
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department of

2005

Profiling Deployed Software: Strategic Probe
Placement
Madeline Diep
University of Nebraska - Lincoln, mhardojo@cse.unl.edu

Sebastian Elbaum
University of Nebraska-Lincoln, elbaum@cse.unl.edu

Myra B. Cohen
University of Nebraska - Lincoln, mcohen2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csetechreports

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Diep, Madeline; Elbaum, Sebastian; and Cohen, Myra B., "Profiling Deployed Software: Strategic Probe Placement" (2005). CSE
Technical reports. 17.
http://digitalcommons.unl.edu/csetechreports/17

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csetechreports/17?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages


Profiling Deployed Software: Strategic Probe Placement

Madeline Diep, Sebastian Elbaum, Myra Cohen
Department of Computer Science and Engineering

University of Nebraska
Lincoln, Nebraska

{mhardojo, elbaum, myra}@cse.unl.edu

Abstract

Profiling deployed software provides valuable insights for quality improvement activities. The probes required for
profiling, however, can cause an unacceptable performance overhead for users. In previous work we have shown that
significant overhead reduction can be achieved, with limited information loss, through the distribution of probes across
deployed instances. However, existing strategies for probe distribution do not account for several relevant factors:
acceptable overheads may vary, the distributions to be deployed may be limited, profiled events may have different
likelihoods, and the user pool composition may be unknown. This paper evaluates strategies for probe distribution
while manipulating these factors through an empirical study. Our findings indicate that for tight overhead bounds:
1) deploying numerous versions with complementary probe distributions can compensate for the reduction of probes
per deployed instance, and 2) techniques that balance probe allocation, consider groupings and prior-allocations, can
generate distributions that retain significantly more field information.

1 Introduction

Software profiling consists of observing, gathering, and analyzing data to characterize a program’s behavior. Profiling
deployed software is valuable because it can provide insights into how the software is actually utilized [8, 14], which
configurations are being employed [13], what development assumptions may not hold [4], where validation activities are
lacking [5], or which scenarios are most likely to lead to a failure [11].

Profiling usually requires instrumentation of the program, that is, the addition of probes to enable the examination of
the program’s run-time behavior. As such, the act of profiling penalizes the targeted software with execution overhead.
The magnitude of the overhead depends, at least to some extent, on the number, the location, and the type of inserted
profiling probes.

To reduce profiling overhead, instrumentation techniques may choose to insert just a subset of the probes, but do so
strategically to reduce data loss (e.g, avoid inserting probes that capture redundant or inferable data). When instrumenting
a program to be profiled in the field, techniques may also reduce the number of probes by distributing them across a pool
of deployment sites. Such an approach consists of generating multiple program variants to be deployed across sites, where
each variant contains a subset of probes, and where the subset size can be bounded to meet the overhead requirements.

Clearly, overhead reduction through probe distribution across variants implies that less data is collected from each
deployed site. Still, given enough sites and an appropriate distribution of probes across variants, the aggregation of
the data collected from all sites can generate an accurate representation of how the software is exercised in the field. In
practice, however, generating a distribution that is likely to capture an accurate representation from the field is challenging
due to, at least, the following factors:

• Acceptable overhead levels of deployed instances, which bounds the number of probes that can be allocated to
each variant.

• Deployment costs, which may limit the number of variants that can be deployed and maintained in the field.

• Targeted behavior, which defines probe allocation process parameters such as event likelihood or event groupings.

• Varying attributes of the potential deployed sites (e.g., size, types, change rate, response rate), which continually
redefines how the probes should be allocated across subsequent releases.

This paper investigates how to effectively perform probe distribution across variants within the constraints imposed
by these four factors so that the likelihood of collecting valuable field information is increased.
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Our contribution is two-fold. First, we define the probe allocation problem across variants while taking into consid-
eration the factors just listed, and we present a meta-algorithm that can be instantiated in multiple ways to accommodate
various probe distribution strategies that attempt to account for these factors. Second, we empirically evaluate various
probe distribution strategies applied to a deployed system while manipulating the four factors in order to assess their
impact on the effectiveness of the strategies.

2 Background

Previous studies have investigated ways to enhance the efficiency of profiling techniques by: (1) performing up-front
analysis to optimize the amount of instrumentation required [2, 19], (2) sacrificing accuracy by monitoring entities of
higher granularity or by sampling program behavior [6, 7], (3) encoding the information to minimize memory and storage
requirements [17], and (4) repeatedly targeting the entities that need to be profiled [1, 3]. These mechanisms reduce the
amount of instrumentation inserted or executed in a program through the analysis of the properties the program exhibits
in a controlled in-house environment.

When profiling deployed software, we can also leverage the opportunities introduced by a potentially large pool of
users. The following research efforts, for example, focus in that direction: 1) Perpetual Testing, which uses the residual
testing technique to reduce instrumentation based on previous coverage results [16, 18], 2) EDEM, which provides a
semi-automated way to collect user-interface feedback from remote sites when it does not meet an expected criterion [9],
3) Skoll, which presents an architecture and a set of tools to distribute different job configurations across users [13], 4)
Gamma, which introduces an architecture to distribute and manipulate instrumentation across deployed instances [8, 15],
and 5) Bug Isolation, which provides an infrastructure to efficiently collect field data and identify likely failure conditions
[11, 12]. Our work is closely related to the last two projects.

It is similar to Gamma in that the overall mechanism to reduce overhead utilizes probe distribution across deployed
instances. However, our focus has been on developing techniques to achieve distributions that increase the likelihood
of retaining field data, and their empirical validation [5]. The work in this paper builds on our previous studies by
considering instrumentation constraints, event groupings, an unknown number of deployed instances, and deployment
costs that limit the number of variants, to guide the probe distribution process. Furthermore, continuing with the empirical
focus, we have conducted a study on a truly deployed non-trivial system to address our research questions (Section 4).

It is related to the bernoulli-sampling used by the Bug-Isolation project since both attempt to reduce overhead through
some form of sampling. However, while the bernoulli-sampling approach includes additional instrumentation to dynam-
ically determinewhento sample, our objective is to determine before deploymentwhat to sample in each variant. Our
approach aims to produce a fair sample across variants, without incorporating the additional instrumentation required to
adjust the sampling at run-time. In Section 6 we discuss how these approaches can be complementary.

3 Probe Distribution on Variants

This section characterizes the problem of probe distribution across variants to control overhead while maximizing the
likelihood of capturing field information. It illustrates different distribution approaches, states the research questions,
and provides a meta-algorithm that can be instantiated to generate distributions with different properties.

3.1 Problem Characterization

A software engineer is interested in profiling programP after deployment to learn about certain aspects of the program
behavior that manifests in the field (e.g., coverage, hot-spots, usage patterns). To capture such behavior, the engineer
can generate an instrumented variant ofP calledv0 with a complete set of probesH, one for each instrumentable unit
u in P . This approach, however, may cause an unacceptable performance overhead. As previously mentioned, program
analysis techniques can be used to reduce the number of units worth profiling, resulting in a decreasedH. The overhead
reduction achieved through such analysis, however, may not be sufficient to support the intended granularity and type of
profiling without disturbing the user. To address this problem, the engineer can specify an acceptable maximum number
of probeshbound that can be included in variantv0 to enable the profiling activities.hbound can be computed such
that, for example, profiling overhead is hidden in the program’s operating noise (performance variation observed during
various program executions).

