












when that entry is changed and other entries are not

changed. These curves are obtained using Eq. A.2 in

Appendix A. From these graphs, we see that changes in

S2 are more important to k than changes in S1 or S0.

Since the long-term growth rate k is most sensitive to S2,

and B is the most uncertain parameter, we look at how k
is affected by simultaneous changes in B and S2. In

particular, we will determine what changes can be

tolerated in B and S2 without destroying the conserva-

tion property k . 1.

The traditional approach to analyzing the affect of a

change of p to a parameter a on k is via sensitivity

analysis. The sensitivity of k to a is the instantaneous

rate of change in k with respect to a, i.e., it is dk/da
evaluated at the nominal value of a (see Table 1). Even

though sensitivity analysis is only guaranteed accurate

for small p, in this case, the sensitivities in Table 1 lead

to the same conclusion as the graphs in Fig. 1.

We now analyze the effect of simultaneous changes in

both B and S2. We parameterize the change in B by p1,

and the change in S2 by p2, where p1 is an absolute

change and p2 is a relative change. In particular, we want

the perturbed matrix to be

Ã ¼ Aþ P1 þ P2 ¼
0 FRS1p1 FRS2ð1þ p2Þ
S0 0 0

0 S1 S2ð1þ p2Þ

2
4

3
5:

ð6Þ

As in Appendix A, we write

P1 ¼ p1D1E1 P2 ¼ p2D2E2

where

D1 ¼
FRS1

0

0

0
@

1
A E1 ¼ ð 0 1 0 Þ ð7Þ

and

D2 ¼
FRS2

0

S2

0
@

1
A E2 ¼ ð 0 0 1 Þ: ð8Þ

The admissible range of p1 is 0 to 1, where p1 ¼ 1

implies all two-year-old females breed. The admissible

range of p2 is constrained so that the term S2(1 þ p2),

which is a probability, is between 0 and 1, so p2 ranges

from �1 to 0.25. Thus the set of admissible perturba-

tions is described by

S ¼ ðp1; p2Þj0 � p1 � 1;�1 � p2 � 0:25f g:

We wish to find the set of (p1, p2) in S so that k . 1.

We can easily find a curve in the (p1, p2) plane on which

some eigenvalue (not necessarily the largest eigenvalue

k) is equal to one. Hence, on this curve, k must be

greater than or equal to 1. If we can prove that, on this

curve, k ¼ 1, then the curve breaks up the set S of

admissible perturbations into two regions, one of which

corresponds to k .1, while the other region corresponds

to k , 1. In Appendix B, we find the equation of the

curve using a method which guarantees that k ¼ 1 for

(p1, p2) on this curve. The curve is shown in Fig. 2, on a

coordinate system with p1 on the horizontal axis and p2
on the vertical axis. The nominal values of (B, S2) are

represented by (p1, p2)¼ (0, 0) The shaded area in Fig. 2

represents those (p1, p2) that correspond to k . 1.

Fig. 2 shows us how much error is acceptable in B and

S2, and, more importantly, shows the interplay between

uncertainties in the two variables. For instance, for any

value of B, S2 can tolerate a negative error of 4% (or, of

course, any positive error). If B ¼ 1, S2 can tolerate a

negative error of 13% or less. This illustrates an

important principle: new information about one param-

FIG. 2. The boundary curve represents all pairs of
perturbations (p1, p2) for which k(p1, p2)¼ 1. The shaded area
represents all pairs of perturbations (p1, p2) for which k(p1, p2)
.1. The dashed line is k(p1, p2)¼ 1.0287, the growth rate of the
unperturbed matrix. The dotted line shows the linear approx-
imation to these curves obtained from direct use of sensitivity to
predict the effects of perturbations.

FIG. 1. The largest eigenvalue k vs. change in the falcon life
history parameters. Parameters are defined in Table 1.
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eter often changes the robustness to uncertainty in other

parameters.

