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A System for Recognizing a Large Class
of Engineering Drawings

Yuhong Yu, Ashok Samal, Member, IEEE, and Sharad C. Seth, Fellow, IEEE

Abstract —We present a system for recognizing a large class of engineering drawings characterized by alternating instances of
symbols and connection lines. The class includes domains such as flowcharts, logic and electrical circuits, and chemical plant
diagrams. The output of the system, a netlist identifying the symbol types and interconnections, may be used for design simulation
or as a compact portable representation of the drawing. The automatic recognition task is divided into two stages: 1) Domain-
independent rules are used to segment symbols from connection lines in the drawing image that has been thinned, vectorized, and
preprocessed in routine ways. 2) A drawing understanding subsystem works in concert with a set of domain-specific matchers to
classify symbols and correct errors automatically. A graphical user interface is provided to correct residual errors interactively and to
log data for reporting errors objectively. The system has been tested on a database of 64 printed images drawn from text books and
handbooks in different domains and scanned at 150 and 300 dpi resolution.

Index Terms —Symbolic drawings, flow diagrams, segmentation and labeling, domain independence, automatic and interactive
error correction.

——————————   ✦   ——————————

1 INTRODUCTION

HERE is a well recognized need to convert the paper-
based designs and diagrams to object-oriented format,

particularly in engineering projects where both the quantity
and archival period of drawings involved is large. Many of
these drawings were originally drawn on paper, yet they
are still actively used, and are periodically updated. Con-
version of these types of drawings into a high-level de-
scription that can be easily manipulated by computers and
humans would reduce the time for data entry and modifi-
cations. It would further provide a basis for retrieving and
accessing documents based on high-level queries.

A system to convert a large subclass of engineering
drawings to high-level description is presented here.
Drawings in this subclass are characterized by dichotomy
of symbols and connection lines (CLs), alternation of sym-
bols and CLs, well-defined inputs and outputs, and flow of
signals, chemical material, or program control that origi-
nates at input and terminates at output. A large number of
traditional engineering drawings and diagrams fall into this
class of drawings, called flow drawings. Examples include
logic circuit diagrams, electrical circuit diagrams, chemical
plant flow diagrams, program flowcharts, pipe and instru-
ment diagrams, wiring diagrams, PERT charts, and entity-
relationship charts.

The high-level description produced by the system in-
cludes the symbols and their location in the drawing and
the interconnection between the symbols. This information

can be expressed as a graph, where nodes and edges in the
graph represent the symbols and connection lines of the
flow drawing, respectively. Logic and electric-circuit de-
signers use text versions of the graphical representation,
called the netlist, to exchange design data among them-
selves and between programs. Once a netlist description is
derived, it can be used in many ways: Inventories can be
compiled automatically; logic design verification becomes
possible once symbols are associated with logic functions;
and automated tools can be used to analyze performance of
the system represented by the drawing.

Described in this paper is a fully operational system with
many unique features. A rule based approach is used first
to separate the potential symbols from potential connection
lines without knowledge of the type of drawing under con-
sideration. Simple generic rules are found to be quite effec-
tive for this purpose.

Next, symbols are identified during a traversal of the
drawing, in which potential symbols are matched against a
domain-specific library. Some segmentation errors also get
corrected during this step. The modular organization of the
system and the symbol library allows conversion of a dif-
ferent type of drawing by just the replacement of the cur-
rent library. The system has been extensively tested on
drawings of four different types, derived from many
sources and scanned at different resolutions. An interactive
module allows correction of residual errors by human op-
erators. As the errors are corrected, this module logs accu-
rate data on errors that can be used in future to incorporate
a form of learning.

The top-level architecture of the system is shown in
Fig. 1.1 The document is first scanned and vectorized using
commercial software. Then, a series of operations, applied
during the preprocessing step, attempt to remove artifacts

1. Diagrams in this paper are drawn as data flow diagrams. See [3] for a
detailed discussion of this and other types of models.

0162-8828/97/$10.00 © 1997 IEEE

————————————————

• Y. Yu is with Lucent Technologies, Inc., 2000 Naperville Rd., Naperville,
IL 60540-0000. E-mail: yuhongyu@lucent.com.

• A. Samal and S.C. Seth are with the Department of Computer Science and
Engineering, 115 Ferguson Hall, University of Nebraska, Lincoln, NE
68588-0115. E-mail: {samal, seth}@cse.unl.edu.

Manuscript received 22 Feb. 1996;. Recommended for acceptance by R. Kasturi.
For information on obtaining reprints of this article, please send e-mail to:
transpami@computer.org, and reference IEEECS Log Number 105308.

T



YU ET AL.:  A SYSTEM FOR RECOGNIZING A LARGE CLASS OF ENGINEERING DRAWINGS 869

introduced during scanning and vectorization. Various pa-
rameters used in the preprocessing steps have been care-
fully correlated to the scanning resolution.

Segmentation and understanding subsystems are the
core modules of the system. Segmentation separates the
symbols from the connection lines, relying on a set of ge-
neric rules, such as, a connection line is almost always
composed of horizontal and vertical segments; and it al-
ways connects exactly two symbols.

The understanding subsystem produces a high-level
interpretation of the drawing from the results of segmen-
tation. It is here that the domain-dependent information is
brought to bear on drawing interpretation. The shape and
description of the symbols vary from one type of drawing
to another. Such knowledge is isolated from the rest of the
system and is placed in a library. The library organization
allows a hierarchical matcher to identify symbols in the
drawing with variable confidence. The automatic inter-
pretation phase starts from symbols that have been identi-
fied with a high confidence value and recursively looks at
other connected symbols. Symbols recognized with too
low a confidence value cause a reexamination of a portion
of the original segmentation through a modification of the
classical split-and-merge algorithm. Some segmentation
errors get corrected in this way by use of domain-
dependent knowledge.

We believe, however, that no automated drawing under-
standing system is likely to be perfect, due to the presence
of noise, inconsistent use of drawing conventions, and poor
quality of the drawing. Therefore, we have integrated an
interactive error-correction unit in our system that allows
the user to correct residual errors.

The system has been extensively tested to verify the cor-
rectness of the algorithms and to validate the premise that it
is possible to derive high-level description of a set of differ-
ent classes of drawings, with similar properties, by encap-
sulating domain knowledge in a replaceable module. We
experimented with four domains: logic circuits, electrical
circuits, chemical-plant flow diagrams, and program flow
charts. We created a test database of 64 drawings from the
four domains and scanned each at two resolutions. In its
automated mode, the system correctly recognized 74.2 per-
cent and 88.5 percent of the symbols in electrical circuit

diagrams and chemical plant flow diagrams, respectively.
Higher recognition rates of 94.1 percent and 100 percent
were achieved with logic circuit diagrams and flowcharts,
respectively.

The rest of the paper is organized as follows. The seg-
mentation system, which plays a crucial role in the success
of the system, is described in Section 2. The generic rules
are also discussed there. The hierarchical matcher used to
identify symbols and the approach used to derive the high-
level description of the drawing are presented in Section 3.
In Section 4, the mechanism and features of the interactive
error correction module are explained. The testing proce-
dure, the results, and a discussion of the results are given in
Section 5. A detailed comparison of our research with re-
lated work is presented in Section 6. Finally, Section 7 pro-
vides a summary of the work and some directions for fu-
ture research.

