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2

Motion of a Particle

(Kinematics)

2-1 Motion Is Relative

Kormally, when we sayan object is at rest, we mean that it is at rest with
respect to the surface of the earth; when we say a car is moving at a speed
of 40 mi/hr, we imply that the motion is taking place at this speed relative
to the road. A boat sailing on the river moves with respect to the river's
banks, but it also moves with respect to the flowing water in the river.
The lift on the wings of an airplane is generated by the motion of the air­
plane through the air, but it is quite important to know the plane's motion
with respect to the ground. When we speak of the motion of a car or a
train, we normally mean the motion with respect to the ground, but when
we speak of the rated speed of an airplane, we refer to its motion with
respect to the air. To avoid confusion in the discussion of motion, it is
important to refer the motion to a frame of reference, usually thought of as
fixed on the earth or fixed relative to the stars, in which the motion is
measured. For many problems it is convenient to use moving frames of
reference; it is then necessary to specify the nature of the motion of the
frame. The frame of reference generally takes the form of a set of coor­
dinate axes in which the motion is pictured.

2-2 Uniform Motion in a Straight Line

The simplest type of motion is that in which a body traverses equal dis­
tances along a straight line in equal time intervals; this type of motion is
called uniform motion in a straight line. The speed of the body is defined
as the distance traversed divided by the time elapsed; that is,

S d
distance

pee = . ,
tIme

or, in symbols,
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s
v = -,

t
(2-1 )
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where v is the speed of the body, and s is the distance traversed in time t.
Whenever a number is used to specify the speed of a body, it must

always be accompanied by the appropriate units such as feet per second,
usually written as ft/sec, or miles per hour (mi/hr), or meters per second
(m/sec), or any other appropriate units of distance and time.

One other aspect of motion is the direction in which it takes place.
When we wish to specify that a body has moved from a point A to a point
B, we can use a vector directed from A to B; this vector is the displacement
of the body. If s is the distance from A to B, the displacement is s (printed
in boldface type), a vector drawn from A 10 B.

To specify both the speed of a body and its direction of motion, we
use the term velocily. The velocity v of a body in un~formmotion in a straight
line is defined as the displacement divided by Ihe lime during which the dis­
placement occurred, or, in symbols,

~
~-

I
s i

V = -. II

I I I
i

(2-2)

The direction of the velocity is the same as that of the displacement. Veloc­
ity is thus a vector quantity. For example, if a train is moving due west
with auniform speed of 60 mi/hr, its velocity is 60 mi/hr west. Ko state­
ment about the velocity of a body is complete without specifying both
magnitude and direction.

2-3 Relative Velocities

It is frequently important to be able to determine the velocity of a body
with respect to one frame of reference when its velocity has been deter­
mined with respect to a second frame of reference which is in motion with
respect to the first one. For example, the velocity of a ship relative to the
water can easily be measured, but what is usually desired is its velocity
relative to the shore, for the water is generally in motion.

To understand how these velocities are related to each other, let us
consider the case of a boat in the river in which the water is moving down­
stream with a velocity w relative to its banks. Let us assume that the boat,
if left free, would float downstream with the current; that is, its velocity
relative to the water would be zero, but its velocity relative to the banks
would be the same as that of the water. Suppose now that the engines of
the boat are started and that the boat moves with a velocity u relative to the
water. Its velocity v relative to the banks will therefore be the resultant
of the two velocities-the velocity w which it acquires because it is moving
with the water, and the velocity u which it acquires relative to the water.
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In the form of an equation,

I
I v = W + u. (2-3)

The three quantities involved are vector quantities, and the addition
must be performed by vector methods. As a simple illustration, suppose
that the velocity of the current in a river is 3 mi/hr south and that a boat
heads toward the west with a velocity of 4 mi/hr with respect to the water,

/West
:::bank

~

North

o

:2J7
0 ~

~ E
r<)

II
:it

U = 4mi/hr

South

Fig_ 2-1 A boat headed west
in a river which flows south
actually travels south of west.

as shown in Figure 2-1. It is desired to find the velocity of the boat relative
to the shore. The velocity u of the boat relative to the water is added
vectorially to the velocity w of the water relative to the shore to get the
resultant velocity v of the boat relative to the shore. Its value is 5 mi/hr
directed at an angle of 37° south of west.