Now suppose that we wish to identify all (p1, p2) that

guarantee a long-term growth rate of at least 3%. Then,

we simply replace 1 in our computations with 1.03. This

yields a new curve (Fig. 2) that is shifted upward relative

to the previous curve; because k¼ 1.0287 at the nominal

values, this new curve runs through the nominal point.

The region above that curve gives the values of (p1, p2)

for which k . 1.03 for A.

It is possible to approximate the effect of multiple

large perturbations using sensitivities alone by assuming

that k(p1, p2) is linear (Caswell 2001:224; Fig. 2). When

uncertainty in S2 is considered alone (i.e., along the y-

axis of the figure), the approximation is very close

because the nonlinearity of k with respect to S2 is not

great (Fig. 1). However, when uncertainty in two

parameters is considered simultaneously the linear

approximation underestimates how much uncertainty

is allowed in S2 as B increases. For larger matrices or

more complex perturbations, the nonlinearity, and

hence the inadequacy of the linear approximation, could

easily be more severe.

The effect of harvesting on long-term growth

We now examine the effect of harvesting on the

largest eigenvalue k of the modified population projec-

tion matrix Ah (see Eq. 5). As a simple example, let Ah

use the nominal values of B and S2; we find that the

smallest value of h that gives an eigenvalue of 1 is

0.1714. Therefore, since k varies continuously with h and

the nominal matrix A with h ¼ 0 has largest eigenvalue

1.0288, any value of h less than 0.1714 gives a largest

eigenvalue of Ah greater than 1. Thus even with no two-

year-old falcons breeding, if there is no uncertainty, then

17.41% may be harvested while maintaining a growth

rate of k ¼ 1.

However, this does not take into account uncertain-

ties in B and S2. Hence, we again let p1 be the

uncertainty in B and p2 be the uncertainty in S2. As in

the analysis of A in Appendix B, for several values of h,

we find curves in the (p1, p2) plane on which the largest

eigenvalue k for Ah is 1. For h¼0, 0.05, 0.1, 0.15, 0.1714,

and 0.2, these curves are shown in Fig. 3. The region

above each curve gives the values of (p1, p2) for which k
. 1 for Ah. If B ¼ 1 and 17.41% are harvested, S2 can

tolerate uncertainties of up to �6%. The U.S. Fish and

Wildlife Service suggests that 5% can be harvested.

Reading from the h¼ 0.05 graph in Fig. 3, we see that, if

B¼ 0, this allows an uncertainty of 3% in S1, and if B¼
1, this allows an uncertainty of 11% in S1.

If our objective is to maintain 3% population growth

even with harvesting, then we can recalculate our curves

as we did for the no-harvesting model (Fig. 2). Although

we do not show the figure, it is straightforward to

calculate that 3% population growth cannot be main-

tained with 5% harvesting, unless our nominal value of

S2 is an underestimate, or at least 20% of two-year-old

birds breed. If more than 20% of two-year-old birds

breed, then uncertainties of up to 6% in adult survival

can be tolerated when B ¼ 1.

DISCUSSION

The difficulty of incorporating the effects of uncer-

tainty in matrix parameters into population manage-

ment decisions is possibly one of the largest problems

preventing widespread adoption of models in decision

making. One of the best examples of thoroughly

incorporating uncertainty in the assessment of manage-

ment is Heppell et al.’s (1994) work on Red-cockaded

Woodpeckers, which relied on simulation to explore the

effects of simultaneous uncertainties, as well as linear

approximations using elasticities. This approach of

using linear approximations from elasticities in one

dimension, and Monte Carlo simulations in multiple

dimensions is widely used (e.g., Ferriere et al. 1996,

Caswell et al. 1998, among many others). Although it is

possible to explore multidimensional parameter uncer-

FIG. 3. The effect of the harvesting fraction h
on the k(p1, p2) ¼ 1 curves. The bold line is h ¼
0.1714, the amount of harvesting that yields
k(p1, p2) ¼ 1 with no uncertainty for the nominal
values.

