January 2007

Isolation of *Salmonella enterica* and Shiga-Toxigenic *Escherichia coli* O157 from Feces of Animals in Public Contact Areas of United States Zoological Parks

James E. Keen
USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska

Lisa M. Durso
USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, Lisa.Durso@ars.usda.gov

Thomas P. Meehan
Brookfield Zoo, Chicago Zoological Society

Follow this and additional works at: http://digitalcommons.unl.edu/usdaarsfacpub
Part of the [Agricultural Science Commons](http://digitalcommons.unl.edu/usdaarsfacpub)

Keen, James E.; Durso, Lisa M.; and Meehan, Thomas P., "Isolation of *Salmonella enterica* and Shiga-Toxigenic *Escherichia coli* O157 from Feces of Animals in Public Contact Areas of United States Zoological Parks" (2007). *Publications from USDA-ARS / UNL Faculty*. 18.
http://digitalcommons.unl.edu/usdaarsfacpub/18
Isolation of *Salmonella enterica* and Shiga-Toxigenic *Escherichia coli* O157 from Feces of Animals in Public Contact Areas of United States Zoological Parks

James E. Keen, Lisa M. Durso, and Thomas P. Meehan

USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, and Brookfield Zoo, Chicago Zoological Society, Brookfield, Illinois

Received 6 July 2006/Accepted 17 October 2006

The fecal prevalence of subclinical *Salmonella enterica* and Shiga-toxigenic *Escherichia coli* O157 among animals in human-animal contact exhibits at institutions in the United States accredited by the Association of Zoos and Aquariums was estimated to assess public health risk. The prevalence was less than 0.6% for both zoonotic pathogens among 997 animals sampled at 36 exhibits.

Animal exhibits are popular sources of entertainment and educational enrichment that provide opportunities for direct and sometimes close human-animal contact. Zoonotic enteric human disease outbreaks associated with animal exhibits have increased in the past decade in North America and Europe. These outbreaks are usually attributable to the protozoan *Cryptosporidium parvum* and to nontyphoid *Salmonella enterica* and especially to Shiga-toxigenic *Escherichia coli* (STEC) O157 bacterial infections (5, 18). At least 17 animal exhibit-associated (agricultural fair, petting zoo, or open farm) STEC O157 outbreaks have occurred in the United States since 1999, and these outbreaks have affected 1,317 people, caused 69 hemolytic-uremic syndrome cases, and killed two persons (5, 6, 8, 9, 11, 12, 13, 18, 21). Since 1990, there have been at least four animal exhibit *Salmonella enterica* outbreaks in the United States attributable to *Salmonella enterica* serovars Typhimurium and Enteritidis (5). The *Salmonella* serovar Enteritidis outbreak, which was associated with visiting a temporary exhibit of a Komodo dragon at a metropolitan zoo, affected 65 persons, mostly children (15). Exhibit-associated outbreaks, real or alleged, are costly to affected individuals and their families, affected venues and their insurance underwriters, and health service providers. They also represent a source of legal vulnerability to exhibitors.

The Association of Zoos and Aquariums (AZA) is a non-profit organization of 211 (in 2005) zoos, aquariums, and wildlife centers in North America. The AZA inspects and accredits a profit organization of 211 (in 2005) zoos, aquariums, and wildlife centers in North America. The AZA inspects and accredits

The motivation for this study was to estimate the unknown fecal shedding prevalence of zoonotic *Salmonella enterica* and STEC O157 in animal populations in the relatively homogeneous AZA human-animal contact settings. We hypothesized that the fecal shedding prevalence of both bacteria would be lower in animals in AZA human-animal contact areas than that in animals in production or agricultural fair environments. Commercial beef and dairy cattle and livestock displayed at agricultural fairs frequently have high (10% or greater) summer prevalence of both STEC O157 and *Salmonella* (4, 7, 14, 17; T. E. Wittum, J. E. Keen, G. Hansen, D. Mollenkopf, J. A. Funk, J. R. Dunn, J. L. Bono, and M. E. Fontenot, 84th Conf. Res. Workers Anim. Dis., abstr. 61, 2003).

AZA-accredited institutions in the United States with human-animal contact exhibits (typically children's zoos) were recruited to participate voluntarily and confidentially. Freshly (i.e., observed) voided or rectal feces acquired digitally (~50 g, if available) were collected from a census of all animals in contact exhibits by institution staff. Fecal culture for both STEC O157 and *Salmonella* was initiated within 24 to 36 h of collection. Samples were collected in the summers of 2003 and 2004, the peak visitor season at most participating zoos and the peak period of *Salmonella* and STEC O157 shedding in livestock in general (4).