Illustrative Example. Consider the case of an airplane which has to fly from
New York to Montreal, due north. Suppose that its normal flying speed in still
air is 200 mijhr. During the flight there is a steady northwest wind of 40 mijhr.
In what direction should the airplane be headed in order to go due north? What
will be its speed relative to the ground?

To solve the problem we draw a vector w to an appropriate scale, representing
the magnitude and direction of the wind, as shown in Figure 2-2. To find the
heading of the airplane which will result in a displacement due north, we first draw
a straight line due north from 0, the tail of vector w. From the head of vector w,
we swing an arc of radius u to intersect this line. The vector v from 0 due north
to the arc represents the resultant velocity of the airplane with respect to the
ground; its magnitude is the ground speed. The desired heading of the airplane
is given by the vector u, as shown on the figure. From the figure, if u = 200
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mijhr, and w = 40 mijhr, then, to the same
scale, v = 170 mijhr. The airplane must be
headed about 8° west of north.

2-4 Instantaneous Speed and Velocity

We have thus far confined our discussion
to the simplest type of motion, that
with constant velocity. Of very great
interest is the motion of a body in
which its velocity changes. Since veloc­
ity is a vector quantity, a change in
velocity will occur whenever (a) the speed
of the body changes while its direction
remains the same, (b) the direction of
motion changes while its speed remains
the same, or (c) its speed and the direc­
tion of its motion change simultaneous­
ly. Whenever the velocity of a body
changes in any manner whatever, the
motion of the body is said to be acceler­
ated.

In order to be able to discuss ac­
celerated motion, it is important to
know how to specify the speed and the
velocity of the body at any instant or at
any point in its path. Suppose that
the motion takes place along the x axis.
The average speed of the motion is
defined as the distance traversed divided
by the elapsed time. If the object is at Xl

at a time tl , and then is at X2 at a subse­
quent time t2 , the average speed v (read v
bar) may be defined in the form of an
equation as follows:

8°
West
of

north

Fig. 2-2 Helative velocities of an
airplane, v with respect to the earth
and u with respect to the air, when
there is a wind of velocity w from
the northwest.

(2-4)

Illustrative Example. Find the average speed with which a car travels down
a straight highway 100 mi long if its speed during the first 50 mi is 25 mijhr and
during the second 50 mi, is 75 mijhr.

Our first reaction may be to say that the average speed is 50 mijhr, but this
is incorrect. To find the average speed, the distance must be divided by the
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elapsed time. The distance traversed is 100 mi. The elapsed time is 2 hI' for the
first 50 mi, and ~ ghI' for the second 50 mi. The total elapsed time is 2i hr.

ii = 100 mi = 37.5 mi .
2.67 hI' hI'

The instantaneous speed at any point P in the path of a body moving
in a straight line, say the x direction, can be found by taking the average
speed during a short time interval !:!t = tz - t l during which the particle

y

Fig. 2-3

x

has moved a distance !:!x from PI to P z, points on either side of P (see
Figure 2-3). The average speed of the body is !:!x/!:!t. As the time interval
!:!t is made shorter, the points PI and P z close in on point P, and, in the
language of the calculus, we study the value of the average speed over a
sequence of nested intervals. The sequence of values of the average speed
approaches a constant value called a limit; this limit is the instantaneouH
speed Vx of the body at point P; thus

. !:!x dx
Vx = hm - = - . (2-5)

~t--->O !:!t dt

As in the calculus, the symbol!:! (delta) has been used to indicate small
increments. Thus if the position may be described as a function of time,

Fig. 2-4 Displacement in curvilinear motion.

the instantaneous speed is the derivative of the position with respect to
time. In the case of uniform motion in a straight line, the average speed
is the same as the instantaneous speed.

Consider the motion along a curved path, sometimes called curvilinear
motion, such as a motion along APB of Figure 2-4. The average speed of
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the body is again the distance traversed divided by the elapsed time. The
distance traveled along the curved path is denoted by s, measured from
some arbitrary reference point A on the path. If SI is the distance of PI

from A and S2 the distance of P 2 from A, the average speed from PI to P 2

[Figure 2-4(a)] will be given by

S2 - SIv=---,
t2 - tI

where the body passes point PI at time tI and point P 2 at time t2 .

