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Tuning Magnetic Microstructures of Reference Layer in Magnetic
Tunneling Junctions

L. Yuan1, Y. S. Lin1, Dexin Wang2, and S. H. Liou1

Department of Physics & Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln,
Lincoln, NE 68588-0111 USA

Seagate Recording Heads, Bloomington, MN 55435 USA

Magnetic microstructures in the reference layer in magnetic tunneling junctions (MTJs) are tuned by a reversal field under ambient
conditions to investigate their effects on the magnetoresistance (MR) and the exchange coupling field (HE) between the reference layer
and the free layer. Magnetization changes in the reference layer can be probed by measuring minor MR loops. The results show the
HE of the minor MR loops versus the applied reversal field changes from negative to positive and crosses zero. These results can be
explained by the magnetic inhomogeneities at the interface between anti-ferromagnetic/pinned-ferromagnetic layers, which causes the
partial magnetization reversal in the reference layer.

Index Terms—Exchange coupling, magnetic microstructure, magnetic tunneling junction.

I. INTRODUCTION

MAGNETIC TUNNELING JUNCTIONS (MTJs) have
been extensively investigated because of their funda-

mental interest and potential applications to magnetic random
access memory (MRAM), read heads, and other magnetic
devices. The basic structure of the MTJ is a sandwich of two
ferromagnetic (FM) layers separated by a thin insulating layer.
Its tunneling resistance is related to the relative magnetization
orientation between the two FM layers [1], [2]. To get higher
sensitivity, we need to get a larger magnetoresistance (MR)
ratio [3]–[6] and better control of the low field properties
[7]–[10], such as the exchange coupling field , coercivity
field , etc.

In this paper, the effect of the magnetic microstructures in
the reference layer in MTJs is studied. We applied a magnetic
reversal field to tune the magnetization states in the reference
layers under ambient conditions (without changing the physical
structures of the MTJ samples). The MR change in the minor
loops can be used to probe the magnetic microstructures in the
reference layer.

II. EXPERIMENT

Spin dependent tunneling (SDT) wafers were deposited
using dc magnetron sputtering in a Sharmrock system with a
base pressure lower than Torr. The layer structure
of the MTJ samples is 80Ru-40CoFeB-50RuTa-40CoFeB-15
Al O -50CoFeB-9Ru-54FeCo-350CrMnPt (in ) (Fig. 1). A
Co Fe B (at %) target and a Co Fe target were used.
The Al O barrier was formed by depositing a layer of about 12

thick metallic Al and then oxidizing it in a plasma of Ar/O .
From the transmission electron microscopy (TEM) pictures,
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Fig. 1. The magnetoresistance (MR) loops for MTJ samples. The insets show
the magnetization of each layer of the MTJ at various magnetic fields ranges.

the thickness of the Al O is estimated to be about 15 [6].
A magnetic field of 4 kA/m was applied during the magnetic
layer deposition to induce the easy axis. Annealing was done
in forming gas at a temperature of 250 C for 1 hour with an
applied field of 318 kA/m to align the pinning layer structure
[11]. The antiferromagnetic (AFM) CrMnPt layer for pinning is
at the top. In the 54FeCo-9Ru-50CoFeB layers structure, the Ru
thickness is adjusted to make the two FM layers antiparallelly
aligned to form synthetic antiferromagnetic (SAF) structure.
Inside the SAF structure, the CoFeB is the reference layer. The
junctions were fabricated using photolithographic techniques
to pattern the pinned and free layers separately, with one layer
of metal to connect the junctions and test pads [12].

III. RESULTS AND DISCUSSION

As shown in Fig. 1, the MR loops are measured with applied
magnetic field from 605 to 119 kA/m and back to 605 kA/m.
In the field range from 605 to 119 kA/m, the resistance of
the junction stays at the low resistance state. This illustrates
that the magnetization of the free layer and reference layer are
aligned in the same direction (as shown in inset I in Fig. 1). In
this field range, the large field overcomes the exchange coupling
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and causes the reference layer to rotate to align with the applied
field.

In the field range from to kA/m, the resistance in-
creases to a maximum (67.4 k ) and then decreases sharply to
40.7 k as the field increases. When the field increases, the am-
plitude of the external field is not large enough to overcome the
coupling in the SAF structure (that prefers antiparallel align-
ment), but is still large enough to align the magnetization of the
free layer. The magnetization of the reference layer switches to
the direction opposite to the applied field, making it antiparallel
to the magnetization of the free layer. This causes an increase in
the resistance. When the field increases to a positive value, the
magnetization of the free layer begins to switch with the applied
field, while the reference layer stays same, so the free layer and
the reference layer are parallelly aligned. This causes the resis-
tance to decrease (as shown in inset II in Fig. 1).

In the field range from 24 to119 kA/m, the resistance is first at
low resistance state. That indicates the magnetization of the free
layer and the reference layer are parallel aligned. With the field
increases, the resistance increases and forms a bump. The bump
has been observed and explained by the well coupled SAF layer
that rotating with the applied magnetic field [13]. However, the
MR curve in the reference paper is not the same as our MR
curves. So another mechanism should be involved in our sample.
With the field larger than 24 kA/m, the magnetization of the
free layer should be aligned with the field, so the magnetization
of the reference layer is also expected to align with the field.
However, we have observed the increasing resistance at the field
larger than 24 kA/m. Since the magnetization of the free layer
is still aligned with the field, the magnetization of the reference
layer should be changed with the field. That may be explained by
multidomain formation in the CoFe layer (as shown in inset III
in Fig. 1). The CoFe layer couples with the AFM layer and also
may align with the large applied field. The competition between
these two effects may generate multidomain in it. Also in SAF
structure, the reference layer strongly couples with the CoFe
layer. That may cause correlated multidomains in the reference
layer and cause the MR changes.