Since generallyhbound << |H|, data collected from all the sites whenonevariant withhbound probes is deployed
will reflect only a part of the program behavior exercised in the field. Having multiple deployed variants of the program,
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where each variant has a somewhat complementary subset of assigned probes, can offer a more representative reflection
of the program behavior [4]. This approach will result inn variantsv0, v1, ..., andvn−1, where each variant contains
a subset of probesHv0, Hv1, ..., andHvn−1, such that the size of each subset is less or equal tohbound. We simplify
the discussion by assuming that|Hv0| = |Hv1| = ... = |Hvn−1| = hbound. In this scenario a minimum ofd |H|

hbound
e

variants are needed to cover the entire probe space inH.
When determining the number of variants (n) that should be generated, additional issues to take into consideration

include the potential value of the collected data, the cost of variant generation and deployment, and the predicted size
and variation of the user pool. Note that the size of the user population is a practical limitation for the number of variants
worth generating, and equates to each user having a unique variant. More commonly, however, the number of users is
much greater than the number of variants, so each variant is likely to be utilized by multiple users. It is then up to the
engineer to determine the right proportion of users per variant based on the assessed cost-benefits.

Oncen andhbound are defined, the challenge is to find a distribution of probes across variants that maximizes the
likelihood of capturing a representative part of the program behavior exercised in the field. More formally, we define the
probe distribution across variants problem as follows:

Given:

U , a set of units inP , u ∈ U , and whereu identifies a potential location for probeh;

PD, the set of potential probe distributions acrossU on n variants such that∀ variants: |Hv0|=|Hv1|=...=|Hvn−1| =
hbound;

f , a function fromPD to the real numbers that, when applied to any such distributions, yields anaward value.

Problem: Find a distributionD ∈ PD such that∀D′ ∈ PD, D 6= D′, [f(D) ≥ f(D′)].

The definition off will depend on the information that is being targeted. For example,f could be the number of
blocks covered, the potential invariants violated, or the hot-spots identified. Depending upon the choice off , the problem
of finding the best distribution may be intractable. Thus, in practice, we resort to heuristics to approximateD.

3.2 Potential Distributions Strategies

Figure 1 illustrates various probe distribution strategies across variants for a program with:|U | = 9, hbound = 3, and
n = 3. The first alternative,Pattern, inserts probes in three neighboring units in each variant, taking into consideration
the probes inserted in previous variants to minimize overlapping of probes per unit across variants. This alternative is
simple, but it may be subject to bias due to the concentration of probes in certain sections of a program variant (e.g.,
variants with probes in rarely executed units will provide no information from the field, variants with probes in well
executed areas will bring repeated data with limited value added).

The second alternative,Random, is likely to avoid the previous type of biases. However, a random distribution can
still lead to an uneven distribution of probes. Some units may be instrumented in many variants while others may be
instrumented in none. In Figure 1 underRandom, no probes are allocated to capture information relative to units u3, u7
or u9, but all variants allocate one probe to profile the activity of u2.

Strategies may benefit when considering two additional attributes:unit-balancingandunit-grouping. Unit-balancing
attempts to balance the probes assigned to units across variants.Random Balancedin Figure 1, solves the inequities of
Randomby keeping track of the number of probes previously allocated for each unit, and performing random allocation
considering only the units that have fewer probes. Keeping a balanced distribution may be more challenging in the
presence of changing profiling requirements. As profiling requirements evolve (e.g., specific program sections may
require more data to explain certain behavior, or expectations for what constitutes acceptable overhead may vary), variants
fitting different policies may have been deployed, which makes balancing infeasible. Still, we conjecture that strategies
that consider previous allocations, even when performed under different profiling requirements, are likely to be beneficial.

Unit-grouping consists of clustering units (e.g., per scope, per frequency, per usage) intoq groups, where each group
j may be assigned a different number of probes (gjhbound), to better match the data collection interests while keeping
the samehbound per variant. For example, an engineer may assign a higher bound to a group of untested components in
order to learn more about their usage context [16]. Figure 1 provides an example of grouping calledGrouped Random
Balanced, where there are two groups, one withg1hbound = 1 and one withg2hbound = 2. More generally, when units
in U are clustered into groups, the set of potential distributions,PD, is further constrained by thegjhbound across theg
groups in all variants.
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Figure 1: Sample Distributions.

3.3 Research Questions

Our overall objective is to learn how to best allocate a bounded number of probes into multiple deployed program variants
to capture the maximum amount of field information. In this paper we assess a series of strategies that utilize different
probe distribution mechanisms. Our assessment is guided by the following research questions which explore the multiple
dimensions of this problem:

RQ1: Does the amount of information collected vary across the probe distribution strategies illustrated in Section 3.2?

RQ1a: What is the effect of varying bound levels?

RQ1b: What is the effect of varying the number of variants?

RQ2: Do unit-groupings that leverage probe execution likelihood make any difference?

RQ3: Does the utilization of prior distribution knowledge change our results?

3.4 Distribution Algorithms

To help us address the research questions, we have developed a meta-algorithm for probe distribution that can be in-
stantiated to implement different distribution strategies that can accommodate differenthbounds (RQ1a) and number of
variants (RQ1b). The algorithm can also incorporate groupings to allowghbound to be set individually within groups
(RQ2). In addition, the algorithm uses an incremental approach of probe distribution that allows to leverage prior distri-
bution information (RQ3): it allocates probes on areleasebasis, where a releaseRi containsni variants with the same
hbound and consists ofqi groups.

The algorithm first separates the program units into the defined groups. This leads to the formation of “blocks’, where
a block is a single group in a single release. Figure 2 shows a set ofm× q blocks, and zooms in on blockBi2 which has
4 variants and 5 units, withg2hbound = 3. The algorithm proceeds to distributeg2hbound probes to the units within that
block, one variant at a time. A matrix representation is used to model this distribution. When a probe is placed in a unit
of interest in a variant, it is represented by a1. Otherwise it is represented as a0.

The meta-algorithm is presented in Algorithm 1. The bold capitalized text in the algorithm represents specialization
subroutines. The first specialization subroutine,SET ghbound, allows for different strategies to bound the number of

4



v1

v2

v3

v4

0 1   1   0  1

1 0   1   1  0

0   ?   0   ?  1

1   1   2   1  2

u21 u22 u23 u24 u25

g1hbound + g2hbound +…gqhbound= hbound

Release1

Release2

.

.

.

Releasem

B11 B12

Bm1 Bmq

Block (Bi2)Group1 Group2 …  Groupq

g2hbound=3

B1q

Figure 2: Building a Release.

probes in each group. The second subroutine,INITIALIZE BLOCK , enables different setups of the probe vector to ac-
commodate results from previous distributions. For example, the algorithm could be instantiated as “memoryless”, which
would simply initialize all of the units equally, or it can provide “memory” such that it takes into account where probes
have been allocated in previous releases in order to drive the current distribution. The third subroutine,ALLOCATE
PROBES, determines where to allocate probes in a target variant. To better exemplify this subroutine, we instantiated
three of the algorithms discussed in Section 3.2 which will also be the target of the following evaluation study.