2 SYMBOL SEGMENTATION

Our first step in understanding flow drawings is to seg-
ment symbols from connection lines (CLs). Most drawing
analysis systems do not segment symbols from CLs before
the understanding phase. Recent systems have used the
approach of expanding from identified symbol loops to
predetermined surrounding region to search for symbols
[5], [7], [9], [16]. Loop-free symbols have been identified
with the help of surrounding text [7] or by feature points
and line tracing [16]. In another approach, thinning is fol-
lowed by line tracking to search for symbols [4].

In our approach, a few simple generic rules are used to
define a complete partition of the drawing so that each line
segment is either part of a potential symbol (PS) or a poten-
tial connection line (PCL). The results indicate that this dis-
tinction can be made with high degree of accuracy. Errors
that remain after segmentation can still be detected when
domain dependent knowledge is brought to bear on the
symbol recognition task. The issue here is essentially of the
degree to which interaction is allowed between the seg-
mentation and the labeling processes. Because of the ge-
neric segmentation in our system, a weak interaction is suf-
ficient, thus permitting a more modular design.

Fig. 1. Overview of the flow drawing understanding system.
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2.1 Generic Rules
Symbols in flow drawings possess characteristics different
from those of the CLs, and these characteristics can be
described by a few simple rules. It should be noted that
these rules are fuzzy in nature. Some rules apply more fre-
quently than others. However, all the rules hold for the vast
majority of the drawings of this class.

1) Connection lines consist of horizontal and vertical
lines.

2) Loops with simple geometric shapes, e.g., circles,
rectangles, are part of symbols.

3) Slant lines and open lines (straight lines with both
ends as degree-one points) are parts of symbols.

4) Symbolic loops do not contain crossing horizontal
and vertical lines and, hence, are distinguishable
from non-symbolic loops formed by crossing con-
nection lines.

5) When a loop is part of a symbol, every thing inside
the loop is assumed to belong to the symbol.

6) A connection line always terminates at a predefined
symbol or a point symbol (input/output or a branch
point).

7) Connection lines are longer than lines in symbols.

The first four rules form the basis of our segmentation al-
gorithm. The rest are used in the symbol classification phase.

2.2 Segmentation Algorithm
We assume that the characters have been removed from the
drawing by an existing technique (see, for example, [8]) or
through manual editing. The main steps of our approach is
shown in Fig. 2. In the preprocessing steps, line segments
are produced from straight line vectors through piecewise
linear approximation and further cleaned up by removal of
artificial gaps, spurs, and closely spaced degree-three points.

Fig. 2. Preprocessing and segmentation algorithm.
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Fig. 3. Examples of the segmented drawings without error correction.
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Potential symbol line segments are extracted from the
preprocessed line segment set using the generic rules de-
scribed earlier. The loops formed by horizontal/vertical
crossing CLs are opened up before a graph traversal algo-
rithm is applied. For identifying loops, a drawing is treated
as a digraph in which each line segment defines two edges of
opposite directions, and the end points define two nodes. The
line segments attached to the end points are ordered. The
graph is traversed depth-first with the counterclockwise
neighboring edge selected as the next edge. Only simple
loops traversed from inside are selected as PS loops. Slant
lines and open lines are collected with the PS loops to form
the PS set. Line segments not classified as PS are grouped
into polylines, which form the PCL set. Further details of the
segmentation algorithm may be found in references [22], [23].

2.3 Results
Fig. 3 shows two test drawings after symbol segmentation.
The PSs are shown as solid lines and the PCLs are shown as
dashed lines. Notice that the segmentation is not perfect.
Four of the six circular heat exchanger symbols in the chemi-
cal flow drawing are not completely segmented; parts of
these symbols are classified as CLs, which are indicated as
dotted lines. On the other hand, some CLs in the logic dia-

gram are misclassified as PSs. Some of the misclassified CLs,
along with several symbols, form a connected component
and create a PS that is comprised of more than one symbol.

Misclassification of PSs or PCLs results in segmentation
errors. The PSs and PCLs can be either completely misclas-
sified or partially misclassified. However, surprisingly,
with just a few domain-independent rules, the accuracy of
segmentation is very high. In an experiment with a set of 24
drawings, drawn from the four application domains, 96
percent of the symbols were completely segmented and the
rest were partially segmented. Only in 25 percent of the
drawings were there instances of connection lines left com-
pletely as a symbol part [23]. These errors can be corrected
during symbol classification, when more information about
the symbols is known.

All four generic rules described earlier in this section
have proven to be effective. However, there are instances
when each rule breaks down. For example, in rare cases,
parts of connection lines are slanted. Occasionally, a con-
nection line connects to a symbol in such a way that the
connecting point forms a junction that is confused as a
crossing of two connection lines. Overall, the rules worked
very well and the high accuracy of segmentation proves
their effectiveness.

Fig. 4. Overview of the Understanding Subsystem.
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It should be noted that the segmentation routine is not
called after this point. The higher level routines may, how-
ever, reorganize the results produced by the segmentation
procedure (see Section 3.4). The understanding subsystem
and the hierarchical symbol matcher are unaffected by any
change to this module.

3 SYMBOL CLASSIFICATION

A flow drawing can be viewed in two different ways. In a
top-down view, it can be seen as a large complex symbol
consisting of a group of symbols joined by connection lines.
The degree-one points in connection lines are input or out-
put in flow drawings and, as such, can be regarded implic-
itly as symbols. Similarly, degree-three points in connection

Fig. 5. Examples of the drawings after traversal and error correction.
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lines can be considered to be branch-point symbols. Each
complex symbol, in turn, can be decomposed down to loop
and polyline entity level. In a bottom-up view, the drawing
is a thinned image formed by a collection of line segments.
Each line segment belongs to either a symbol or a connec-
tion line. The goal of the understanding system is to iden-
tify these line segments, group the ones that belong to sym-
bols, recognize the symbols, and, finally, determine the
connectivity of the symbols using segments that are identi-
fied as connection lines. This bottom-up view is particularly
relevant to the approach followed here.

We assume that the symbols have a hierarchical organi-
zation as follows. A symbol is comprised of one or more
symbol components, each of which, in turn, consists of a
connected set of entities. An entity can be either a simple
loop or a stroke. A loop is assumed to have finite number of
domain-specific distinct shapes. A stroke is approximated
as straight lines and grouped into four domain-
independent categories, based on their orientation. The
domain knowledge, necessary for symbol identification, is
captured in the form of two libraries: a library of loops that
the symbols may have and a hierarchically organized li-
brary of symbols. Further details about the libraries and the
symbol matching process appear later.

