a plane shift-APB in this band corresponds to the minimum of its energy Es = σS where S

is the APB area and σ is the surface tension determined mainly by the angle α between the APB
orientation n = (sin α, cosα cosϕ, cosα sin ϕ) and the band orientation n0 = (100) [11]. For
the ‘needle-shaped’ twin band under consideration, the upper and the lower boundaries of a
shift-APB usually lie at the top and the bottom edge of this band, respectively. Minimization
of energy Es in this case yields ϕ = 0, i.e. the APB is normal to the (001) plane, and its
orientation n = (sin α, cosα, 0) is determined by the interaction-dependent tilting angle α

defined in [11]. This conclusion seems to be supported by the present 3D simulation: the
lower and the upper tilted shift-APBs within the (010)-oriented twin band below the main
diagonal of frame 8(c) correspond to the grey lines stretching across the checkered region in
frames 8(e) and (f), respectively, and both of these lines are approximately normal to the (001)
plane.

5. Kinetic features of A1 → L10 transformations in the short-range-interaction systems

As mentioned, transient microstructures under L10 ordering for the short-range-interaction
systems include many conservative APBs. Such APBs are virtually immobile, and so the
evolution is realized via motion of other, non-conservative APBs which results in a number
of peculiar kinetic features [15,16]. The initial stage of the A1 → L10 transformation for the
short-range-interaction systems was discussed in detail in [16]. In this section we consider
the tweed and twin stages of such transformations and note the differences from the case of
systems with the larger interaction range.

Some results of our simulations for the short-range-interaction systems are presented
in figures 9–11. In these simulations we used sufficiently high temperatures T ′ � 0.9–
0.8 to accelerate evolution to final, ‘nearly equilibrium’ configurations, as the presence of
conservative APBs slows down (or even ‘freezes’) this evolution, particularly at low T ′.

Figure 9 illustrates the evolution for model 1; as discussed in [15], this model seems
to correspond to the Cu–Au-type alloys. A distinctive feature of microstructures shown in
figure 9 is a predominance of the above-mentioned conservative APBs with the (100)-type
orientation. Frames 9(a)–(c) show both the conservative shift-APBs (c-shift APBs) and the
conservative flip-APBs (c-flip APBs) also illustrating their orientational properties [16]. For
quasi-2D microstructures with edge-on APBs shown in figure 9, c-shift APBs separating APDs
A and A (c-APBs A–A) are horizontal; c-APBs B–B are vertical; and c-APBs C–C can be both
horizontal and vertical; c-flip APBs (A or A)–(C or C) (which separate APDs A or A from C
or C) are horizontal; c-APBs (B or B)–(C or C) are vertical; and c-APBs (A or A)–(B or B)
should lie in the plane of the figure and thus they are not seen in figure 9. Figure 9 also shows
that the conservative APBs are notably thinner than non-conservative ones, particularly for
c-flip APBs.
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Figure 10. As figure 9, but at c = 0.44, η2
max � 0.18, and the following values of t ′: (a) 110;

(b) 140; (c) 200; and (d) 350.

Frames 9(a)–(c) show that in the first stages of the evolution the proportion of conservative
APBs with respect to non-conservative ones increases, due to the lower surface energy of the
c-APBs. Later on, with the beginning of the tweed stage, the deformational effects become
important leading to a dying out of both APDs C and C and their c-flip APBs. However,
the conservative shift-APBs within twin bands survive, and in the final frame 9(d) they are
mostly ‘step-like’, consisting of (100)-type oriented conservative segments and small non-
conservative ledges. These step-like APBs can be viewed as a ‘faceted’ version of tilted APBs
discussed above and seen in figures 1–8. Such step-like APBs were observed under the L10

ordering of CuAu and some CuAu-based alloys [7], and they are also similar to those observed
under the L12 ordering in both simulations [15] and experiments for the Cu3Au alloy [30].

As was repeatedly noted in [16] and above, an increase of non-stoichiometry δc = (0.5−c)

or temperature T leads to a sharp decrease of both the anisotropy of the APB energy and the
energy preference of conservative APBs with respect to non-conservative ones. Therefore, with
increase of δc or T the proportion of conservative APBs in transient microstructures falls off,
and at sufficiently high δc or T such APBs are not formed at all under the transformation. This
results in drastic microstructural changes of the evolution, including sharp, phase-transition-
like changes in the morphology of aligned shift-APBs within twin bands, from the ‘faceting’
to the ‘tilting’. This is illustrated by figure 10 which shows the evolution of model 1 at a
significant non-stoichiometry δc = 0.06, and this evolution is qualitatively different from that
for a stoichiometric alloy shown in figure 9.

Figure 11 illustrates the transition from the ‘faceted’ to the ‘tilted’ morphology of shift-
APBs within nearly equilibrium twin bands with variations of T or δc for model 2. An
examination of the intermediate stages of transformations illustrated by this figure shows
that the morphological changes are realized via some local bends of faceted APBs. This is
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Figure 11. As figure 1, but for model 2 at |εm| = 0.1 and the following values of c, T ′, η2
max, and

t ′: (a) c = 0.5, T ′ = 0.77, η2
max � 0.24, and t ′ = 350; (b) c = 0.5, T ′ = 0.95, η2

max � 0.21, and
t ′ = 300; (c) c = 0.46, T ′ = 0.77, η2

max � 0.20, and t ′ = 350; and (d) c = 0.44, T ′ = 0.77,
η2

max � 0.19, and t ′ = 300.

also revealed by a comparison of frames 11(a), (c), and (d) with each other. Therefore, the
‘morphological phase transition’ mentioned above is actually smeared over some interval of
temperature or concentration. However, frames 11(a)–(d) show that the ‘intervals of smearing’
of such transitions can be relatively narrow.