The first instantiation, Algorithm 2, implements a type ofPatterndistribution. We randomly select a starting unit
and then sequentially allocateghbound probes, wrapping to the beginning of the unit set when we have reached the last
unit. The next instantiation, Algorithm 3, represents aRandomdistribution where probes are allocated in random units
without repetition within a variant untilghbound probes have been placed.

Algorithm 1 Meta Algorithm to Build a Release

Divide units into groups

for eachgroupdo

SET ghbound

INITIALIZE BLOCK

for each variantdo

ALLOCATE PROBES

Re-assemblegroups

Algorithm 2 Pattern Distribution

ALLOCATE PROBES (ghbound, offset) {
if offsetnot initialized

offset= selectRandomUnit(units)

for i = 1 to ghbound do

s = (i+ offset) mod|units|
place probe inunit s

}

Algorithm 3 Random Distribution

ALLOCATE PROBES (ghbound) {
count = 0

AvailableUnits = units in block

while count < ghbound andAvailableUnits not emptydo

s = selectRandomUnit(AvailableUnits)

place probe inunit s

removeunit s from AvailableUnits

count++

}
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Algorithm 4 Random Balanced Distribution
ALLOCATE PROBES (ghbound, minProbeUnitCount){
count = 0

AvailableUnits = SelectUnits(minProbeUnitCount)

while count < ghbound do

s = selectRandomUnit(AvailableUnits)

place probe inunit s

removeunit s from AvailableUnits

if AvailableUnits is empty

minProbeUnitCount + +

AvailableUnits =SelectUnits(minProbeUnitCount)

count + +

}

The last instantiated strategy,Random Balanced, (Algorithm 4), places probes in random units while keeping a
balanced distribution at all times1. To maintain a balanced distribution, the algorithm tracks the number of probes
assigned to the units with the least number of probes (minProbeUnitCount). The algorithm starts by adding all units
that have been allocated aminProbeUnitCount probes to theAvailableUnits set. Next, it randomly selects a unit
s from AvailableUnits, assigns a probe tos, and removess from AvailableUnits. WhenAvailableUnits is empty
(same number of probes have been assigned to all units),minProbeUnitCount is incremented andAvailableUnits is
re-initialized. This process is repeated untilghbound probes are assigned.

4 Empirical Study

The following sections introduce the variables and metrics, the hypothesis, the object of study, the design and implemen-
tation of the study, and the threats to validity that may affect our findings.

4.1 Independent Variables

We manipulated the following four independent variables.
Probes Placement Techniques.We implemented the three probe allocation techniques presented in Section 3.4:

Random (R), Pattern (P ), and Random Balanced (RB). We assumed a probe allocation at a block level, where a block
is a sequence of statements without any type of branches or jumps.

Bounds. We defined four levels of overhead: 5%, 10%, 25%, and 50% over the non-instrumented program. To
approximate the number of probes corresponding to the chosen levels of overhead, we inserted a number of probes in
random blocks of the program, ran the in-house test suite, measured the overhead, and adjusted the number of inserted
probes until we converged to the target overhead level. This resulted in four bound levels (hbound)as defined by the
following number of probes: 50, 100, 350, and 1000.

Groupings. In this study, we defined block groupings based on their likelihood of execution. We obtained the
execution frequency for each block when running the in-house test suite, and then partitioned the blocks into4 groups,
with group 1 containing the least executed blocks, and group 4 contains the most executed blocks.

Number of variants. The maximum number of variants we can have is 36, which is the number of participants in
this study, where each participant gets exactly one variant of the deployed program. The minimum number of variants is
1 where the all users get the same set of probes. In this study, we considered seven values of variants: 1, 6, 12, 18, 24,
30, and 36.

4.2 Dependent Variables

The dependent variables are associated with the captured field information value and the profiling activity costs. We
have selected three metrics to quantify the value of the captured information. The metrics utilize the default allocation
strategy,Full (the complete set of probes is inserted inP ), as a baseline for their computation.

The first metric is the percentage of program blocks covered in the field when using a probe allocation technique with
respect to the coverage obtained byFull. This information is valuable to assess the thoroughness and representativeness
of the in-house test suite [4], to predict the impact of program changes [14], or to revise reliability estimates [10].

1For the memoryless algorithm,AvailableUnits is initialized with all the units, while in the version with memory the initialization considers the
distribution performed in previous releases.
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The second metric is the percentage of program hot-spots correctly identified, where hot-spots are defined as the 5%
most frequently executed blocks. This information is valuable to guide test resource allocation [20]. To obtain such a
percentage we identified the 140 (5% of the total number of blocks) most executed blocks usingFull, we identified the
140 most executed blocks when a probe distribution technique is used, and we divided the number of common blocks in
the lists by 140.

The third metric aims to capture an aspect of the profiling cost. Even though we constrain the number of probes
inserted in a variant through the bound value, the number of probes actually executed in the field may vary, for example,
due to the location of the probes. Hence, we computed the probe execution frequency in the field when a technique is
applied, and divided by the probe execution frequency whenFull is utilized.

4.3 Hypotheses

We formally state the primary null hypotheses (assumed to be true until statistically rejected) in Table 1, corresponding
to the research questions in Section 3.3.

Table 1:Hypotheses for Research Questions

RQ Null Hypotheses: There isno significant ...
1a H1a1: performance2difference between Random (R), Pattern (P ), and Random-Balanced (RB) techniques.

H1a2: difference when using differenthbounds.
H1a3: interaction between techniques &hbounds.

1b H1b1: difference in performance when deploying different number of variants.
H1b2: interaction between number of variants &hbound.

2 H21: difference in a technique’s performance when grouping is applied.
H22: interaction between grouping &hbound.

3 H31: difference in a technique’s performance when information from previous distributions is utilized.
H32: interaction between technique & number of variants in previous distributions.
H32: interaction between technique &hbound in previous distributions.

4.4 Object of Study

We chose MyIE as our object of study. MyIE is a web browser that wraps the core of Internet Explorer to add features
such as a configurable front end, mouse gesture capability, and URL aliasing. MyIE was particularly attractive because
its source code is available, it introduces many of the challenges of other large systems (e.g., size, interaction with 3rd
party components, complex event handler, highly configurable), it is similar but not identical to other web browsers, and
it has a small user base that we can leverage for our study. The version of MyIE source code we utilized, available for
download at sourceforge.net, has approximately 41 KLOC, 64 classes, 878 methods, and 2793 blocks.

Object Preparation. To collect the field data, we instrumented MyIE source code to generate several types of traces,
including a complete block trace utilizing theFull strategy. During a user’s execution, the block trace is recorded in
a buffer. When the buffer is full, the information is compressed, packaged with a time and site ID stamp, and sent to
the in-house repository if a connection is available or locally stored otherwise. An in-house server is responsible for
accepting the package, parsing the information, and storing the data into the database.

Test Suite. We required a test suite to generate an initial assessment of the overhead and bounds, and identify the
hotspots. To obtain such a test suite, we first generated a set of test cases to exercise all the menu items in MyIE at least
once. After examining the coverage results, we added test cases targeting blocks that had not yet been exercised. We
automated a total of 243 test cases yielded 79% of block and 90% of function coverage.