3.1 Overview
Fig. 4 gives an overview of the symbol classification proc-
ess. The input to the process comes from our segmentation
algorithm, which produces a set of entities labeled as PS
(potential symbol) or PCL (potential connection lines). The
first step involves grouping the set of PS entities into con-

nected components and classifying the entities in each
component. The loop entities are classified by matching
against the loop library using a scaled template matching
approach. The polyline sections of PS entities are classified
into four types of strokes: horizontal, right diagonal, verti-
cal, and left diagonal.

The next step involves initial classification of symbols,
using the domain-specific symbol library. Since a symbol
may have multiple (disjoint) components, the symbol library
is organized as a two-level hierarchy. At the top level, each
symbol is defined as a collection of one or more symbol com-
ponents. At the next level, each symbol component is char-
acterized by data which capture its entity counts and some
other properties (an example of symbol library appears in the
next section). The symbol component matcher classifies a PS
component by comparing it with the symbol components in
the library. As a result, poorly matched PS components are
placed in the unrecognized category. The remaining PS com-
ponents are further submitted to the symbol matcher for clas-
sification. If the PS component can be part of a multicompo-
nent symbol, such as a transistor in a CMOS circuit, other PS
components in the neighborhood may also be submitted to
the symbol matcher for recognition.

The final step in symbol classification involves a tra-
versal of the drawing from the well recognized symbols.
The PCLs between these symbols are confirmed as CLs. The
recognition process continues by choosing, in turn, an un-
recognized PS component that, according to the measures
described later, has the highest potential to be recognized
as a PS component.

Fig. 6. A small sample symbol set and the library of loops and strokes.
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Some errors in segmentation and symbol classification
can be corrected during the traversal. We identify two types
of errors for the purpose of error correction. First, a PS
component may be under-segmented, i.e., two or more
symbol components are grouped together by some CLs
misclassified as PSs. Second, one symbol component may
be over-segmented and split into several PS components. If
under-segmentation is suspected, the unrecognized PS
component is split to see if it improves the recognition.
Conversely, for over-segmentation, the system attempts to
merge the PS component with one or more neighboring PS
components for improved recognition. In either case, re-
sulting new PS components are classified by the symbol
component and symbol matchers.

Fig. 5 shows the results after the traversal for the two
drawings whose segmentation is shown in Fig. 3. The
chemical plant flow diagram in Fig. 3 only has four errors
of over-segmentation in the exchanger symbols—the circu-
lar loop in the symbol is mistakenly broken in each case by
the segmentation algorithm because of the crossing or-
thogonal lines. All of the four errors are corrected by the
traversal. There are several instances of under-
segmentation in the logic diagram in Fig. 3, of which all but
two are corrected during traversal. The two exceptional
cases are not fully split because our matcher calculated no
improvement for the split.

3.2 Symbol Library Example
As mentioned above, the domain-specific information is
captured in two libraries: a loop library and a symbol li-
brary. We will use the small symbol set in Fig. 6 to illustrate
the organization of the two libraries. The set consists of four
symbols and we show two instances of each symbol.

Many properties can be used to characterize symbols
and symbol entities: shapes, aspect ratios, sizes, relative
sizes, relative positions. For loops, we use their normal-
ized shapes. Each loop is normalized to 64 � 64 size and
stored in a bitmap format. Loops of symbols which may
appear in different orientations in drawings are repre-
sented by multiple bitmaps, one for each possible orienta-
tion. The aspect ratio of the loop shapes is not used in our
representation and analysis. The loops in the library are
generated semi-automatically by visually inspecting them
in drawings and selecting them with a mouse. The loop
library for our example symbol set is shown in Fig. 6.
Only two loops, l1 and l2, are needed for our set of sym-
bols. In addition, the four strokes, s1, s2, s3, and s4, are
also shown for completeness.

The symbol library consists of a high-level description
of the symbols. Since a symbol may contain more than
one component, a symbol is represented as a set of de-
scriptions of its components. The and-gate and the bipolar
transistor symbols have only one component each. The
MOS transistor has two components and the power sup-
ply has three, the circle, the +, and the �. Thus, we need a
total of seven components to describe our library. Each
component is described by two feature vectors and four
other parameter specifications. The features used are
strokes and loops. As mentioned earlier, the strokes are
approximated by four types of straight lines: horizontal,
right diagonal, vertical, and left diagonal. Each type of
loop in the library is given a label. A feature vector stores
the number of strokes or loops of each type. Often, the
count of features of a specific type, however, is not fixed
for a given symbol, e.g., an and-gate may have between

TABLE 1
A SMALL SYMBOL LIBRARY EXAMPLE
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one to nine “inversion bubbles” (small circular loops) in a
logic diagram. Therefore, we provide for a range of value
for each feature count. Table 1 shows the entries for sym-
bols in Fig. 6.

The first (SCmin) and second (SCmax) feature vectors store
the minimum and maximum feature counts for the sym-
bols, respectively.2 Four other properties of a symbol com-
ponent are stored as values following the two feature vec-
tors. The main feature ID (mf), is the index of the stroke or
loop of the main feature in the symbol component, i.e., the
largest or most unique feature that must exist in it. We also

2. A third vector (SCratio) that contains the minimum relative size ratio
between the main feature and other features in a component is optional.

store the size of this main feature (smf), whether it is large,
small, or don’t care (coded as 1, 0, �1, respectively). The
minimum and maximum numbers of CLs adjacent to the
symbol component are stored in cmin and cmax, respectively.

The symbol library, as exemplified by Table 1, is cre-
ated manually. It is built by counting the feature numbers
and adjacent CLs. The main feature ID, the main feature
size, and the size ratios are estimated by visual inspection
of the symbols. The process can be automated if a draw-
ing containing all the standard symbols is available. The
feature counts or CL counts can certainly be obtained
automatically, so can the size and size ratios. However,
the current implementation does not have an automatic
symbol builder.

Fig. 7. Structure of the hierarchical matcher.

Fig. 8. Illustration of concepts in the loop matching equation.
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3.3 Hierarchical Matching
Since the symbols are represented hierarchically, it is natu-
ral to use a hierarchical matcher to recognize the symbols.
At the lowest level, individual loops and strokes are
matched. This provides the description for each PS compo-
nent which in turn is matched with the library symbol

components. Finally, the PS components are grouped and
matched with the symbols. Each matcher produces a set of
best matches along with associated confidence measures.
The three levels of matching are illustrated in Fig. 7.

Fig. 9. Algorithms of drawing traversal and automatic error correction.

Fig. 10. A few examples of under-segmented PS component.
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3.3.1 Loop and Stroke Matching
The loop classification is based on scaled template match-
ing. Each loop is scaled to 64 � 64 bitmap, where the inte-
rior pixels of the loop are 1s and the rest are 0s. Given a test
loop (t), and a library loop (s), the normalized goodness
measure (GM) is defined by:

GM
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A
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Aloop
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e

t
= ¥ -

F
HG

I
KJ + ¥ -
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HG

I
KJ0 1 0 1.5 .5 ,

where, As is the area of the library loop, At is the area of the
test loop, Ae is the area of the region given by the points in
the test loop which do not overlap the points in the library
loop (t �� s), and Am is the area of the region given by the
points in the library loop which do not overlap the points in
the test loop (s � t). This formula provides a normalized
difference between the set of interior points in the test and
the library loops. Fig. 8 shows a test loop and a library loop;
the interior points of the loops are shaded. The missing re-
gion (s ��t) and the extra region (t ��s) are also shown in the
figure. The term Am/As reflects the part of the symbol that
is missing in the test loop and the term Ae/At measures the
part of the test loop that is extra, i.e., not in the symbol.
Thus, the formula uses the appropriate ratios to measure
the goodness measure. If s = t, Ae = Am = 0, the goodness

measure is one. If s > t = I, Ae = At, Am = As, the goodness
measure is zero.