If we let

(2-6)

and

then

b.t = t2 - t1,

b.sv =-.
b.t

The instantaneous speed v may then be determined by a limiting process as

b.s ds
v = lim - = - . (2-7)

<lt~O b.t dt

The average velocity over the interval P I P 2 is the vector displacement
divided by the time, rather than the scalar distance divided by the time.
Calling the displacement of the particle from PI to P 2 by b.s, and the time
interval for performing this displacement b.t, the average velocity in the
neighborhood of P becomes

b.s
\1= -.

b.t
(2-8)

The displacement b.s will not, in general, coincide with the actual path
from PI to P2 , but as the two points are taken closer and closer to P, the
displacement practically coincides with the actual path along the curve.
The direction of the displacement is then tangent to the path at P. The
magnitude of the instantaneous velocity v at P is the instantaneous speed
l' at P, and its direction is tangent to the path at P, as shown in Figure
2-4(b). The instantaneous velocity may be written as

b.s ds
v = lim - = -.

<lt~O b.t dt
(2-9)

Equations (2-8) and (2-9) are vector equations. Both sides of the
equations contain vector quantities. All equations in physics must relate
the same kinds of things. The two sides of the equation must not only
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(2-10)

(2-11 )

have the same dimensions but must also relate quantities of the same
character.

We call visualize the meaning of the vector Equations (2-8) and (2-9)
more easily by considering a case in which the displacement ~s is entirely
in the x direction. Since the velocity vector is parallel to the displacement,
the velocity vector must be in the x direction. Writing Vx for velocity in
the x directIOn, and x for displacement in the x direction, we substitute in
Equation (2-9) to obtain

. ~x dx
Vx = hm - =-.

Llt->O ~t dt

But now there can be no confusion about the direction of the displacement
or about the direction of the velocity, since all directions are parallel to the
x axis. Hence we may rewrite Equation (2-10) as a scalar equation in
algebraic quantities.

. ~x dx
Vx = hm - =-.

Llt-.O ~t dt

By considering cases in which the displacement is entirely in the y
direction, and in which the displacement is entirely in the z direction, we
obtain

dy
(2-12)V =-,

Y dt

and
dz

v --. (2-13)
Z - dt

Any displacement in space may be thought of as the vector sum of
its three component displacements, one in the x direction, one in the y
direction, and one in the z direction. Hence Equations (2-11), (2-12), and
(2-13) are true in the general case where the motion is in any direction, not
just parallel to one of the coordinate axes. The velocity component in the
x direction Vx depends only on the rate of change of the x coordinate of the
position of the moving object. This conception of the separability of the
components of the motion will greatly simplify the study of the motion of
a particle, as we shall see when we study the motion of projectiles later
in this chapter.

2-5 Acceleration

The discussion of motion with varying velocity can best be dealt with in a
quantitative manner by the introduction of the concept of acceleration.
The acceleration of a body is defined as the change in its velocity divided by
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(2-14)

the time in which the change takes place. Just as in the case of velocity, we
must distinguish between average acceleration and instantaneous accelera­
tion. If the initial velocity of a body is VI at a time tI, and the final velocity
is V2 at a time t2 , the average acceleration is, from the definition,

_ V2 - Vl
a = ---..

t2 - tl

The instantaneous acceleration is arrived at by examining the average
acceleration obtained in a sequence of nested intervals converging on the
point P where the acceleration is to be determined. Referring to Figure

Fig. 2-5 Instantaneous acceleration a at a point P.

2-5, if the instantaneous velocity at point PI is given by Vb and the instan­
taneous velocity at P 2 is V2, the instantaneous acceleration at point P is
given by

. V2 - VI
a = hm -=-------'­

At~O t2 - t l

t::.V dv
lim-=-'
AhO t::.t dt

(2-15)

(2-16)

If the acceleration is constant, the average acceleration and the in­
stantaneous acceleration are the same.