4.5 Deployments and Data Collection
We first performed a set of preliminary deployments to verify the correctness of the installation scripts, data capture
process, magnitude and frequency of data transfer, and the transparency of the de-installation process. After this initial
refinement period, we proceeded to perform a full deployment and started with the data collection. We sent e-mail to
the members of our Department and various testing newsgroups (e.g. comp.software.testing, comp.edu, comp) inviting
them to participate in the study and pointing them to our MyIE deployment web site for more information.3 After

2As defined by the dependent variables in Section 4.2.
3http://cse-sgodd-009.unl.edu:8080/mapstext/index.html
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3 months, there were 114 downloads, and 36 deployed sites that qualified for this study, which generated 378 user
sessions, corresponding to 60,836 packages or 87MB of compressed data.

After the data was collected, different scenarios were simulated to help us answer the research questions. The
particular simulation details such as the manipulated variables and the assumptions vary depending on the research
question, so we address them individually within each study.

4.6 Threats to validity
There are several threats to the validity of this study. We explain the most likely threats and how we controlled them
next.

From a generalization perspective, our findings are limited by the object of study, the data-collection process, and
the user population. Although it is arguable whether the selected program is representative of the population of all
programs, there are many similar browsers of similar size, implemented in the same programming language, and with a
similar feature set which make our choice at least reasonable. The instrumentation mechanisms, and deployment and data
collection processes were designed to capture as much data as possible to enable different simulation scenarios. Applying
the treatments directly in the field (without using a-posteriori simulation) would have implied prohibitive collection costs
at this stage of the investigation given the large number of treatments we considered. We attempted to balance data
representativeness and power through the utilization of full data capture combined with simulation. The deployment and
download process, as perceived by the users, was identical to many other sites offering software downloads and on-line
patches. The users of the application were primarily students in our Department, which does not constitute a threat in
itself as long as they utilize MyIE as they would other browsers. Since we did not exercise any control during the period
of study, we expect the participants behaved as any other user would under similar circumstances. Further studies with
other programs and subjects are necessary to confirm our findings.

From an internal validity perspective, the quality of the collected field data is the biggest threat as packages may
be lost, corrupted, or not sent. We controlled this threat by adding different stamps to the packages to ensure their
authenticity and to detect any anomalies in the collection process. Most of the lost data corresponds to the packages
collected at the end of a session, but stored for transfer until a next session that never occurred. The large number of
sessions (and packages) received makes such lost insignificant (less than 3 dozen packages).

From a construct validity perspective, we have chosen a set of metrics to quantify the value of the collected infor-
mation that captures only a part of its potential meaning. Our choice of coverage, top 5%, and overhead is a function
of our interest in exploiting field data for validation purposes, and our experience and infrastructure to analyze such
data. We have chosen a subset of the potential levels for our treatments (e.g., levels for the number of variants, grouping
strategy). Our choices of levels attempt to operationalize a spectrum of values that allow us to characterize the effects
of the treatments. Future studies could mitigate these threats by considering complementary performance measures and
treatment levels.

From a conclusion validity perspective, we are making inferences based on a few hundred sessions which may have
limited the power to detect significant differences. However, we were able to reject various hypotheses and discover
interesting findings. Future studies will have to consider a large number of sessions as the research questions become
more focused.

5 Results and Analysis

In this section, we provide further details on the experimental settings, the results, and the analysis for each research
question. For each research question, we first use graphical characterizations to perform an exploratory analysis of
the hypothesis. Then, we formally test our hypothesis through an analysis of variance (ANOVA) to determine what
independent variables had a significant effect on the dependent variables. If an ANOVA F-test suggests that the factors
or their interactions cause significant variations on the dependent variables, we proceed to perform a Bonferroni multiple
test analysis to investigate what levels of factors contributed significantly to the difference.

5.1 Study 1a: Effectiveness vs. Bounds

This first study addresses RQ1a, comparing the performance of three probe placement techniques across different bound
levels that restrict the number of probes that can be placed on a given variant.
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5.1.1 Simulation Setting

Since the deployed MyIE contained a profiling probe in each program unit, the data collection process resulted in a
complete block trace from each deployed instance (as per Section 4.4). We utilized this rich data set to simulate the three
probe allocation techniques.

Each simulation generatedn variants, where each variant consisted of a vector of size equal to the number of units
in the program. Cells in each vector were initialized with zeroes, and then populated withhbound probes according to
the allocation rules specified by the simulated technique. Each vector was then utilized to mask the data collected from
a specific deployed instance, simulating what would have been collected if a true variant would have been deployed to
that particular instance. We performed the variant generation and assignment process ten times to account for potential
variations due to the random assignment of probes to variants, and from variants to instances.

For this study, we assume that the number of variantsn = 36, that is, we have as many variants as deployed instances
which constitutes an upper bound on the potential distribution. (We explore the effect of varying the number of variants
in the next section).

5.1.2 Results

The top box plot4 in Figure 3 depicts the percentage of block coverage achieved by the deployed instances when utilizing
the Random (R), Pattern (P ), and Random Balanced (RB) techniques compared to a technique that puts all the probes
which we call theFull technique. The middle figure depicts the box plots of the three techniques in accurately identifying
the top 5% most executed block probes. The bottom figure shows the execution overhead of the three techniques when
compared toFull.

As can be seen from Figure 3-top, bothP andRB perform better thanR in achieved block coverage for the smaller
bound levels. However, while the performance ofP andRB seems to be equal,P appears to have a larger variance
thanRB suggesting that perhapsRB is more reliable thanP in providing a more even representation of the coverage
achieved by each deployed unit.

To formally determine whether the observed tendencies were not the result of chance (e.g., getting lucky with the
random assignment), we performed an analysis of variance (ANOVA) on the dependent variable (coverage) and the two
independent variables (techniques andhbound). The summary of the analysis is shown in Table 2. The columns represent
the hypotheses associated with the treatments, the treatments or effects applied to the test, sum of squares, degree of
freedom, mean of squared, F-value, and p-value, respectively. The p-values in Table 2 show that the achieved coverage in
the deployed sites varies significantly when different techniques are used, when different bounds are set, and that certain
combinations of techniques and bounds exhibit distinct behavior in terms of coverage, rejecting all the null hypothesis of
H1a’s.

Table 2:Univariate Tests of Significance for Coverage of RQ1a
Hypothesis Effect SS DF MS F p

- Intercept 399970.8 1 399970.8 156697.6 0.00
H1a1 Tech 673.2 2 336.6 131.9 0.00
H1a2 hbound 53752.1 3 17917.4 7019.5 0.00
H1a3 Tech*hbound 573.7 6 95.6 37.5 0.00

- Error 275.7 108 2.6

We then conducted a Bonferroni analysis, a conservative comparison of all pairwise combinations of techniques and
bounds, to quantify when a technique did really have an effect on the achieved coverage. The result of this analysis, as
presented in Table 3, consists of a list of all potential combinations of techniques and bound, their mean values, and a
letter representing the group to which the combination belongs (i.e., two combinations that are assigned different letters
are significantly different). We found that whenhbound is 50 and100, P andRB enabled significantly higher field
coverage thanR. However, for greaterhbound, we could not detect differences in the techniques’ performance.