Strokes are classified into the four categories—
horizontal, vertical, right-diagonal, and left-diagonal—
based on the angle formed by the starting and ending
points of the stroke. For each stroke type, the goodness
measure is defined as the Euclidean distance between the
two end points of the stroke divided by the length sum of
all line segments in the stroke, i.e.,

GM
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L
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n

i ii

n=
+=
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1,

11
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,
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where Li,j is the distance between the two points, i and j. A
perfect straight stroke will have a goodness measure of 1.0.
3.3.2 Symbol Component and Symbol Matching
We extend the goodness measures for the loop and stroke
entities to a PS component by taking the weighted average
of goodness measures of its constituent entities, where the
total line segment length of an entity is used as its weight. If
a PS component passes the test according to this measure,
then we use a secondary distance measure for symbol com-
ponents based on a comparison of features in the library.
The distance measure of a test PS component is the mini-

Fig. 11. Examples of fragmented symbols with missing loops.

Fig. 12. Examples of fragmented symbols with missing PMLs; the missing parts are shown in dotted line.
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mum sum of the number of extra or missing elements be-
tween the test component and the library components. A
symbol is considered to be recognized only if all its compo-
nents are recognized. In this case, the sum of the distance
measures of the components is used as the measure of
match for the symbol.

Once the distance measure d of a PS component is
known, we classify the result of matching into four catego-
ries, as follows:

1) A perfect match if d = 0.
2) An over match if d � 0 and the number of extra entities

is more than the number of missing entities. If the PS
component contains more entities than the library
symbol component, it may contain CLs or more than
one symbol component. This often happens when the
symbol component is under-segmented.

3) An under match if d � 0 and the number of missing en-
tities is more than the number of extra entities. The PS
component may be part of a symbol component that
is fragmented.

4) A mixed match if d � 0 and the number of missing en-
tities is equal to the number of extra entities. Entities
may have been misclassified. The PS component may
match the symbol component if the misclassification
is corrected.

Several best matches for a PS component are ordered ac-
cording to the distance criterion and subjected to additional
tests to decide whether a PS component should be split or
several PS components should be merged for automatic
error correction. These tests include checking number of

connections, comparing relative sizes, verifying the exis-
tence of the main entity, and examining if any small loops
have been misclassified.

Knowledge of a priori probability of symbol frequency
may be useful in the symbol matching. It will be particu-
larly useful when the symbols are small, e.g., valves in
chemical plant diagrams. This information can be obtained
in our system in the same manner as the symbols are cap-
tured. An expert can view the drawing and point to all in-
stances of a symbol in the drawing, instead of just one. This
way, the symbols and their frequency can be obtained in
one pass through the drawings. This idea can also be ex-
tended to matching of symbol loops.

3.4 Drawing Traversal and Error Correction
An overview of drawing traversal was provided earlier in
Section 3.1. Here, we provide further details of the process
with reference to Fig. 9.

We classify the PS components as recognized or unrec-
ognized, depending on the match distance and the good-
ness measure of their match with the library components.
Theoretically, only those PS components that have a high
value of the goodness measure and are perfectly matched
(d = 0) can be considered as “recognized.” However, this
criterion was found to be too strict in reality as it prevented
recognition of well-matched PS components due to artifacts
present in the original or the scanned image. Therefore, we
use a relaxed criteria to include those matched PS compo-
nents, with d � 1, and GM � 0.9 as “recognized” and the rest
as “unrecognized.” The threshold has been verified to work
well in a large number of experiments.

Fig. 13. A few examples of switching PS entities to PCL.

Fig. 14. A few examples of gaps along PCLs that can be interactively closed.
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The initial set of recognized PS components is ordered in
the decreasing order of their goodness measure. These
components are selected, in turn, as the starting point for
drawing traversal. When a new recognized PS components
is reached during the traversal, it is added to the ordered
list. When an unrecognized PS component is reached, a
decision is made whether it should be split into two or
more components or merged with some neighboring com-
ponents. This decision is based on the component’s match
value. If the value is “over-match,” it is split and, if it is
“under-match,” it is merged with other unrecognized PS
components in its neighborhood; interconnecting PCLs are
also included in the merged component. The results of split
or merge are accepted only if the resultant segmentation
improves the understanding of the drawing. Otherwise, the
changes are undone. In certain cases, it is possible that the
unrecognized component will be recognized if a different
route of traversal is taken. Further details of the split and
merge procedures appear in the following sections.

3.4.1 Splitting Procedure
Under-segmented PS components are those that contain
more than one symbol component. They are formed when
CLs are misclassified as PSs and several symbol compo-
nents are joined together. The misclassified PS entities can
be loops or PMLs and are more likely to be larger than
other entities in the same PS component because they con-
nect symbols. Fig. 10 shows a few examples of under-
segmented PS components.

To break an under-segmented PS component, we can
remove a large entity from the entity set of the PS compo-
nent, and test if the new PS components match better with
the library symbol components. Among the large loop enti-
ties, if one is badly matched with loops in the symbol li-
brary, it is likely to be an extra entity because large loops
should match well with library loops. In addition, a loop
that contains a side collinear with an adjacent PCL is more
likely to be an extra loop.

Fig. 15. Graphical user interface for interactive error correction.
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To avoid checking too many entities, the algorithm con-
siders only the three largest loops and the largest PML in
the PS component. The results are compared and the one
that gives the best overall match is picked. If the best pick
gives improvement over the old PS component and gener-
ates more than one new PS component, then the new PS
components and PCLs are updated.

3.4.2 Merging Procedure
Fragmented PS components are caused by the misclassifi-
cation of one or more loops or PMLs that belong to a sym-
bol. Under such circumstances, a single PS component may
break up into multiple PS components. In some cases, the
size of the PS component may be reduced. Both the cases
result in under-matched PS components. Figs. 11 and 12

Fig. 16. Results for a logic circuit diagram.
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show examples of fragmented PS components. In some
cases, parts of the symbol may be classified as PS. A symbol
PML may also be completely misclassified if it is com-
pletely horizontal-vertical. It may be partially misclassified
if it contains both horizontal-vertical and slant sections.
Fig. 12 shows a few such examples. Our system can auto-
matically correct most errors caused by partially misclassi-
fied symbol loops or PMLs.

The fragmented PS components are recovered by
merging an unrecognized PS component with neighbor-
ing unrecognized PS components and the PCLs connect-
ing them. Under some special conditions, as explained
below, a neighboring recognized component may also be
merged. If the merging improves matching, the PS com-
ponents and PCLs are combined into one PS component.
Otherwise, they are reverted back to their original classifi-
cation. The merging algorithm is a two-step hypothesis
and test procedure:

1) selecting potential candidates for merging and
2) testing to see if the result is a matched symbol.