For *Salmonella* isolation, feces samples (up to 10 g, as available) were preenriched in tetraphionate broth (TTB) containing 0.1% brilliant green solution for 24 h at 37°C, followed by selective enrichment of 100 μl of TTB in 10 ml Rappaport-Vassiliadis R10 broth (Difco Laboratories, Detroit, MI) for 24 h at 37°C. R10 broth was then dual streak plated (10 μl) onto EF-18 agar (Neogen Corp., Lansing, MI) and Rambach agar (CHROMagar, Paris, France) (20, 22). Plates were incubated for 24 h at 37°C. Up to five colonies per plate exhibiting...
typical *Salmonella* morphology on the selective agars were inoculated onto MacConkey agar and incubated for 24 h at 37°C. Lactose-negative colonies were biochemically bio-
typed on Sensititre AP80 gram-negative identification plates (Trek Diagnostic Systems, Westlake, OH). Isolates confirmed as *Salmonella* by Sensititre were serogrouped with a limited set of anti-*Salmonella* monoclonal antibodies by enzyme immuno-
assays (16). One isolate per *Salmonella*-positive fecal specimen was *Salmonella* O and H antigen serotyped by the National Veterinary Services Laboratories (NVSL) (Ames, IA).

For STEC O157 isolation, feces samples (up to 10 g) were
enriched in gram-negative (GN) broth containing vancomycin (8
mg/liter), cefixime (0.05 mg/liter), and cefsulodin (10 mg/liter)
for 6 h at 37°C, followed by immunomagnetic separation with anti- *E.
coli* O157 paramagnetic beads (Dynabeads; Invitrogen, Carlsbad, CA). Following immunomagnetic separation, bead aliquots (50
μl) were spread plated onto CHROMagar O157 agar containing
0.63 mg/liter potassium tellurite (TCA). Up to five suspect STEC
O157 mauve-pink colonies per TCA plate were serotyped by
enzyme immunoassays using anti-*E. coli* O157 and anti-*E. coli* H7
monoclonal antibodies followed by PCR assays for *stx*1, *stx*2,
(Shiga toxins), *eae* (intimin), *rfb*E*O157* (O157 O antigen), and
*fltC*H7 (H7 flagellum) genes (13, 17).

Thirty-six AZA-accredited institutions participated in the
survey, 13 in 2003 and 23 in 2004. The institutions were geo-
ographically diverse, from 25 different states and all regions in
the United States. Fecal specimens were collected from 997
animals (Table 1), averaging 28 samples per exhibit (range, 4 to
68). *Salmonella* was isolated from six animals at four zoos:
three goats, one horse, one bovine animal (zebu calf), and one
giraffe (Table 2). *Salmonella*-positive animals were immedi-
ately removed from exhibits, quarantined, and retested for
Salmonella at 2-week intervals. All animals initially *Salmonella*
fecal positive were culture negative on subsequent retesting
except the zebu calf (Table 2), which remained fecal *Salmonella*
positive, but with a different serotype, 2 weeks after initial
testing. STEC O157 was isolated from a yak in isolation and
quarantine facilities just prior to going on display (Table 2).
The yak isolate was PCR positive for *stx*1, *stx*2, *eae*, *rfb*E*O157*,
and *fltC*H7. This animal was permanently removed from the
zoo. Presumably nonzoonotic *stx*- , *eae*- , *hly*- and *fltC*H7-negative
E. coli O157 isolates were obtained from three pigs, four
sheep, and one horse at seven zoos (incidental finding).

STEC O157 and *S. enterica* isolate antimicrobial suscepti-
bility was evaluated by Kirby-Bauer disk diffusion on Mueller-
Hinton agar and commercial disks (Difco) (23). The antimicro-
bials and disk concentrations (in micrograms) are shown in
Table 2, footnote a. Results were interpreted according to
established criteria (19). There was no evidence of clinically
relevant antibiotic resistance among the eight isolated enteric
pathogens (Table 2).

These survey results indicate that summer fecal prevalence
for both *Salmonella* (6 of 997 = 0.6%; 0.2 to 1.3 exact 95%
confidence interval [95% CI]) and STEC O157 (1 of 997 =
0.1%; 0.0 to 0.6 95% CI) was low in human-animal contact
settings at AZA-accredited institutions in both absolute and
relative terms. *Salmonella* and STEC O157 were isolated from
animals in 4 of 36 (11.1%; 3.1 to 26.1 95% CI) and 1 of 36
(2.8%; 0.1 to 14.5 95% CI) exhibits, respectively. The preva-
ience at AZA-accredited institutions was much lower than