Let us consider a case in which the motion is entirely in the x direction.
Writing ax for the magnitude of the acceleration, Vx for the speed, and
substituting in Equation (2-15), we find

dvx
a =-'

x dt'

and for motions entirely in the y and z directions we obtain

dvy
a =-,

y dt
(2-17)

and
dvz

a =-.
z dt

(2-18)

Thus Equations (2-16), (2-17), and (2-18) are true for motion which takes
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(2-19)

mi
-7.5--'

hr sec

place in any direction and may be considered as the component forms of
Equation (2-15). In the component forms the quantities appearing in the
equations are all scalar algebraic quantities. The component forms of the
equations are easier to use for the solution of most problems. The vector
form is the easier way to remember the equations and to develop further
theory.

As an illustration of accelerated motion, we can discuss the motion of
an airplane under a variety of conditions. As it prepares to take off, the
airplane moves along the runway with increasing speed; if this speed is
changing at a constant rate, its acceleration is constant and is in the direc­
tion of its motion. This is the simplest type of accelerated motion. At the
instant of take-off, the direction of the acceleration changes so that it will
have a vertical component upward. Mter the plane has reached the de­
sired altitude and speed and has leveled off in flight, it continues with
constant velocity, that is, with zero acceleration. If, during the flight, the
plane makes a turn at constant speed, its motion is again accelerated be­
cause the direction of motion is changing. When an airplane is preparing
to land, it reduces its speed for safe landing. While the speed is being re­
duced, its motion is also accelerated; this time the direction of the accelera­
tion is opposite to the direction of motion.

In this chapter we shall limit our discussion to motion with constant
acceleration, leaving to later chapters the discussion of several cases of
varying acceleration.

2-6 Straight-Line Motion under Constant Acceleration

The simplest type of motion with constant acceleration is that in which a
body moves in a straight line with a speed which is increasing or decreasing
at a constant rate. We may choose the direction of the x axis as along the
direction of motion and rewrite Equation (2-14) as

v'" - u",
a",=a",= ,

tf - ti

in which v'" is the speed of the body in the x direction at the final time tf,
u'" is the speed of the body in the x direction at the initial time ti, and a", is
the constant acceleration of the body in the x direction during this time
interval.

Illustrative Example. An airplane approaching a landing field decreases its
velocity from 250 mi/hr to 100 mi/hr in 20 sec. Find the acceleration.

Again we choose the x axis as the direction of motion. We set U x = 250 mi/hr
at time li, Vx = 100 mi/hr at tf = 20 sec + ti, and we write

100 mi/hr - 250 mi/hr -150 mi/hr
ax = ---------

20 sec 20 sec
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(2-16)

Thus the speed of the airplane is decreasing at the rate of 7.5 mi/hr each second
during the 20-sec interval. With the aid of the appropriate conversion factors,
the above result may also be expressed as

ax = -11 ft/sec = -11~.
sec sec 2 '

that is, the speed of the airplane is decreasing at the rate of 11 ft/sec each second
during the 20-sec interval.

The question of positive or negative signs for the acceleration of a body,
or for other quantities requiring some indication of their direction, is a
matter of convenience. For most purposes it is preferable to adopt some
consistent scheme of notation, working all problems in the same systematic
way. This matter of approaching problems systematically is of great
importance in physics and engineering. Problems which at first seem
fiendishly difficult often yield to a persistent and systematic approach.
The notation generally preferred is one in which the signs employed follow
the usual right-handed rectangular coordinate system. The motion is
thought of as occurring within a coordinate frame. The direction of the
positive x axis is then the positive direction for the x components of the
displacement, the velocity, and the acceleration. A motion described by a
positive value of the velocity and a negative value of the acceleration is one
in which the velocity is directed in the direction of increasing x, while the
acceleration is in the opposite direction.

2-7 Equations of Motion for Constant Acceleration

When a body is moving in a straight line with constant acceleration a, we
may derive its equations of motion most simply by the methods of the
calculus. Dropping the subscript x from Equation (2-16), we have

dv
- = a
dt '

thus

which we may integrate as

yielding

dv = a dt,

fdV = fadt,

v = at + u, (2-20)

where u is a constant of integration. We note that at time t = 0 the speed
v is equal to u. Thus u is the initial speed of the body.
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From Equation (2-10), the definition of instantaneous velocity, we have

dx
v=-, (2-10)

dt

and, substituting from Equation (2-10) into Equation (2-20) for v, we have

dx
-=at+u
dt '

or Jdx = aJtdt +JUdt,

x = !at2 + ut. (2-21)

In Equation (2-21) we have set the initial position of the body at the origin
x = 0 at time t = 0, thereby setting the constant of integration equal to
zero. Equations (2-20) and (2-21) give the speed and position of the body
as a function of time when the body is at the origin moving with speed u
at the initial time t = 0, if the body is moving under constant acceleration a.