A. DEINES ET AL.2180 Ecological Applications
Vol. 17, No. 8



tainty reasonably easily in this fashion, the exact results

obtained by simulation depend heavily on the details of

how perturbations are selected. This is especially true

when considering the possibility of constraints or

correlations among life history traits; information on

such correlations is generally unavailable (Wisdom et al.

2000). Caswell et al. (1998) incorporated constraints on

life history traits by sampling survival curves from a

group of related species. However, if a different set of

species had been selected, the results would differ by an

unknown amount, and this still does not answer the

problem of correlated environmental variation. The

method we introduce here gives an analytical result for

all possible perturbations, and is straightforward to

implement in readily available software (e.g., Symbolic

Toolbox in MATLAB, see Supplement).

It is widely reported that predictions of the perturba-

tions needed to effect a given change in k using

sensitivities or elasticities are accurate to relative

changes of 650% (e.g., de Kroon et al. 2000). However,

careful inspection of the numerical examples used to

support this claim show that they typically involve

perturbations of single vital rates or matrix entries. As

shown in Fig. 2 this is true for our matrix as well.

However, once multiple parameters are perturbed the

linear approximation breaks down. Some examples for

multiple perturbations are provided in Caswell (2001;

Chapter 18), and these demonstrate increasing approx-

imation errors with both the dimension and size of the

perturbation. B. Tenhumberg, S. Louda, J. Eckberg,

and M. Takahashi (unpublished manuscript) conducted a

Monte Carlo analysis of a large matrix with simulta-

neous uncertainty in 19 parameters, and found that

when parameters varied simultaneously the local and

linear elasticities were poor predictors of which param-

eters have a large influence on k. Our method makes all

of these predictions easily and without approximation

errors.

The notion of using direct perturbations of the life

cycle to improve decision making in conservation

biology was put forward for empirical perturbations

by Ehrlen and van Groenendael (1998). They suggested

that the tools of ‘‘life table response experiments’’ (sensu

Caswell 2001) should be used to analyze multiple years

of data as perturbations of an underlying matrix. A key

improvement of this idea over using elasticities alone is

the incorporation of the differential variability of each

matrix entry (de Kroon et al. 2000), arising because of

differential variability in life history traits. However,

small observed variation in a vital rate does not

necessarily mean it is a poor target for management

(Caswell 2001:619), and similarly large observed varia-

tion does not automatically lead to a good management

target. We have not addressed this issue in the present

example, but it would be straightforward to rescale the

perturbations (p1, p2) by the relative amount of

variability in the parameters they are affecting, if

estimates of this variability are available. A better,

prospective approach would rescale the perturbations by

their relative cost (ease of manipulation); an excellent

example of how to do this using sensitivity analysis is

given by Baxter et al. (2006).

A general, but underappreciated, problem with using

models to assess the effects of management options is

uncertainty in the connection between management and

population vital rates. For example, when considering

the effects of river flows on fish populations, it may not

be at all clear what relationship exists between flow and

spawning frequency. This type of uncertainty could be

included in the methodology we present here by careful

parameterization of the perturbations, although this will

increase the number of dimensions in the perturbation,

making interpretation more difficult. In the falcon

harvesting example we ignored the issue of how many

nestlings a harvest rate of 5% actually represents. There

is substantial uncertainty in estimates of numbers of

breeding pairs, and consequently in the number of

nestlings that can be taken. However, if detectability of

breeding pairs is less than 1, then the actual number of

identified nests will be an underestimate. As long as the

actual, observed number of nests is used to calculate the

number of nestlings that can be taken, the actual harvest

rate will be less than 5%. This cannot be guaranteed if

the permitted take is based on an estimated number of

breeding pairs. In that case, if the breeding population is

overestimated then the nominal 5% harvest rate would

in fact be larger, and consequently there is a greater risk

that the population growth targets would not be

maintained. The robust, conservative decision is to use

the actual observed number of nests. This harvest level

could be increased, but this is only safe when the

accuracy of breeding population estimates can be

carefully defined.