The criteria for selecting and merging fragmented PS
components are based on existing PS components and are
given below:

• If the two ends of a PCL connect to the same PS com-
ponent, the PCL is included in the set of entities for
merging. The vertical lines in the arrows in Fig. 11f
satisfy this condition.

• Another PS component is connected through a short
PCL, then the PCL and the PS component are in-
cluded, even if the PS component is recognized (Figs.
12a and 12b).

• If another unrecognized, but not over-matched, PS
component is connected through a PCL with at least
one degree-two point, and, if the PCL size is compa-
rable to the PS component sizes as described earlier,
then the PCL and the other PS component are in-
cluded (Figs. 11a, 11d, and 11e).

• If another unrecognized, but not over-matched, PS
component is connected symmetrically through a
PCL, then the PCL and the PS component are selected
(Figs. 11b, 11c, 11e, 11f, and 12c).

The set of PS components and PCLs should contain at
least one short PCL or one degree-four horizontal-vertical
crossing point after all of them are collected. To match the
collected PS components and PCLs, we first extract loop
and PML entities from the line segments contained in the
set. Loops formed by CLs are not likely to exist in the set,
and we do not open up those that contain degree-four hori-
zontal-vertical crossing points. A new set of loop and PML
entities are then matched by SC-matcher with the library
symbol components. The new PS component is accepted if
it is recognized or if the matching is improved.

3.4.3 Correcting Interconnection Errors
Artificial gaps, either from the original drawing or intro-
duced during copying or scanning, exist on many CLs.
They cause interconnection errors and they are closed after
the drawing traversal for accurate interpretation of draw-
ings. Two types of interconnection errors are corrected in

our system: those in CLs that separate the line into two
parts and those at ends of CLs that disconnect the lines
from symbols. To correct such errors automatically, we
check the gaps that are smaller than a certain threshold and
close them. The threshold was determined experimentally
by analyzing the short gaps in a test set of 24 drawings after
segmentation [22].

Gaps in Connection Lines: In some drawings, when two
CLs cross each other, one of the crossing CLs is broken into
two and a gap is generated. In addition to these cases, a gap
may be introduced during copying or scanning. When
finding the connection relationship between symbols, the
gaps on CLs need to be closed. Frequently, these gaps are
small, and lines on the two sides of the gap are collinear. If
we know the size distribution of such artificial gaps, we can
choose gaps in the size range and close the gaps automati-
cally. To find the size distribution of artificial gaps, we
studied the gaps between degree-one points that are shorter
than 0.25 inch. We found that all gaps on PCLs smaller than
1/16 inch can be closed without a collinearity test because
no real gaps are in this range, and gaps between 1/16 and
1/8 inch can be closed with a collinearity test.

Gaps at Ends of Connection Lines: In some drawings,
mostly in flowcharts, a CL may come close to a symbol
without touching it. A gap is created between the end point
of the CL and the symbol. If such a gap is not large, it can
be automatically closed, so that the logical connection be-
tween symbols is correct. Again, we studied such gaps
smaller than 1/4 inch, and found that a gap smaller than
1/16 inch can be closed automatically. While this distance
will vary from one type of drawings to another, it can be
determined by statistically analyzing the gaps in a manner
similar to ours.

Most of the algorithms used in the preprocessing are of
order n or n log n, where n is the number of vectors de-
rived from the drawing after vectorization. Since the
drawing is first segmented into PSs and PCLs, the number
of objects is reduced and the search is simplified. There-
fore, we chose not to use sophisticated environments,
such as the blackboard system. The drawings in the
training and test set are processed within a minute on a
Sun 670MP in the worst case. Since the computing power
of computers is constantly increasing, the processing time
of our system is not a major issue.

4 RESIDUAL ERROR CORRECTION AND
MEASUREMENT

The user can correct residual errors interactively through a
menu-driven graphical interface. As the corrections are be-
ing made, the system logs differences from the result pro-
duced by the symbol classification system described in the
last section. The differences are analyzed automatically at
the end of interactive correction to arrive at measures of the
residual error. The interactive error correction module is
designed independently so that it can bypass some or all of
the symbol classification steps shown in Fig. 2. Thus, it
augments the automatic recognition system to allow error-
free conversion. At the same time, its error measurement
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capabilities can help in evaluation of alternative strategies
for symbol classification. We discuss below the functional-
ity of the user interface and the basic ideas behind error
measurement.

4.1 User Interface
Among the residual errors to be corrected through the user
interface, the first type of residual errors are segmentation
errors not corrected in the automatic classification and error
correction. These errors can be corrected by the following
functions in the user interface:

Switch PS: Either a part or all of a PS component is manu-
ally identified as CLs. The former case involves breaking of
a loop, which may share boundary with other PS entities.
The latter one applies to a polyline PS entity. Any new PS
components are reclassified. For example, when loop A in
Fig. 13a is switched to PCL, two new PS components and
two new PCLs are generated. When loop B in Fig. 13b is
switched to PCL, there is a new PS component and a new
PCL. For a PS entity that is a CL, the whole entity is
switched and one new PCL will be added as shown in
Fig. 13c and Fig. 13d. In the case of Fig. 13d, two new PS
components are also generated as the result of the switch.

Switch PCL: To switch PCLs, a set of PS components and
PCLs is selected and merged together into a single PS com-
ponent. This set may contain more than one element, or it
may contain only one PCL. In the former case, the entities
are merged together to form a new PS component. In the
latter case, the single PCL is switched to a PS. To make the
operation easier, when a PCL is selected, the PS compo-
nents at the end points of the PCL are also selected. To
switch PCLs, the user may select as many PCLs and PS
components by clicking. The selected items are highlighted
and matched by the system to update their labels.

A second type of error occurs when there are artificial
gaps that break a CL or separate a CL from a symbol. Two
functions are provided in the user interface to take care of
these types of interconnection errors:

Bridge PCL gap: Our automatic gap closing mechanism
checks only along collinear lines for gaps between two de-
gree-one points and for very small gaps. Gaps along a PCL
may not have been bridged because the gap is too large or
because the gap is at a crossing point, branch point, or a
turning corner. After the gap is closed, if two different
PCLs meet at the gap, they are merged into one PCL entity.
Fig. 14 shows a few examples of gaps that may be interac-
tively closed.

Bridge gap to PS: A gap between a CL and symbol com-
ponent that is not closed in the automatic gap closing is
closed. In this case, the degree-one point in the PCL and a
PS component are selected, and the gap is closed.

A third type of error occurs when a symbol is assigned a
wrong label by the matchers. Such labeling errors are cor-
rected by the following function:

Relabel a symbol: Some symbols are labeled incorrectly
because the original drawing quality is poor or because our
matcher makes an error in identification. To correct such
errors, the label of each symbol is displayed next to the

symbol. The user can make a correction by selecting the
misclassified symbol and a label to replace the incorrect
label. A window with all the symbol names is shown so the
user can select the correct label for the misclassified symbol.