When a body is moving with constant acceleration in a straight line,
its average speed is given by the average of its initial and final speeds. This
may be shown by algebraic manipulation of Equations (2-20) and (2-21).
We first factor the quantity t from the right-hand side of Equation (2-21)
and write

x = (u + !at)t.

From Equation (2-20) we substitute

at=v-u

into the above equation to find

u +v
x=--t2 . (2-22)

From the definition of the average speed as the distance traversed divided
by the elapsed time

x
V = -,

t

we see that
u +vv=--'

2 '
(2-23)

that is, the average speed is the average of the initial and final speeds, for
the case of constant acceleration.

A useful result may be obtained by eliminating the time t as a variable
from Equations (2-20) and (2-22) to obtain an equation relating the initial
speed u, the final speed v, and the distance traversed x. We may rewrite



§2-8 FREELY FALLING BODIES 31

Equation (2-20), by transposing the quantity u, as

v - u = at. (2-24)

(2-25)

Both sides of Equation (2-22) may be multiplied by the quantity 2/t to
obtain

2x
v+u=-·

t

Multiplying the left-hand side of Equation (2-24) by the left-hand side of
Equation (2-25) and setting the result equal to the product of the right­
hand sides of the two equations yields

(2-26)

which is the result we have sought.
The principal results of the preceding section may be summarized in

the following equations for the case of the motion of a particle with a con­
stant acceleration a, with the particle starting at the origin with initial
speed u at time t = o.

v = u + at,

x = ut + !at2
,

v2 = u2 + 2ax,

x = fit,

u+vv=--·
2

(2-270)

(2-27b)

(2-27c)

(2-27d)

(2-27e)

Equations (2-27) are repeated for emphasis, for they will be applied to
problems and derivations many times throughout this text.

2-8 Freely Falling Bodies

One of the most common examples of motion with constant acceleration is
that of a body which is dropped from any height and allowed to fall freely
under the influence of gravity. By free fall we mean that such effects as
air resistance (drag) or lift are assumed to be negligible. A falling leaf, a
dandelion seed, and a glider dropped from some altitude are not freely
falling bodies. A good approximation to a freely falling body may be
obtained by dropping a round, heavy object. This is the motion that was
first studied by Galileo. The results of many different experiments per­
formed under many different conditions show that the acceleration of a
freely falling body at any point near the earth's surface is a constant for
that particular place and does not depend on the weight of the falling object.
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The magnitude of the acceleration of gravity varies slightly with altitude,
with latitude, and from point to point on the earth's surface having the
same latitude and altitude. This is the subject of considerable geophysical
exploration. If, at a certain place, the acceleration of gravity is slightly

Fig. 2-6 Galileo Galilei (1564-1642). Dis­
covered the laws of motion of freely falling
bodies and of bodies moving along inclined
planes. Constructed a telescope with
which he observed the surface features of
the moon and discovered four of the moons
of Jupiter; his observations helped estab­
lish the validity of the heliocentric theory
of the universe. (Courtesy of Scripta
M athematica.)

high or slightly Imv, the geophysicist uses this information to help find
buried ore or oil bodies beneath the surface of the ground.

For the purposes of most calculations, the value of the acceleration of a
freely falling body, designated by g, may be taken as

ft em m
g = 32- = 980- = 9.8-·

sec2 sec2 sec2

The direction of the acceleration of gravity is vertically downward. We
shall always use the symbol g to indicate a positive number, as above, and
the direction appropriate for use in the sign conventions of a particular
problem wiII always be explicitly shown as +g or -g. For very accurate
calculations the value of g appropriate to a particular place should be used.
These values may be found in tables of physical constants. For reference,
a few values of g at different latitudes and at sea level are given in Table 2-1.