The second plot of Figure 3 serves to identify the 5% most executed blocks. We see that the average correctly
identified blocks resulting from theRB allocation seems to perform consistently betterR or P . We again observe that
theP allocation generates variants that obtain information which value can vary quite a bit (e.g., forhbound = 50 the
standard deviation forRB is 3.8 while the standard deviation forP is 11.3).

4In the box plots the middle line of a box represents the average of the10 observations, the outer box represents the (average value± standard
deviation), and the whiskers represent minimum and maximum observed values.
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Figure 3: RQ1a.

Table 3:Bonferroni Test for Coverage of RQ1a
Tech hbound Mean of Homogeneous

Coverage Ratio Group

R 50 25 A
P 50 31 B
RB 50 32 B
R 100 40 C
P 100 51 D
RB 100 52 D
R 350 68 E
P 350 69 E
RB 350 70 E
P 1000 84 F
R 1000 85 F
RB 1000 86 F
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The p-values of the ANOVA test for identifying the top 5% most executed blocks, as shown in Table 4, again rejects
all null hypothesis ofH1a’s in Table 1, revealing that the technique,hbound, and interaction between the technique and
hbound have a significant impact in accurately identifying 5% most executed blocks. The Bonferroni analysis in Table
5 shows that whenhbound values are50 and100, utilizing R results in worse information than when usingP andRB,
but not significant difference between these last two allocation techniques was significant. For higher bound levels the
techniques did not seem to affect the accuracy of the identification.

Table 4:Univariate Tests of Significance for Identifying 5% Most Executed Blocks of RQ1a
Hypothesis Effect SS DF MS F p

- Intercept 546557.2 1 546557.2 32282.83 0.00
H1a1 Tech 562.9 2 281.4 16.62 0.00
H1a2 hbound 26512.1 3 8837.4 521.99 0.00
H1a3 Tech*hbound 505.7 6 84.3 4.98 0.00

- Error 1828.5 108 16.9

Table 5:Bonferroni Test for Identifying 5% Most Executed Blocks of RQ1a
Tech hbounds Mean of Homogeneous

% of Block Group

R 50 40 A
P 50 49 B
RB 50 49 B
R 100 56 C
P 100 63 D
RB 100 65 D
R 350 76 E
P 350 78 E
RB 350 79 E
P 1000 82 E F
R 1000 86 F
RB 1000 86 F

Last, for the cost of the execution overhead, we see in the bottom plot of Figure 3 that there seems to be little overhead
difference across techniques whenhbound is fixed. This confirms our intuition that more valuable information can be
obtained through strategic probe distributions without significant additional execution overhead. The ANOVA analysis
presented in Table 6 further confirms our intuition by not rejecting hypothesesH1a1 andH1a3. The ANOVA also
rejectsH1a2. We shows the result of Bonferroni test for hypothesisH1a2 in Table 7. The result shows that the overhead
is significantly different as the bound values increases.

Table 6:Univariate Tests of Significance for Execution Overhead of RQ1a

Hypo- Effect SS DF MS F p
thesis

- Intercept 21240.37 1 21240.37 1120.723 0.00
H1a1 Tech 28.80 2 14.40 0.760 0.47
H1b2 hbound 20749.41 3 6916.47 364.939 0.00
H1b3 Tech* 78.62 6 13.10 0.691 0.66

hbound

- Error 2046.86 108 18.95

Table 7:Bonferroni Test for Execution Overhead of RQ1a
hbounds Mean of Homogeneous

Overhead Group

50 2 A
100 4 A
350 13 B
1000 35 C

11



Implications. When the specified acceptable overhead that bounds the profiling effort is small (less than 10% in our
study), probe allocation techniques that balance the placement across units are more effective in retaining the value of
field data. When many probes can be placed in a variant, a random allocation technique seem to suffice.

5.2 Study 1b: Effectiveness vs. Variants

This study addresses RQ1b, investigating the performance of theRB probe distribution technique (the most promising
from RQ1a) under a different number of variants.

5.2.1 Simulation Setting

For this study,RB is used to generate releases with1, 6, 12, 18, 24, 30, 36 variants, repeating the same simulation
procedure described for RQ1a in Section 5.1.1. We repeated this process for each of the bound values (50, 100, 350,
1000). Each variant was then utilized to mask the data obtained from one or more deployed sites to simulate a true-
variant deployment across sites. Because the number of sites was not always divisible by the number of generated
variants, variants might get assigned to a different number of sites (e.g., when deploying24 variants,12 variants were
deployed twice, and12 variants were deployed once). To avoid nuisance variables (e.g., the random assignment of probes
to variants, the random assignment of variants to sites) we performed the whole process10 times.

5.2.2 Results

The coverage achieved by the deployed instances with the probes distributed byRB for bound values50, 100, 350, and
1000 is shown in Figure 4-top. Each point in the graph represents the average of overall coverage detection values from
the10 runs. The graph suggests that when deploying just one variant, the coverage obtained suffers even under a high
hbound values. Forhbound = 1000, the average coverage achieved with 1 variant is36% of the one achieved withFull
technique, while the average coverage with6 variants rises to85%. However, coverage gains resulting from increases in
the number of variants seems to be asymptotic and limited with higherhbound levels.

The ANOVA for the coverage metric, summarized in Table 8, indicates that the number of variants, and the inter-
actions between the number of variants and bound values have a statistically significant effect. Hence, rejecting all the
null hypothesis forH1b’s. The Bonferroni results, given in Table 11, confirm our previous conjectures: for lowhbound

the number of variants is important, and having just1 variant is consistently loosing significant amounts of valuable
information. The Bonferroni test indicates that we can counter lowhbound values by deploying more variants (and vice
versa). For example, one could lower thehbound from 100 to 50 probes and still obtain better coverage data by increasing
the number of variants from6 to 18.

Table 8:Univariate Tests of Significance for Coverage of RQ1b
Hypothesis Effect SS DF MS F p

- Intercept 625856.3 1 625856.3 1438401 0.00
H1b1 # of Variants 62390.6 6 10398.4 23899 0.00

- hbound 153036.0 3 51012.0 117241 0.00
H1b2 # of Variants*hbound 13012.2 18 722.9 1661 0.00

- Error 109.6 252 0.4

Figure 4-middle plots the effectiveness of theRB technique in identifying top 5% most executed blocks. The line
plots seem to follow the same trend as the ones for coverage. The ANOVA and Bonferroni results, summarized in Table
9 and Table 13 respectively, confirms the significant effect of the number of variants and its interaction withhbound on
the accuracy of the identification of the top executed blocks.

Table 9:Univariate Tests of Significance for Identifying 5% Most Executed Blocks of RQ1b
Hypothesis Effect SS DF MS F p

- Intercept 807019.0 1 807019.0 109817.0 0.00
H1b1 # of Variants 84796.6 6 14132.8 1923.2 0.00

- hbound 92741.8 3 30913.9 4206.7 0.00
H1b2 # of Variants*hbound 19636.1 18 1090.9 148.4 0.00

- Error 1851.9 252 7.3
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Figure 4: RQ1b.