Additional short cuts are included in order to minimize
user interaction. However, these are equivalent to a com-
bination of the functions already described. Fig. 15 shows
the layout of the graphical user interface for interactive
operation and error correction. The functions described in
this section are incorporated into more intuitive options in
the interface.

4.2 Error Measurement
As described above, errors can be classified into three
types: segmentation errors, interconnection errors, and la-
beling errors. Among these, interconnection errors are
measured simply by counting the number of gaps closed
interactively. Labeling errors are also measured easily by
counting the number of manually replaced labels. Seg-
mentation errors are measured either by the number of new
PS components and new PCLs that result from the switch-
ing operations or by the percentage of line segments
switched during the interactive error correction. A detailed
discussion on error measurements is given in [22].

5 RESULTS

Our database of test images came from four domains: logic
circuits (13 drawings), electrical circuits (15 drawings),
chemical plant flow diagrams (22 drawings), and flow-
charts (14 drawings). Most of these were photocopied from
books and scanned at two resolutions: 150 dpi and 300 dpi
using HP ScanJet IIC. They were manually edited to re-
move text, then thinned and vectorized using MicroImages’
MIPS package [13]. The recognition system was first devel-
oped on a different set of images and then tested on the
above images that were not used during the development
phase. After automatic recognition, errors were corrected
interactively, as described in the last section. The perform-
ance measures reported below come from analyzing the
data logged during the interactive correction phase.

5.1 Overall Performance
The overall summary of results appears in Table 2. The ta-
ble includes result for each image scanned at the two reso-
lutions. The table summarizes the results for all the images.
Figs. 16, 17, 18, and 19 show a sample of the final results for
each domain. The total execution time for the segmentation
and understanding subsystems ranges roughly from a few
seconds to a minute for our test drawings on a Sun 670MP.
The interactive residue error correction increases the total
execution time by a small percentage when it is needed. For
the sample drawings shown in Figs. 16, 17, 18, and 19, the
execution times are 24.7, 3.4, 68.1, and 5.8 seconds, respec-
tively.

The recognition system performed better on the logic
circuits and flow charts than on the electrical circuits and
chemical plant diagrams. For logic circuits, 17 out of 26 im-
ages are perfectly segmented and labeled. The errors are
low by any of the measures discussed above. For example,
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as a percentage of the total number of symbols in all the
drawings in this category, only 5.9 percent new symbols
were created during interactive correction. For the flow-
charts, 25 out of 28 images were perfectly processed. All the
PS components in the 28 flowcharts are correctly separated.
These drawings are simpler compared to the electrical cir-
cuit diagrams and chemical plant flow diagrams.

For electrical circuit diagrams, only one out of 30 is with-
out errors of any kind, and, for chemical plant flow diagrams,
only one out of 44 is without errors. Furthermore, new PS
from interactive correction represent 25.8 percent and 11.5
percent of all symbols for electrical circuit diagrams and
chemical plant flow diagrams, respectively. Many symbols
are relabeled, 12.3 percent and 7.1 percent for electrical circuit
diagrams and chemical plant flow diagrams, respectively.

Of all the errors, the number of new PS due to interactive
error correction is the key index because correct segmenta-
tion is the basis for drawing understanding. Table 3 sum-
marizes the error distribution of drawings in the test set.
For the flowcharts, all symbols are correctly segmented. For
the logic circuits, all symbols in 22 out of 26 drawing im-
ages are correctly segmented. The number of drawings
with no error in symbol segmentation is four out of 30 and
14 out of 44 for electrical circuit diagrams and for chemical

plant flow diagrams, respectively. Most drawings are seen
to have 20 percent or fewer new PS components. Poorer
performance is essentially limited to the two domains of
electrical circuits and chemical plant diagrams.

5.2 Scanning Resolution
Table 4 compares the results of the two different resolutions.
The 300 dpi images are recognized only slightly better than
corresponding 150 dpi images, with the exception of electri-
cal circuit diagrams. This may be because the inductors in a
circuit diagram consist of many small oval loops as shown in
Fig. 20. These loops tend to be misclassified at the loop
matching phase because of the distortion introduced during
vectorization and piecewise linear approximation. Correct
classification of small loops is a problem in other drawings as
well. Our system does not extract circular arcs in the vectori-
zation step. Better vectorization that can extract small arcs
may improve the performance. In general, we found that a
minimum scanning resolution is required so that gaps are not
introduced during scanning. For most drawings, we found
the 150 dpi resolution to be adequate.

TABLE 2
OVERALL ERROR COMPARISON FOR DRAWINGS OF DIFFERENT DOMAINS IN THE TEST SET

Drawing total total # per- ratio1 percent2 per-
category # # images cent1 new switched cent1

images symbols w/ no new PCL line label
errors PS segments error

logic circuit 26 492 17 5.9 0.098 3.6 0.4\
electrical circuit 30 860 1 25.8 0.153 8.2 12.3
chemical plant 44 776 1 11.5 0.272 3.7 7.1
flowchart 28 452 25 0.0 0.007 0.1 0.0

1
 compared to the total number of symbols in all drawings in the category.

2
 compared to the total number of line segments in all drawings in the category.

TABLE 3
SYMBOL SEGMENTATION ERROR DISTRIBUTION FOR DRAWINGS IN DIFFERENT DOMAINS OF THE TEST SET

Drawing number percent of new PS
ID drawings 0 1-10 10-20 20-30 30-40 40-50 > 50
logic circuit 26 22 1 1 1 0 0 1
electrical circuit 30 4 5 12 3 2 3 1
chemical plant 44 14 12 12 2 1 3 0
flowchart 28 28 0 0 0 0 0 0

TABLE 4
ERROR COMPARISON FOR DRAWINGS SCANNED AT 150 dpi AND 300 dpi

Drawing dpi total total # per- ratio1 percent2 per-
category # # dwgs cent1 new switched cent1

drawings symbols w/ no new PCL line label
errors PS segments error

logic circuit 150 13 246 8 6.1 0.098 3.1 0.4
logic circuit 300 13 246 9 5.7 0.098 3.9 0.4
electrical circuit 150 15 430 1 27.9 0.165 10.5 15.1
electrical circuit 300 15 430 0 23.7 0.142 6.7 9.5
chemical plant 150 22 388 1 11.9 0.271 3.8 7.7
chemical plant 300 22 388 0 11.1 0.273 3.7 6.4
flowchart 150 14 226 12 0.0 0.009 0.1 0.0
flowchart 300 14 226 13 0.0 0.004 0.0 0.0

           1
 compared to the total number of symbols in all drawings in the category.

           2
 compared to the total number of line segments in all drawings in the category.
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5.3 Drawing Size and Quality
All our test drawings come from books and could fit within
8.5 inches � 11.0 inches. However, they differ substantially
in size and quality. In terms of the area, the ratio of the
largest to the smallest drawing in the four domains of logic
circuits, electrical circuits, chemical flow diagrams, and
flow charts were, respectively, as follows: 28.6, 11.5, 7.8,
and 5.0. Some of the chemical flow diagrams and vacuum-
tube circuits come from old books with poor quality of pa-
per and drawings. While we have not carried out a system-
atic study of the impact of the drawing size and quality on
the system performance, we offer the following observa-
tions based on the limited data at hand.