As field decreases from 119 kA/m, the resistance monotoni-
cally increases and reaches a maximum resistance. But this tun-
neling resistance, 55.4 k , is lower than the maximum resis-
tance obtained when field increases from 119 to 24 kA/m.
That may be explained by some regions of the AFM layer at the
interface of the CrMnPt/CoFe weakly coupled with the rest of
the AFM layer. When the field decreases from the reversal field,
the magnetization of these defect regions do not switch back (as
shown in inset IV in Fig. 1). Due to the exchange coupling, the
adjacent regions in the CoFe layer may align with these defect
regions and form domains. Then, the exchange coupling in the
SAF structure makes the reference layer form multidomains and
decrease the junction resistance.

Minor loops measure the resistance change under a small
magnetic field (from 8 to 8 kA/m) that only changes the mag-
netization of the free layer. The magnetization of the reference
layer is not expected to change under such a small magnetic
field. By measuring the minor loop (Fig. 2), we can probe the
magnetization change in the reference layer after applying dif-
ferent reversal fields. The minor loops of the MTJs are measured

Fig. 2. Minor magnetoresistance loops for MTJs after applied reversal fields
of 62, 119, and 605 kA/m.

after sweeping the field from 605 kA/m to a reversal field and
back to zero field. The reversal field is defined as the large posi-
tive field applied. For example, in Fig. 1, the reversal field is 119
kA/m. As shown in Fig. 2, the is 63.2 k and is 42.0
k with the reversal field as 62 kA/m. With the reversal field
increases to 119 kA/m, the minor loop of the MTJs changes di-
rections from the previous case and the center of the MR loop
shifts to positive field. The also decreases to 55.3 k and

increases to 47.4 k . As the reversal field further increases
to 605 kA/m, the increases to 58.3 k and decreases
to 43.5 k .

Fig. 3 shows the , TMR, , and of the minor
loops as the applied reversal field ranges from 0 to 605 kA/m.
It shows that increases (decreases) with saturation
field, reaches a maximum (minimum) at a reversal field of 98
kA/m, and then decreases (increases). The TMR (Fig. 3(b)) of
the minor loop calculated from and has a minimum at
98 kA/m. Fig. 3(c) shows the of the minor loops changes
from negative field to positive field and reaches zero after ap-
plied a reversal field of about 98 kA/m. Fig. 3(d) shows the co-
ercivity field of the minor loop has no obvious variation
after applying different reversal fields.

reaches a maximum (minimum) after applying a
reversal field of 98 kA/m. changes from negative to posi-
tive and crosses zero also at a reversal field of 98 kA/m. These
results can be explained by the magnetic inhomogeneity at the
interface between AFM/pinned-FM layers. As we discussed, in
the field range of 24 to 119 kA/m, the two ferromagnetic layers
of the SAF structure may form multidomains, which will de-
crease the magnetization in the reference layer. At 98 kA/m,
the effect of the multidomain may cause a randomly distributed
magnetization of the reference layer, which causes the TMR
drop to about zero. The multidomain formation at the reference
layer can also explain the changes in . results from the
exchange coupling at the interface between FM and AFM ma-
terials and Neel coupling and/or the stray field that comes out
from the reference layer. Neel coupling is also called “orange
peel” coupling, which is caused by the magnetostatic interac-
tions between the free poles at the two ferromagnetic interfaces
next to the nonmagnetic barrier in a MTJ [14], [15]. The Neel
coupling is related to the roughness of the interface between the
two FM layers adjacent to the barrier layer. It is larger for a
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Fig. 3. (a) R and R , (b) TMR, (c) H , and (d) H of the minor loops for
different applied reversal fields.

rougher interface. In this study, the physical roughness of the
MTJ are kept the same, only the magnetic roughness changes.
This may change the Neel coupling and the stray field at the
junction edges. If the two FM layers in the SAF layer struc-
ture are perfectly coupled, no stray field emerges from the SAF
layer structure to affect the free layer. However, there is always
some small amount of stray field comeing out of the SAF layer
structures due to the imbalanced coupling between the two FM
layers. The stray field at the edge will be reduced due to the cor-
related multidomain formation in the two FM layers of the SAF
structures [16].

IV. CONCLUSION

The magnetization of the pinned layer structures is changed
by an applied reversal field. The TMR and of the minor loops
versus applied reversal field have a minimum. The change in

, TMR, and of the minor loops after different ap-
plied reversal fields can be explained by the multidomain forma-
tion in the reference layer. This may originate from the magnetic
inhomogeneity at the interface between AFM/FM layers. Due
to the nonuniform exchange coupling (and defects), domains
are formed in the FM layer adjacent to the AFM layer. The ex-
change coupling between the SAF structures causes domain for-
mation in the reference layer, which affects the MR properties
of the MTJs.
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