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change with coupling with various loads. Evaporative cooling 
was not considered in this model and might have slightly con-
tributed to minor errors in prediction. Tilford et al. (2007) de-
veloped a simulation model to predict the transient tempera-
ture profiles in cheesy sauce at eight locations of the food. In 
their study, the predicted temporal profiles were close to the 
observed profiles only in shorter heating time (15 s) and then 
temperature deviations were large for longer heating time. 
Given complex nature of microwave heating, overall model 
predictions were reasonably good.

3.2.3. End temperature comparison
The final temperature reached in simulation is an impor-

tant value in food safety issues, because microbial inactiva-
tion rate is much faster at higher temperatures than at lower 
temperatures. Table 5 shows the final temperature difference 
calculated at 12 locations. At 2.45 GHz frequency, the aver-
age final temperature difference at the top plane (n = 4; z = 10–
20 mm) was 2.82 °C ± 2.04 °C, whereas, the average final tem-
perature difference at the middle plane (n = 5; z = 25 mm) and 
bottom plane (n = 3; z = 30–45 mm) were 3.85 °C ± 2.63 °C and 
3.30 °C ± 1.74 °C, respectively (Table 5). It is important to evalu-
ate whether the model over-predicts or under predicts tempera-
ture at various locations to provide guidelines for microbial in-
activation studies. The negative sign indicates over-prediction,  

Table 4. Comparison between transient experimental and predicted 
temperature using 2.45, 2.455 and 2.458 GHz magnetron frequency.

 	 Sensor 	  	  	  	  
 	 position	  	 2.45_	 2.455_	 2.458_ 
Layer	 from top	 Sensor	 RMSE	 RMSE	 RMSE 
position	 (mm) 	 ID	 (°C) 	 (°C) 	 (°C)

Top	 10	 1	 4.52	 3.85	 4.04
	 20	 2	 2.37	 1.23	 0.28
	 20	 3	 1.16	 1.77	 2.39
	 20	 4	 0.53	 0.24	 0.67
	 Avg.	 2.15	 1.77	 1.85

Middle	 25	 5	 0.81	 0.74	 1.22
	 25	 6	 4.18	 2.46	 1.25
	 25	 7	 1.99	 1.72	 1.18
	 25	 8	 2.36	 1.59	 0.52
	 25	 9	 1.04	 2.83	 4.63
	 Avg.	 2.08	 1.87	 1.76

Bottom	 30	 10	 2.76	 4.62	 6.32
	 30	 11	 1.82	 1.38	 2.21
	 45	 12	 0.78	 1.57	 0.45
	 Avg.		  1.79	 2.52	 2.99

Global average		  2.02	 2.00	 2.09

Figure 10. Simulated and observed time–temperature 
profile at six locations of gellan gel subjected at 
2.45 GHz frequency.
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whereas positive sign indicates under-prediction. In top and 
bottom plane, most (5 out of 7) of the locations, the model over-
predicted the temperature. On the other hand, in middle plane 
(n = 5; z = 25 mm) the model under predicted at 4 out of 5 loca-
tions. By increasing the heat transfer coefficient value at the in-
terface of dielectric material (gel) and air, over-prediction at top 
plane would be reduced to get more close prediction.

4. Potential applications of the model in food industry

The developed model can be used in the food industry to 
identity the hot and cold spots locations in food product de-
veloped during microwave heating. Besides, the model can 
be used effectively in microwave food product development 
where the model enables the users to identify the best food and 
package design parameters to achieve better heating uniformity 
using simulation. Thus the model guides the food industry in 
developing food products with better cooking performance 
in various microwave ovens that results in better food quality 
and safety. The model can also help in developing cooking in-
structions. The model can play a vital role in microwave cavity 
design by assisting design engineers to achieve more uniform 
electromagnetic distribution within the cavity.

5. Conclusions

A comprehensive coupled electromagnetic and heat trans-
fer model was developed to simulate microwave heating in do-
mestic oven. The conformal FDTD based numerical method 
was used to solve electromagnetic Maxwell’s equations and 
Fourier heat transfer equations. Effects of various electromag-
netic and computational parameters were studied and the pro-
cedure for selecting appropriate value for each parameter was 
discussed. The microwave heating of a gellan gel cylinder was 
simulated using the optimized parameters for validation of the 
model. Simulated spatial and temporal profiles using 2.45 GHz 
were found in good agreement with experimental temperature 

profiles. The predicted transient temperature profiles were 
close to the observed temperature profiles with the RMSE value 
of 2.15 °C, 2.08 °C and 1.79 °C at the top, middle, and bottom 
planes, respectively.
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