The physical size of a drawing, to the extent that it de-
notes the complexity of symbols and interconnections, will
have a proportional impact on the execution time. The gap-
size parameters might also need to be tuned for larger size
drawings. The symbol-recognition accuracy, on the other
hand, might actually improve for drawings of larger size
because the system is more apt to misclassify small entities
than large entities. This is a consequence of the normalized
template based matching used in symbol recognition. We
expect that for drawings of very poor quality, further image
enhancements or more sophisticated matching algorithms
will be required.

5.4 Performance Impediments and Improvements
Even within a domain, our test drawings come from a variety
of sources. As such, they do not follow a common drawing
standard and otherwise lack consistency that one would ex-
pect in a typical conversion task in a production environ-
ment. We found it hard to build libraries for a group of
drawings that use different conventions. The size checks can
not be executed effectively due to the same reason.

The current system is also limited in performance by the
simplicity of matchers we implemented. Better matchers
would surely improve performance, especially for the more
complex electric circuit and chemical plant diagrams. The
modular design allows for easy incorporation of better
matchers in our system. It is worth noting, however, that
even the simple matchers yield an acceptable performance
because the system is able to consider alternative matches in
light of high-level information during symbol classification.

The present implementation does not include a learning
mechanism that would allow the system performance to
improve in time on similar drawings. However, automatic
measurement of errors during the interactive correction
phase provides the appropriate data for dynamic adjust-
ment of parameters, thus incorporating a form of learning.
Additional useful data for learning can be compiled during
the automatic error correction phase.

Fig. 17. Results for an electrical circuit diagram.

Fig. 18. Results for a chemical plant flow diagram.
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The present implementation is also not complete in that
it assumes that available techniques will be used to auto-
mate the manual removal of text. These techniques cannot
always remove characters that touch a connection line or a
symbol or may remove such characters only partially.
Characters or character fragments that touch a connection
line are likely to be classified as unidentified symbols. A
character or fragment touching a symbol may either be rec-
ognized as an unidentified symbol or be merged with the
touching symbol without affecting its recognition (because
of the tolerance embedded into the matching algorithm). As
the system does not explicitly allow for touching characters,
any errors caused because of them would need to be cor-
rected interactively.

One of the deficiencies of our system is that we ap-
proximate the curves by a series of strokes. In a flow
drawing arcs may appear in three forms:

1) a connection line is an arc or has parts that are arcs,
2) a symbol component has a loop parts of which are

arcs,
3) a nonloop symbol component is an arc or has parts

that are arcs.

Recognizing the arcs that are parts of loops does not im-
prove our system, since a template matching scheme is
used for symbol recognition. Using arcs to represent con-
nection lines is uncommon and, hence, finding arcs in con-
nection lines is also unlikely to provide much benefit to the
system. However, for the entities in the third category, us-
ing an arc representation is better than our approximation
by a series of strokes. The recognition of such symbols will
be improved using this representation.

Finally, as in any other drawing recognition system, the
performance deteriorates with the quality of drawings, es-
pecially when the drawing is crowded as in Fig. 20.

Fig. 19. Results for a flowchart diagram.
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5.5 Netlist Output
One of the intended outputs of the system was a descrip-
tion of the drawing in the netlist format. Clearly, if the
drawing is not completely recognized, this description is
not very useful. However, with the interactive correction
module, a given drawing can be fully recognized. The sys-
tem then can easily produce the netlist but currently pro-
duces an output that is very similar to the netlist format.
This output can be tailored to produce the netlist or any
other desired format.

6 COMPARISON WITH PRIOR WORK

Most of the earlier drawing analysis systems targeted a sin-
gle domain of drawings [1], [4], [6], [16]. Recent work has
emphasized the need for systems that can be adapted to
different types of drawings, even though experimental re-
sults are presented for only one domain [7], [9]. It is not
clear how these systems would adapt to more complicated
drawings in other domains. Furthermore, automatic draw-
ing analysis systems seldom produce perfect results but
error measurement and system evaluation issues have been
rarely discussed in the literature.

Lin et al. [12] is an early work that deals with connection
diagrams of various types, including flow charts, logic and
electrical circuit diagrams, and piping and instrument dia-
grams. Thus, the target applications are the same as re-
ported here. The key idea in this work is to examine the
bilevel scanned image under a resolution comparable to the
typical line width, and label each square according to the
pattern of black pixels found at its boundary. The authors
show that, when a proper mesh size exists and is used, only
51 different characteristic patterns can occur; an additional
“?” pattern label is added to catch deviations from these
that can occur with an improper mesh size. All further
analysis of the image is carried out entirely in terms of the
coarser resolution determined by the characteristic patterns.

Based on this analysis, a feature point graph is constructed; it
has vertices corresponding to feature points (ends, corners,
and intersections) and edges corresponding to straight-lines
or smooth curves joining two feature points. The image is
then segmented into symbols, connecting lines, and characters
by applying a set of heuristic rules to the feature point
graph. In the final step, symbol loops are identified by
normalized area features, symbols are recognized, and the
connection-relation between them is extracted.

In comparing our approach against Lin et al. we note
that our use of a commercial program for thinning and
vectorization in the preprocessing stage is also motivated
by the desire to avoid looking at fine pixel-level data in
subsequent processing. However, our approach avoids
having to make a manual decision about the critical mesh-
size parameter. The segmentation rules used by Lin et al.
are more complex than ours and make use of several
threshold parameters, e.g., for the lengths of loops and
lines, and the area of vertices in the feature point graph. In
their system, segmentation results are not subject to change
during symbol identification, as they are in our system.

To compare our system to one that makes explicit use
of domain knowledge, we briefly describe the system pre-
sented in [19]. The system is designed for understanding
of underground wiring diagrams.3 It employs relational
structures to represent objects, a blackboard to recognize
the symbols, and specialized techniques to recognize
lines, triangles, circles, and text since the drawing con-
tains only these entities. Our approach also uses linear
entities in the analysis. However, we group all the closed
shapes into one category called “loops.” Knowledge in
our system is organized as a few domain independent
rules for segmentation and an iconic symbol library to
capture their shape information.

3. Note: This is not a flow drawing, but the observations are valid.

Fig. 20. A more complicated electrical circuit diagram after segmentation and traversal. It was scanned at 150 dpi.
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Pasternak [18] has also developed a system for engi-
neering drawing recognition. Objects are represented in a
hierarchy with inheritance and are described using a de-
clarative language. A blackboard system is used to aid the
recognition process. The system presented here has some
major differences. Our system understands the drawing at
a higher conceptual level. There is a clear notion of inputs
and outputs and connectivity between symbols that is ab-
sent in [18]. Therefore, it is easier to fix errors during the
understanding phase of the system.