6. Conclusions

Let us summarize the main results of this work. To study microstructural evolution under
L10-type orderings in alloys we first derive a microscopical model for the effective interatomic
deformational interaction due to the so-called Kanzaki forces describing the interaction of
lattice deformations with site occupations. It generalizes an analogous model of Khachaturyan
for dilute alloys [10] to the physically interesting case of concentrated alloys. We take into
account the non-pairwise contribution to Kanzaki forces, and the resulting effective interaction
Hd is non-pairwise, too, unlike in the case of dilute alloys. Assuming non-pairwise Kanzaki
forces to be short ranged, we express the deformational interaction Hd in terms of two
microscopical parameters which can be estimated from experimental data on lattice distortions
under phase transformations, and we present such estimates for the alloys Co–Pt.

Then we employ the earlier-described kinetic cluster field method [15, 16] to simulate
A1 → L10 transformation after the quench of an alloy from the disordered A1 phase to the L10

phase for five alloy models with different types of chemical interaction. The transformation can
be divided into three stages, in accordance with the increasing importance of the deformational
interaction Hd : the ‘initial’, ‘tweed’, and ‘twin’ stages. For the initial stage the deformational
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effects are insignificant, while for the tweed stage they become comparable with those of the
chemical interaction Hc. For the twin stage, the tetragonal distortion of L10-ordered antiphase
domains (APDs) leads to the formation of (110)-type oriented twin bands which include only
two types of APD with the same tetragonal axis, and these axes in adjacent bands have alternate
(100) and (010) orientations for the given set of (110)-type oriented bands.

The type of evolution strongly depends on the range Rint of the chemical interaction. For
systems with an extended or intermediateRint at both the initial and tweed stages we observe the
following features: (a) abundant processes of fusion of in-phase domains; (b) a great number
of peculiar long-living configurations, the quadruple junctions of APDs described in section 4;
and (c) numerous processes of ‘splitting’ of an antiphase boundary separating the APDs with
the same tetragonal axis (‘shift-APB’) into two APBs separating the APDs with perpendicular
tetragonal axis (flip-APBs). The simulations also illustrate a sharp temperature dependence of
the evolution, in particular, a notable increase of both the width of APBs and the characteristic
size of initial APDs with elevating T . The deviation from stoichiometry affects the evolution
similarly to temperature: for increase of both the non-stoichiometry δc = (0.5 − c) and T , all
APBs thicken, while shift-APBs become less stable with respect to flip-APBs.

For the twin stage, our simulations reveal the following features of transient
microstructures: (1) semi-loop-like shift-APBs adjacent to the twin band boundaries; (2) ‘S-
shaped’ shift-APBs stretching across the twin band; (3) short and narrow twin bands
(‘microtwins’) lying within the larger twin bands; and (4) processes of ‘transverse coarsening’
of twinned structures via a shrinkage and disappearance of some microtwins. All these features
agree with experimental observations [2–4]. For the final, nearly equilibrium twin bands
the simulations demonstrate a peculiar alignment of shift-APBs with a certain tilting angle
between the band orientation and the APB plane, and this tilting angle sharply depends on the
interaction type, particularly on the interaction rangeRint. Such alignment of APBs seems to be
observed in the CoPt alloy [1], and a comparison of experimental tilting angles with theoretical
calculations [11] can provide information about the chemical interactions in an alloy.

A distinctive feature of the evolution for the short-range-interaction systems is the presence
of many conservative APBs with the (100)-type orientation. The conservative shift-APBs are
also present in the final twinned structures, and they are mostly ‘step-like’, consisting of (100)-
type oriented conservative segments and small non-conservative ledges. This can be viewed
as a ‘faceted’ version of tilted APBs mentioned above. Such (100)-type alignment of shift-
APBs agrees with the observations for the alloy CuAu [7] for which chemical interactions are
supposed to be short ranged [15, 30].

With increase of the non-stoichiometry δc or temperature T , the energy preference of
conservative APBs with respect to non-conservative ones decreases, and the proportion of
conservative APBs in the microstructures falls off. This results in drastic microstructural
changes, including sharp, phase-transition-like changes in morphology of aligned shift-APBs
within twin bands, from their ‘faceting’ to the ‘tilting’. Such ‘morphological phase transitions’
are actually smeared over some intervals of temperature or concentration, but the simulations
show that the intervals of smearing can be narrow.

Finally, let us note that this and other studies of kinetics of multivariant orderings, such as
the D03, L12, and L10 orderings [15,16,28], show that the microstructural evolution under such
orderings reveals a great variety of peculiar features, the detailed form of which sharply depends
on the type of interaction, temperature, the degree of non-stoichiometry, the scale of lattice dis-
tortion, and other factors. Therefore, detailed experimental and theoretical studies of this evo-
lution can provide important information about details of microscopical interactions in alloys.
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