Figure 4-bottom depicts the box plot for the overhead execution ofRB. For eachhbound value, the execution
overhead across releases with the different number of variants seem to be about the same. Note, however, that when
one variant is deployed the variance in the execution overhead at least doubles the variation that is observed when more
variants are deployed. For example, the standard deviation when the bound value is50 for 1 variant is 4 and at most 1.9
when a greater number of variants is deployed. The ANOVA, given in Table 10, shows that only the difference inhbound

values had a significant effect in execution overhead. The Bonferroni test over thehbound value confirms the analysis.

Table 10:Univariate Tests of Significance for Execution Overhead of RQ1b
Hypothesis Effect SS DF MS F p

- Intercept 50478.54 1 50478.54 2211.277 0.00
H1b1 # of Variants 64.49 6 10.75 0.471 0.83

- hbound 51387.31 3 17129.10 750.362 0.00
H1b2 # of Variants*hbound 233.37 18 12.96 0.568 0.92

- Error 5752.60 252 22.83
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Table 11:Bonferroni Test for Coverage of RQ1b
# of Variants hbound Mean of Homogeneous

Coverage Ratio Group

1 50 2 A
1 100 4 B
6 50 8 C
1 350 13 D
12 50 14 D
6 100 16 E
18 50 19 F
24 50 23 G
30 50 26 H
12 100 28 I
36 50 32 J
1 1000 36 K
18 100 37 L
24 100 46 M
30 100 51 N
36 100 52 N
6 350 55 O
30 350 69 P
24 350 70 P
36 350 80 P
18 350 70 P
12 350 70 P
30 1000 85 Q
24 1000 85 Q
6 1000 85 Q
18 1000 85 Q
36 1000 85 Q
12 1000 86 Q

Table 12:Bonferroni Test for Execution Overhead of RQ1b
hbounds Mean of Homogeneous

Overhead Group

50 2 A
100 4 A
350 12 B
1000 36 C

Implications. When the acceptable overhead is low, it is always beneficial to deploy more variants in order to capture
more information from the field. Furthermore, software engineers intending to reducehbound while retaining the value
of collected field data may be able to do so by deploying additional variants.

5.3 Study 2: Unit-Grouping on Distributions

Groupings enable the prioritization of the probe allocation across units so that certain units are profiled in more deployed
instances than others. Each group of units may have different weight, reflecting our degree of interest in the behavior
they may expose in the field. This section addresses RQ2, investigating the impact of unit-grouping based on previous
knowledge about software usage.

5.3.1 Simulation Setting

In this study, we considered groupings based on the units’ previous execution frequency. We first collected the blocks’
execution frequency when running the in-house test suite. Then, we classified the blocks into four groups defined by
the execution frequency quartiles. Last, we computed the group weights that determine what percentage of thehbound

probes are assigned to each groupj (gjhbound).
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Table 13:Bonferroni Test for Identifying 5% Most Executed Blocks of RQ1b
# of Variants hbound Mean of Homogeneous

Num. of Block Group

1 100 8 A
1 50 9 A
1 350 10 A
6 50 11 A
6 100 20 B
12 50 21 B
18 50 30 C
1 1000 32 C D
24 50 36 D E
12 100 40 E F
30 50 43 F
36 50 49 G
18 100 53 G
24 100 62 H
30 100 63 H
36 100 65 H I
6 350 70 I
30 350 76 J
18 350 78 J K
24 350 78 J K
36 350 79 J K
12 350 79 J K
30 1000 80 J K
24 1000 80 J K
12 1000 81 K
6 1000 81 K
18 1000 81 K
36 1000 86 L

The assignments of weights is tied to the target dependent variable. For coverage it seems reasonable, for example,
to assign higher priority to units that have lower execution frequency because they are the least observed (and perhaps
the least understood so we want more variants with probes in those units). In the case of the identification of the top 5%
executed blocks, or other variables, the assignment of priorities may be different.

For this simulation we focused on the coverage achieved by deployed instances when grouping is utilized (the results
will not include the top-5%). We compare the results obtained fromRB andGRB (Grouped Random Balanced). The
weights are computed based on the group’s size (bigger groups get more probes) and the total frequency of the units
in the group (least executed groups in-house get more probes when deployed). We also ensured that all units executed
by the in-house suite received at least one probe in one variant (so that even the units most likely to be executed are
instrumented and have a change to be covered in the field).

5.3.2 Results

The graphs in Figure 5 compare the performance ofGRB versusRB at bound values of 50, 100, 350, and 1000. The top
graph shows the coverage achieved byRB versusGRB, the bottom graph of Figure 5 shows their execution overhead.

We can observe that applyingGRB consistently yields greater coverage gains thanRB. However, this benefit
diminishes as the bound values increases (the prioritization through grouping becomes less relevant as more probes can
be placed in a variant). We tested these observations more formally through an ANOVA, presented in Table 14, which
shows that the coverage achieved throughGRB is significantly different fromRB, rejecting null hypothesisH21, but
that the degree of difference depends on the utilizedhbound, rejecting null hypothesisH22. Still, the Bonferroni test, in
Table 15, placed each combination of technique andhbound in different groupings. This confirmed that even with a large
number of probes can be allocated across variants, grouping can lead to higher coverage gains.
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Figure 5: RQ2.

Table 14:Univariate Tests of Significance for Coverage of RQ2
Hypothesis Effect SS DF MS F p

- Intercept 307987.6 1 307987.6 400738.1 0.00
H21 Tech 422.0 1 422.0 549.1 0.00

- hbound 27498.1 3 9166.0 11926.4 0.00
H22 Tech*hbound 422.5 3 140.8 183.2 0.00

- Error 55.3 72 0.8

Table 15:Bonferroni Test for Coverage of RQ2
Techniques hbound Mean of Homogeneous

Coverage Ratio Group

RB 50 32 A
GRB 50 44 B
RB 100 52 C
GRB 100 53 D
RB 350 70 E
GRB 350 72 F
RB 1000 86 G
GRB 1000 88 H

Table 16:Univariate Tests of Significance for Execution Overhead of RQ2
Hypothesis Effect SS DF MS F p

- Intercept 7633.046 1 7633.046 1114.584 0.00
H21 Tech 1276.680 1 1276.680 186.422 0.00

- hbound 5564.932 3 1854.977 270.865 0.00
H22 Tech*hbound 2212.932 3 737.644 107.711 0.00

- Error 493.080 72 6.848
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When we apply groupings toRB, we bias the probe allocation toward the least executed units, so that they are profiled
in more deployed instances. We expect that, by putting emphasis in the least executed units, the execution overhead of
GRB would be less than forRB. Figure 5-bottom confirms our conjecture which seems more evident for higherhbound

values. The ANOVA and Bonferroni analysis, presented in Tables 16 and 17, formally confirm our findings, showing
thatGRB overhead is significantly lower than the one forRB, especially toward higherhbound value.

Table 17:Bonferroni Test for Execution Overhead of RQ2
Techniques hbound Mean of Homogeneous

Overhead Group

RB 50 1 A
GRB 100 3 A B
GRB 50 3 A B
RB 100 4 A B
GRB 350 6 B
GRB 1000 11 C
RB 350 14 C
RB 1000 36 D

Implications. Distributions that consider unit-grouping can capture significantly more field coverage information,
while providing reduction in the overhead execution. This could enable further probe allocation within the constraints
of an acceptable overhead.

5.4 Study 3: Memory vs. Memory-less

This section addresses RQ3, investigating the effect of utilizing prior probe distribution knowledge to increase the effec-
tiveness of a probe distribution across variants.