Our system has a segmentation step that uses domain
independent knowledge before symbol recognition. In [18],
there is no distinct step. The system directly attempts to
recognize the symbols. Since we exploit the inherent prop-
erties of flow drawings, we are able to minimize the com-
plexity and efficiency of high level understanding. After the
segmentation process, the drawing is reduced to isolated
grouping of potential symbols and connection lines. Thus,
the symbol recognition process is local and is much sim-
pler. The blackboard system, by its very nature, induces
more processing and control.

As a consequence of the use of properties of the flow
drawings, our approach is not as general as the one pre-
sented in [18]. However, many of its aspects can be easily
incorporated into our sytem. The matcher is one important
example. Our system is designed to allow any type of
matcher to seamlessly integrate. We model the symbols at a
geometric level using loops and strokes as the primitives.
We believe that for 2D symbols, our representation is ade-
quate. However, the declarative style used to represent
knowledge in [18] can be incorporated into our system.

One of the advantages of using a blackboard system is
the ease with which feedback is obtained. In our system,
there is no direct feedback between segmentation and un-
derstanding. However, we have a structure similar to a
blackboard which is used in the understanding process.
During the split-and-merge phase of the processing, the
system does support a form of feedback.

The system described by Nardelli et al. [15] for interpre-
tation of raster images of maps and office documents has
organizational similarities to our system. Their three-step
recognition method proceeds from lexical objects
(characters and lines) to basic structured objects (that are
building blocks of all structured objects), to documents
themselves. In this framework, distinction between connec-
tion lines and symbols would be made only at higher stages
of processing. In contrast, the segmentation rules in our
system allow the separation of “lexical units” that belong to
connection lines from those that belong to symbols with
high degree of reliability, in the first stage of processing.

CELESSTIN [21] is another system based on blackboard
architecture designed for document interpretation. Its goal
is to derive a CAD model from a mechanical engineering
drawing. “Specialists” are used to analyze and update the
blackboard and a linear strategy is used to control the proc-
essing. It is demonstrated for a narrow subdomain of me-
chanical engineering drawings. The system uses extensive
domain knowledge that is “difficult to manage, in terms of
consistency rules and clarity.” In contrast, our system uses
only a few simple rules for segmentation that are easy to

understand and manage. The symbol descriptions are
stored in a modular and easily organized library.

Mapsee [14] describes a general approach to computer
vision that combines a model-based representation for vis-
ual knowledge with constraint satisfaction techniques.
Mapsee’s knowledge base is a collection of schema models
tied together by compositional and specialization hierar-
chies. The scene interpretation problem is formulated as
finding an assignment of labels to the nodes of a graph that
does not violate any constraints specified as predicates over
the node labels. There are analogs for most parts of Mapsee
in our system, even though our discussion is not presented
in terms of scene constraint graphs. As in Mapsee, our la-
bels are hierarchically organized, e.g., electrical circuit
composed of symbols and connection lines, symbols com-
posed of either single-component symbols, such as induc-
tors and transistors, or multiple-component symbols, such
as a capacitor, and so on. Also, in common with Mapsee,
we use a combination of data driven and model driven ap-
proach to scheduling computation. Data-driven computa-
tion is exemplified in the initial stages of symbol recogni-
tion when well-matched symbols become the starting
points of search. The split and merge procedures as well as
recognition of multicomponent symbols, on the other hand,
exemplify model-driven search.

Truve [20] presents a general approach to computational
vision and demonstrates it with an application in blocks
world. While there are similarities between the parsing-
interpreting-pruning steps in this approach and segmenta-
tion-understanding steps in our approach, they are funda-
mentally different. The approach proposed by Truve is a
strictly a syntactic approach based on a generalization of
attribute grammars. It is difficult to adapt such an approach
to practical domains of complex and noisy drawings ad-
dressed by our approach.

There is a large body of literature in engineering draw-
ing analysis that addresses domains other than flow draw-
ings. Here we provide pointers to significant milestones for
the interested reader.

Engineering drawings that are drawn by hand, without
the aid of drawing tools, are not explicitly considered in
our work. The issue of on-line vs. off-line recognition is
just as important for such drawings as it is for handwrit-
ing. In principle, our system should work for off-line rec-
ognition of hand-drawn flow drawings, though we pro-
vide no experimental data to back this claim. Kozima and
Toida [10] describe an interactive method for recognizing
hand-drawn figures by recording and analyzing adjacent-
strokes features. Off-line recognition of hand-drawn elec-
trical circuit symbols of arbitrary size and orientation is
considered by Lee [11].

Chemical structure diagrams resemble flow drawings
in many ways but lack the concept of flow. A prototype
system for chemical graphics recognition has been devel-
oped by Casey et al. [2]. Okazaki and Tsuji [17] illustrate
their rule based recognition system in terms of chemical
structural formulas. The rules are activated using a data-
driven strategy. In principle, their system can be adapted
to other classes of drawings by a redefinition the hierar-
chical rule base.
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7 CONCLUSION

Most engineering drawing analysis systems are designed to
process only a specific type of drawings. In this paper, we
described an engineering drawing understanding system
that processes a variety of drawings. The system is a
framework made of domain-independent algorithms and
domain-specific knowledge bases. Addition of an interac-
tive correction module makes the system complete (except
for some low level modules, e.g., text removal). The seg-
mentation algorithm, the symbol libraries, the symbol clas-
sification algorithm, their implementation, and results form
the main contribution of this research. The performance is
high for simpler drawings and good for complicated
drawings. Changing from one domain of drawings to an-
other requires only a change of the libraries.

We demonstrate that a general system using a few ge-
neric rules and a simple matcher can understand, i.e., rec-
ognize the symbols, determine their layout and connectiv-
ity, in complicated flow drawings fairly well and recognize
simpler drawings completely. Instead of limiting the sys-
tem to only one domain of drawings, our system handles
drawings of similar nature but of different domains. The
alternation of symbols with mostly rectilinear connections
is the primary constraint that a domain must satisfy for our
scheme to apply. The results in the paper demonstrate that
the admissible domains include electrical and logic circuits,
chemical plant diagrams, and flowcharts. Other drawings
that are likely to satisfy the constraint are pipe and instru-
mentation diagrams, wiring diagrams, PERT charts, and
entity-relationship charts.

GLOSSARY

CL: Connection Line, the line that connects two symbols.
PCL: Potential Connection Line, a non-closing sequence of

line vectors that is likely to be a connection line.
PS: Potential Symbol, a set of line vectors that is likely to be

part of a symbol.
SC: Symbol Component, a set of connected line vectors that

is part of a symbol.
S: Symbol, a complete symbol, it may consist of more than

one symbol components that are detached from each
other.

GM: Goodness Measure, they are defined for closed loop
and non-closing strokes and weight-averaged based on
entity length when entities are combined.

PML: Poly Maximal Line, a sequence of maximal lines con-
nected by degree-two points. A maximal line is a maxi-
mal set of connected line segments that define a straight
line in the drawing. The two end points of a poly maxi-
mal line should be distinct.

SOFTWARE

Researchers interested in a copy of the software developed
in this project may contact any of the authors directly.
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