We have approached the problem of uncertainty using

perturbations in a time-invariant matrix model. Vital

rates vary through time and space in natural popula-

tions, and ignoring these stochastic effects leads to

predictable biases in the long term population growth

rates (e.g., Tuljapurkar and Haridas 2006). When

comparing management alternatives, the leading eigen-

value of a time invariant matrix works well in the

relative sense, because it is a performance measure that

integrates across the entire life history (Caswell

2001:615), so for that purpose our approach should

work well. Nonetheless it would be an interesting

exercise to formally compare the perturbation approach

with stochastic population dynamics, and see if they can

be combined or reconciled.

Robustness approaches are a relatively new idea in

ecology and conservation biology, although they find

wide application in many other fields (e.g., Ben-Haim

2001). In addition to applications in conservation

biology (e.g., Hodgson and Townley 2004, Hodgson et

al. 2006), the concept was recently applied to foraging

theory to examine the possibility that foragers seek to

guarantee minimum returns rather than maximize
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returns (Carmel and Ben-Haim 2005). The key differ-

ence from a decision-making perspective is the shift from

maximizing a performance criterion to guaranteeing

some minimum level of that criterion. Although our

current work focuses on the asymptotic growth rate of a

structured population, the general notion of guarantee-

ing performance could be applied to any measure of how

well a population is doing. For example, a minimum

probability of quasi-extinction over T years could be

specified, and then simulations carried out to determine

the largest parameter perturbation that has that as a

worst case performance. By restricting our focus to

asymptotic population growth rates we enable the use of

a powerful set of analytical results rather than having to

rely on simulations.

This new approach may make setting objectives for

decision making much easier in conservation biology.

For example, when comparing two or more manage-

ment decisions for their effect on the risk of extinction,

we may choose the strategy that provides the lowest risk

of extinction (Regan et al. 2005). However, if the costs of

these decisions differ, we are then forced into making

arguments about how much a species is ‘‘worth’’ in order

to justify a greater expense. In contrast, if we specify

some minimum performance that we wish to guarantee,

we can use robustness methods to compare decisions

based on how much error each can tolerate and still

guarantee the minimum. Differing costs then purchase

different levels of robustness, relieving us of the need to

value each species. We still have to value the robustness,

but this would appear to be easier to do than argue

about the value of a species.

In conclusion, the approach we have outlined here

provides a powerful set of tools for examining the effect

of decisions in the face of large and poorly characterized

uncertainty in population projection matrices. Many

decisions for threatened and endangered species are

made with poor or no information. We can still make

decisions under these circumstances in a manner that is

highly defensible, even without making assumptions

about the distribution of uncertainty or limiting

ourselves to discussions of single, infinitesimally small

changes in the parameters.
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APPENDIX A

Simple perturbations, eigenvalues, and transfer functions (Ecological Archives A017-089-A1).

APPENDIX B

The k¼ 1 curve for two perturbations (Ecological Archives A017-089-A2).

SUPPLEMENT

MATLAB code to identify the hypersurface (Ecological Archives A017-089-S1).

December 2007 2183POPULATION MANAGEMENT UNDER UNCERTAINTY



Ecological Archives A017-089-A1

A. Deines, E. Peterson, D. Boeckner, J. Boyle, A. Keighley, J. Kogut, J. Lubben, R. Rebarber, R. Ryan, B. Tenhumberg, S.
Townley, and A. J. Tyre. 2007. Robust population management under uncertainty for structured population models. Ecological
Applications 17:2175–2183.

Appendix A. Simple perturbations, eigenvalues, and transfer functions. Click here for pdf file of appendix.

Ecological Archives A017-089-A1 http://0-www.esapubs.org.library.unl.edu/archive/appl/A017/089/append...

1 of 3 8/9/2010 5:01 PM



Ecological Archives A017-089-A1 http://0-www.esapubs.org.library.unl.edu/archive/appl/A017/089/append...