5.4.1 Simulation Setting

We simulate a common scenario where the utilization of previous probe distribution with differenthbound is likely to
occur: beta testing. Beta testing is a relatively common practice in which the software is distributed to a set of friendly
sites for its preliminary assessment. These friendly users are willing to tolerate higher levels of profiling overhead (higher
hbound) in order to provide additional information about the software behavior to the developers.

In this study, we assumed that the regular users are willing to operate withhbound = 50, while for the friendly beta
users we experimented withhbound values of 100, 350, and 1000 probes. We explored various ratios of beta users to field
users: 10-90 (10% of 36 users as beta, which is 3 users, and 90% as field users, which is 33), 30-70, and 50-50.

We again utilized the Random Balanced (RB) technique to generate the probe distributions across variants. We
considered two variations ofRB: Random Balanced with memory (RBM ), and Random Balanced without memory
or memory-less (RBML). For both techniques we placed probes through the generation of two sets of distributions:
(1) with the number of variants equal to the number of beta users and the targethbound value, and (2) with the number
of field users as the number of variants withhbound = 50. The two techniques differ in how they generate the second
distribution, where probe distribution history in previous variants is considered forRBM but not forRBML (recall that
the INITIALIZE BLOCK in Algorithm 1 for RBM calculates which probes have been allocated in previous variants
and uses this information when determining which probes to put in the next variant).

5.4.2 Results

The top and middle graphs in Figure 6 plot the percentage of coverage achieved and percentage of correctly identified top
5% blocks forRBM andRBML respectively. For both graphs, we can observe a similar trend. Whenhbound for beta
users is 100,RBM detects more coverage thanRBML technique regardless the ratio of beta users to regular users. This
is true also when thehbound is 350 and the beta users are 10% of all users population. For other combinations of values,
RBML performs as well asRBM . This seems to suggest that having a technique with memory is more important if the
previous distributions were limited either in terms of variants or in terms of number of allocated probes.

The ANOVA test, summarized in Table 18 and 20, indicates that all factors considered (technique, bound, and ratio)
and their interactions have a significant effect on coverage and identification accuracy. The Bonferroni test, summarized
in Table 19 and 23, confirms the previous conjectures. When usingRBM , the number of beta users can be reduced and
still achieve the same result as theRBML techniques. The Bonferroni analysis also confirms that there is a tradeoff
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between thehbound value and the beta users ratio; if we can afford to put more probes on the variants deployed to beta
users, we do not need as many beta users.
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Figure 6: RQ3.

Table 18:Univariate Tests of Significance for Coverage of RQ3
Hypothesis Effect SS DF MS F p

- Intercept 522292.0 1 522292.0 1274431 0.00
H31 Tech 409.8 1 409.8 1000 0.00

- Ratio 7377.4 2 3688.7 9001 0.00
- hbound 28834.0 2 14417.0 35179 0.00

H32 Tech*Ratio 31.7 2 15.8 39 0.00
H33 Tech*hbound 257.4 2 128.7 314 0.00

- Ratio*hbound 736.9 4 184.2 450 0.00
- Tech*ratio*hbound 338.3 4 84.6 206 0.00
- Error 66.4 162 0.4
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Table 19:Bonferroni Test for Coverage of RQ3
Techniques ratio hbound Mean of Homogeneous

Coverage Ratio Group

RBML 10 100 31 A
RBML 30 100 34 B
RBM 10 100 34 B
RBML 50 100 39 C
RBML 10 350 39 C
RBM 30 100 41 D
RBM 50 100 47 E
RBM 10 350 48 F
RBML 10 1000 58 G
RBM 10 1000 59 G
RBM 30 350 59 G
RBML 30 350 59 G
RBM 50 350 62 H
RBML 50 350 62 H
RBM 30 1000 72 I
RBML 30 1000 72 I
RBML 50 1000 75 J
RBM 50 1000 76 J

Table 20:Univariate Tests of Significance for Identifying 5% Most Executed Blocks of RQ3
Hypothesis Effect SS DF MS F p

- Intercept 780783.5 1 780783.5 110130.3 0.00
H31 Tech 460.3 1 460.3 64.9 0.00

- Ratio 2686.8 2 1343.4 189.5 0.00
- hbound 13460.7 2 6730.4 949.3 0.00

H32 Tech*ratio 85.9 2 42.9 6.1 0.003
H33 Tech*hbound 366.8 2 183.4 25.9 0.00

- Ratio*hbound 298.4 4 74.6 10.5 0.00
- Tech*ratio*hbound 193.2 4 48.3 6.8 0.00
- Error 1148.5 162 7.1

Table 21:Bonferroni Test for Identifying 5% Most Executed Blocks of RQ3
Techniques ratio hbound Mean of Homogeneous

Num. of Block Group

RBML 10 100 47 A
RBML 30 100 50 A B
RBM 10 100 54 B C
RBML 50 100 56 C
RBML 10 350 56 C
RBM 30 100 58 C D
RBM 50 100 62 D E
RBM 10 350 65 E F
RBM 30 350 69 F G
RBML 30 350 69 G
RBM 10 1000 71 G H
RBML 10 1000 72 G H I
RBM 50 350 73 G H I J
RBML 50 350 74 H I J K
RBML 30 1000 76 I J K
RBM 30 1000 77 J K
RBM 50 1000 78 K
RBML 50 1000 78 K
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The bottom graph in Figure 6 plots the execution overhead of each technique. The graph suggests that the execution
overhead across techniques are similar within the same bound and ratio values. The ANOVA (Table 22) confirms these
findings, showing that only ratio,hbound, and their interaction have a significant impact in execution overhead. The
significance ofhbound was expected based on the findings of the previous studies, and the significance of ratio seems
intuitive since the higher the ratio of the beta user to the field user, the higher the average of probes per deployed instance.

Table 22:Univariate Tests of Significance for Execution Overhead of RQ3
Hypo- Effect SS DF MS F p
thesis

- Intercept 17459.68 1 17459.68 2224.295 0.00
H31 Tech 3.13 1 3.13 0.399 0.53

- Ratio 3874.46 2 1937.23 246.796 0.00
- hbound 8222.32 2 4111.16 523.746 0.00

H32 Tech*ratio 1.53 2 0.76 0.097 0.91
H33 Tech*hbound 13.73 2 6.86 0.875 0.42

- Ratio*hbound 3063.35 4 765.84 97.565 0.00
- Tech* 28.51 4 7.13 0.908 0.46

ratio*hbound

- Error 1271.62 162 7.85

Table 23:Bonferroni Test for Identifying 5% Most Executed Blocks of RQ3
Techniques ratio hbound Mean of Homogeneous

Num. of Block Group

RBML 10 100 47 A
RBML 30 100 50 A B
RBM 10 100 54 B C
RBML 50 100 56 C
RBML 10 350 56 C
RBM 30 100 58 C D
RBM 50 100 62 D E
RBM 10 350 65 E F
RBM 30 350 69 F G
RBML 30 350 69 G
RBM 10 1000 71 G H
RBML 10 1000 72 G H I
RBM 50 350 73 G H I J
RBML 50 350 74 H I J K
RBML 30 1000 76 I J K
RBM 30 1000 77 J K
RBM 50 1000 78 K
RBML 50 1000 78 K

Implications. When the previous probe distribution across variants are limited, either in terms of the number of
variants or the number of probes, techniques that consider how the probes were distributed in previous releases can yield
more information.