<table>
<thead>
<tr>
<th>Animal group and type</th>
<th>No. of samples collected</th>
<th>No. (%) of samples positive for:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Salmonella</td>
</tr>
<tr>
<td>Domestic livestock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goats (mostly pygmy breeds)</td>
<td>526</td>
<td>3 (0.6)</td>
</tr>
<tr>
<td>Sheep (many breeds)</td>
<td>192</td>
<td>0</td>
</tr>
<tr>
<td>Cattle (dairy and beef cattle and yaks)</td>
<td>49</td>
<td>1 (2.0)</td>
</tr>
<tr>
<td>Equids (horses, ponies, and donkeys)</td>
<td>59</td>
<td>1 (1.7)</td>
</tr>
<tr>
<td>Pigs</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>871</td>
<td>5 (0.6)</td>
</tr>
<tr>
<td>Exotic and wild hooved animals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vicunas and llamas</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Cervids (deer and reindeer)</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>Camels</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Giraffe and okapi</td>
<td>7</td>
<td>1 (14.3)</td>
</tr>
<tr>
<td>Antelopes</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>75</td>
<td>1 (1.3)</td>
</tr>
<tr>
<td>Small animals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbits</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Rodentsa</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Pigeons</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Parrots</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Tortoises</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Poultry</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>Carnivores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skunks</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Serval</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ferrets</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>All animals</td>
<td>997</td>
<td>6 (0.6)</td>
</tr>
</tbody>
</table>

* Rats, porcupines, chinchillas, and guinea pigs.
TABLE 2. Antibiotic resistance of Salmonella enterica serovars and STEC O157 isolated from animals in human-animal contact areas at AZA-accredited zoological parks against 11 antimicrobials as determined by disk diffusion

<table>
<thead>
<tr>
<th>Zoo</th>
<th>Animal</th>
<th>Salmonella enterica serotype (serogroup)</th>
<th>Antibiotic resistance profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Goat</td>
<td>Serotype Infantis (C1)</td>
<td>Ampicillin</td>
<td></td>
</tr>
<tr>
<td>8 Yak</td>
<td>STEC O157:H7</td>
<td>Ampicillin</td>
<td></td>
</tr>
<tr>
<td>18 Horse</td>
<td>Serotype Javiana (D1)</td>
<td>Ampicillin, azithromycin, streptomycin, azithromycin</td>
<td></td>
</tr>
<tr>
<td>29 Goat</td>
<td>Serotype Newport (C2)</td>
<td>Ampicillin, tetracycline, azithromycin</td>
<td></td>
</tr>
<tr>
<td>29 Giraffe</td>
<td>Serotype Rubislaw*</td>
<td>Ampicillin, tetracycline, azithromycin</td>
<td></td>
</tr>
<tr>
<td>36 Goat</td>
<td>Serotype Rubislaw*</td>
<td>Ampicillin, tetracycline, streptomycin, azithromycin</td>
<td></td>
</tr>
<tr>
<td>36 Zebu calf</td>
<td>Serotype Javiana (D1)</td>
<td>Ampicillin, tetracycline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serotype Muench (C2)*</td>
<td>Ampicillin, tetracycline</td>
<td></td>
</tr>
</tbody>
</table>

*Antimicrobials and their levels in disks (in micrograms) were as follows: ampicillin, 10; chloramphenicol, 30; streptomycin, 10; sulfisoxazole, 300; tetracycline, 30; trimethoprim, 30; ciprofloxacin, 5; gentamicin, 10; neomycin, 30, and azithromycin, 15.

financial resources than other animal exhibitors. Furthermore, many AZA institutions are in urban and suburban locations, distant from farms with endemically infected livestock. This spatial buffer may insulate them from rural infection pressures. Although Salmonella and STEC O157 screening is not part of routine AZA veterinary protocols for new or resident animals, existing AZA isolation and quarantine policies may protect against introduction and transmission of these nontargeted zoonotic agents as well. Finally, animals in contact areas at AZA-accredited institutions may be relatively free from these enteric zoonotic bacteria only fortuitously. Because of this possibility and because these infections are usually clinically silent, zoological parks should consider implementing a specific preventive zoonotic microbial screening program on a routine basis.

In the compositions of animals examined in the present zoo study versus production or agricultural fair livestock surveys may also have impacted the findings. Adult cattle and swine are frequent targets of zoonotic enteric pathogen prevalence surveys at farms and fairs (4, 7, 14, 17), while sheep and goats are comparatively rarely surveyed, reflecting their relative agroeconomic importance. In contrast, the present zoo survey was 56% goats, 20% sheep, 5% cattle, and 5% swine. Compared to commercial livestock, livestock at AZA-accredited institutions also tended to be younger and smaller (e.g., miniature breeds) and managed in smaller groups for visitor safety and appeal. Nevertheless, the prevalence of STEC O157 and Salmonella in the surveyed zoos was low, even in the cattle and swine animal subsets most similar to commercial livestock.

In conclusion, human-animal contact exhibits at AZA-accredited institutions appear to present a low enteric zoonotic bacterial risk to their visitors and employees at the current time. These survey findings indicate that it is possible to maintain livestock species with low zoonotic enteric bacterial infection levels. Understanding the basis for this low prevalence could benefit preharvest food safety efforts aimed at lowering enteric zoonotic bacterial occurrence in farm livestock destined for food, a largely intractable problem to date.

We thank the anonymous participating AZA institutions (veterinarians, staff, and management), the Infectious Disease Committee of the American Association of Zoo Veterinarians, Sandy Fryda-Bradley, Ron Mlejnek, and Brittany Rizzo.

Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standards of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.