2 of 3 8/9/2010 5:01 PM



 

[Back to A017-089]

Ecological Archives A017-089-A1 http://0-www.esapubs.org.library.unl.edu/archive/appl/A017/089/append...

3 of 3 8/9/2010 5:01 PM



Ecological Archives A017-089-A2

A. Deines, E. Peterson, D. Boeckner, J. Boyle, A. Keighley, J. Kogut, J. Lubben, R. Rebarber, R. Ryan, B. Tenhumberg, S.
Townley, and A. J. Tyre. 2007. Robust population management under uncertainty for structured population models. Ecological
Applications 17:2175–2183.

Appendix B. The λ = 1 curve for two perturbations. Click here for pdf file of appendix.

Ecological Archives A017-089-A2 http://0-www.esapubs.org.library.unl.edu/archive/appl/A017/089/append...

1 of 3 8/9/2010 5:01 PM



Ecological Archives A017-089-A2 http://0-www.esapubs.org.library.unl.edu/archive/appl/A017/089/append...

2 of 3 8/9/2010 5:01 PM



 

[Back to A017-089]

Ecological Archives A017-089-A2 http://0-www.esapubs.org.library.unl.edu/archive/appl/A017/089/append...

3 of 3 8/9/2010 5:01 PM



A. Deines, E. Peterson, D. Boeckner, J. Boyle, A. Keighley, J. Kogut, J. Lubben, R.
Rebarber, R. Ryan, B. Tenhumberg, S. Townley, and A. J. Tyre. 2007. Robust population
management under uncertainty for structured population models. Ecological Applications
17:2175–2183.

Supplement

MATLAB code to identify the hypersurface.
Ecological Archives A017-089-S1.

Copyright

Authors
File list (downloads)
Description

Author(s)

Alyson Deines
Department of Mathematics, Kansas State University,
Manhattan, KS 66506 USA

Ellen Peterson
Department of Mathematics, Wittenberg University
Springfield, OH 45501 USA

Derek Boeckner
Department of Mathematics, University of Nebraska-Lincoln,
Lincoln, NE, USA

James Boyle
Department of Mathematics, University of Notre Dame,
Notre Dame, IN 46556 USA

Amy Keighley
Department of Mathematical Sciences, Rensselaer Polytechnic Institute,
Troy, NY 12180 USA

Joy Kogut
Department of Mathematics, Simmons College,
Boston, MA 02115 USA

Joan Lubben, Richard Rebarber
Department of Mathematics, University of Nebraska-Lincoln,
Lincoln, NE, 68583, USA

Richard Ryan

Ecological Archives A017-089-S1 http://0-www.esapubs.org.library.unl.edu/archive/appl/A017/089/suppl-1.htm

1 of 2 8/9/2010 5:02 PM



Department of Mathematics, University of Rhode Island,
Kingston, RI 02881 USA

Brigitte Tenhumberg
School of Biological Sciences and Department of Mathematics, University of Nebraska-Lincoln,
Lincoln, NE, USA

Stuart Townley
Department of Mathematical Sciences,University of Exeter,
Exeter, EX4 4QE, UK

Andrew J. Tyre
School of Natural Resources, University of Nebraska-Lincoln,
Lincoln, Nebraska 68583, USA
atyre2@unl.edu

File list

easysolve.m

Description

This file contains a MATLAB script (Version 7.0.1) that uses the symbolic toolbox to
demonstrate how to find the hypersurface where the leading eigenvalue is equal to 1. The first
part replicates Fig. 1 from the paper; the second part demonstrates a larger 8 × 8 matrix and a
three- dimensional perturbation.

ESA Publications | Ecological Archives | Permissions | Citation | Contacts

Ecological Archives A017-089-S1 http://0-www.esapubs.org.library.unl.edu/archive/appl/A017/089/suppl-1.htm

2 of 2 8/9/2010 5:02 PM