6 Discussion

The sampling process to dynamically determine which profiling probes will be executed during the program’s execution
[11] gives each probe a fair chance of being selected. This selection process requires random number generation, decre-
menting the value at multiple locations, and comparing the generated value to determine the path to follow (probe-free
fast path or probe-loaded slow path). These requirements result in additional overhead on top of the probes execution. It
can be difficult to guarantee that this additional overhead is within an acceptable bound because of its dependence to the
program’s runtime behavior.

On the other hand, the probe allocation techniques we have proposedstaticallydetermine where to place a subset of
the probes, which makes them free from any additional and hardly predictable overhead, but as effective as the initial
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allocation. In this section we explore what gains can be achieved through the combinations of a static technique (RB)
and the dynamic-sampling technique.

Since the data we gathered from the field does not allow us to exactly reproduce the user sessions, we had to simulate
the dynamic sampling process by performing a walk-through the collected field block traces following the specifications
stated in [11]. We sampled each of the block trace files that are obtained using full profiling from the field with the
following mechanisms. First, from a uniform distribution, we generated a random integer,i, between 0 and 99 to
represent the inter-arrival time. This gave each probe the probability of 1/100 of being sampled. Then, we picked theith
block from the trace as if the block was chosen to be executed. This process of generating a random number and selecting
theith block, continuing from the previously picked block in the trace was repeated until the end of trace. Consequently,
each block trace file fromFull yielded a subset of the block trace.

To simulate the combination technique, we first created subsets of the block traces utilizing the blocks instrumented
by RB as filters, and then applied the dynamic sampling.

This simulation mechanism lets us measure the execution frequency of the probes (a proxy for overhead), but it does
not account for the additional overhead caused by the extra logic required by dynamic sampling to select an execution
path. To account for this overhead we considered three possible scenarios: 1) Light: probe execution overhead is an order
of magnitude smaller than the extra logic overhead, 2) Medium: probe execution overhead is equivalent to the extra logic
overhead, 3) Heavy: probe execution overhead is an order of magnitude greater than the extra logic overhead. (These
arbitrarily selected values are just meant to illustrate the tendencies as the cost ratio of probe execution and extra logic
required to dynamically sample probes changes.)
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Figure 7: Overall Coverage Detection.

Figure 7 plots the average of each technique’s coverage against their average overhead, and it exposes some interesting
points. First, the outcome of any performance comparison betweenDynamic andRB depends on the ratio. When
utilizing Dynamic sampling the collected coverage is close to 60%. If the utilized probes were light (e.g., update a
counter in the case of most coverage tools), then the additional logic to control what probes to execute does not seem
worth it since utilizingRB350 resulted in 11% more coverage with 7% less overhead. However, if the probes were heavy
(e.g., a set of complex assertions), thenDynamic can be almost as efficient asRB50 and result in 27% more coverage.
Second, applyingDynamic on top ofRB reduced the overhead, specially for higherhbounds. Although the reduction
in overhead was expected, the magnitude of the loss in effectiveness was surprising ranging from 30% to almost 50%,
indicating perhaps that the probe sampling rate utilized in the literature (each probe has a probability of 1/100 of being
executed) may not be appropriate to effectively collect coverage information.

In identifying the top 5% most executed block probe, as we can observe from Figure 8, the Dynamic technique per-
forms better than the RB techniques, both in the overhead execution and in the percentage of blocks correctly identified.
Even with the Dynamic technique with a light ratio, the most expensive Dynamic technique in term of overhead, the
reduction in overhead execution reaches 14% compared to RB1000, the most aggressive RB technique, and correctly
identifies 11% more.

Similar to the trend we saw with the coverage detection, the combination techniques, however, always identify less
correct blocks than theRB techniques with the same bound value; even though they are able to provide some reduction
in overhead. This overhead reduction increases as the bound value increases.
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Figure 8: Identifying top 5%.

The reduction in the execution overhead gives the advantage of selecting a combination technique with a higher bound
value while satisfying the allowable overhead constraint. For example, if we can afford only to put 50 probes into the
variant, we can choose between the combination of Dynamic and RB50 techniques (Dynamic+RB50), Dynamic+RB100,
Dynamic+RB350 with medium or heavy ratio, Dynamic+RB1000 with heavy ratio, or RB50 technique. If the ratio is
heavy, we would prefer Dynamic+RB1000 technique as it gives higher coverage detection and identifies more correct
blocks. If the ratio is medium or light, we would preferRB50. Therefore, the ratio between the cost of probe execution
and the cost of adjusting logic plays an important part in determining which technique is the most effective and efficient.

7 Conclusion and Future Work

Profiling overhead limits what we can observe and learn from deployed software. To address this limitation, this paper
investigates how to distribute probes across variants to reduce profiling overhead while retaining the field information
value. We have formalized the problem of distributing probes across variants, presented several distribution techniques,
and examined their performance in a study that manipulated various levels of overhead, deployment costs, targeted
behavior, and changes in the pool of deployed sites and corresponding profiling policies.

Our findings regarding the levels of acceptable overhead indicate that, when the bound is small, the probes place-
ment strategies can significantly affect the value of the collected information (coverage and top hot-spots identification).
Techniques that emphasized a balance distribution across variants (Pattern and Random Balanced) perform significantly
better. Also, techniques with simple pattern-like allocations may generate variants that suffer a large variance in overhead
and information value.

The deployment costs which constrain the number of manageable variants, show that a larger number of random-
balanced variants is always beneficial. However, the benefit of deploying an additional variant decreases as the number
of already deployed variants increases. It is also interesting to see the inverse relationship between the number of variants
and bound. In our study, having 10 additional variants enabled up to a 10 fold reduction in the bound level.

When considering the particular program behavior in terms of execution likelihood, we discovered that when the
bound value is small, grouping the units based on execution frequency causes a significant increase in the value of the
collected information. By utilizing grouping, we are also able to reduce the execution overhead, where the reduction
increases as the bound value increases. This suggest that utilizing proper grouping may enable the allocation of more
probes in the deployed program.

Last, as variants are deployed and new probe allocation policies are put in place, we found that techniques taking into
consideration how the probes were previously allocated perform significantly better under small bound levels. There is
also a trade-off between the number of variants and the bounds constraint in the previous release. Having more variants
compensates for a more restrictive constraint in the previous allocation.

Generally, if we can afford the high overhead and the cost of generating and maintaining many variants to deploy,
distribution techniques do not seem to be a factor in the quality of collected information. However, if allowable overhead
is low and the number of variants that can be generated is limited, distribution techniques with different characteristics can
give significant differences in the information gain. A balanced distribution that consider grouping and retains memory

22



about allocation on previous releases seems to be better across the board in terms of keeping the overhead under control
while retaining valuable information.

In the study we have introduced the issues of retaining the information from field due to the limited number of
profiling probes that can be inserted. Another challenge is in knowing when we can be sure that the information we have
gathered is an accurate representation of the field usage. As future work, we want to propose and evaluate metrics that
can allow us to measure how confident we are with the aggregated information.
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