A clearer understanding of the significance of acceleration can be ob­
tained from the detailed consideration of the free fall of a baseball that is
dropped from the top of a very tall building or from a cliff. When we say
that a ball is dropped, we mean that its initial velocity is zero. Since it is
accelerated downward at the rate of 32 ft/sec 2

, at the end of the first second
it will have acquired a velocity of 32 ft/sec downward. Its average velocity
during the first second is 16 ft/sec, and the distance traveled during the
time is 16 ft. At the end of the second second, its downward velocity will
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TABLE 2-1 VALUES OF 9

Latitude g

in cm/sec 2

g
in ft/sec 2

977.989
979.295
980.600
981.905
983.210

32.0862
32.1290
32.1719
32.2147
32.2575

- ~
oj"'g (;

0,,"<> ",_ 0 ~.s _.- " ·"5.s ~
.§:E M ..Q=::&.. §=gJ
.... ~

~..8& ~~

,....---

0 0 • 0

1 32 • 16

2 64 • 64

3 96 • 144

4 128 • 256

Fig. 2-7 The free fall of a
baseball, showing the posi­
tions of the ball at intervals
of 1 sec and the correspond­
ing velocities.

Illustrative Example. Suppose that a ball is
thrown vertically upward with an initial velocity of
80 ft/sec. Determine (a) how high it will go, (b)
what velocity it will have as it moves down past
its original point of projection, (c) its position 6 sec
after it was thrown upward, and (d) the velocity
with which it will be moving at this time.

Let us choose a set of coordinates with the ori­
gin 0 at the point of projection, and let us take the
y axis as the line of motion (see Figure 2-8). The
displacement from the origin will be measured by
the y coordinate of the ball; it will be considered positive above the origin and
negative below the origin. The acceleration is downward, and its magnitude is

have been increased by another 32 ft/sec to
64 ft/sec. At the end of the third second, it
will again have acquired an additional velocity
increment of 32 ft/sec so that its average veloc­
ity during the 3 sec is 48 ft/sec, and the dis­
tance traversed is 144 ft. Figure 2-7 shows
the positions of the ball at I-sec intervals and
the corresponding velocities.

In our discussion of freely falling bodies,
the effect of the air on the motion of a body
through it was neglected. This discussion thus
presents only a first approximation to the
actual motion. In many cases this descrip­
tion is sufficiently accurate. However, when
the velocity of the body is very 'great, such
as the velocity of a bullet, or if the body is
very small, such as a raindrop, or if the body
presents a very large surface, such as a para­
chute, the resistance of the air plays an im­
portant part III determining the motion of
the body.
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g at all times and at all points of the path. Rewriting Equations (2-27b) and
(2-27a) for motion in the y-direction, we get

y = uyt + !ayt2
,

Vy = U y + ayt.

(a) At the highest point of the path the ball will stop momentarily; this
means that Vy = O. Other known quantities are a y = -g and U y = 80 ft/sec.

(b)(a)

y

h+ Vy=O '" •

! l~!I C\J I
I ~ Ituy=80ft/sec II:

OIl
I

o x----o:::t-vy-_-_---U-y--:o:-i\---
I

! (c)
I
I

!Y~-96ft

vy=-112ft/sec

Fig. 2-8 (a) A ball thrown upward reaches a height h at which v = O. (b) On its return
journey it passes the origin with a speed equal to its initial speed but in the opposite
direction. (c) Position and velocity of the ball 6 sec after it started its motion.

The unknown quantities are y and t. Having two equations in the two unknowns,
the problem may be easily solved by the methods of algebra. Making the neces­
sary substitutions,

ft 1 ft
Y = 80 - X t - "2 X 32 - X t2,

sec sec 2

ft fto = 80 - - 32 - X t.
sec sec

Solving these equations, we find t = 2.5 sec and y = 100 ft. Thus the highest
point of the path is 100 ft above the initial point of projection.

(b) When the ball falls down and passes its original point, its position is
given by y = O. We apply the equations above once again. This time the known
quantities are y = 0, U y = 80 ft/sec, a y = -32 ft/sec 2• The unknown quantities
are Vy and t, and once again we have two equations in two unknowns. Making the
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necessary substitutions,
ft fto = 80 - X t - ! X 32 - X t2

,
sec sec 2

ft ft
Vy = 80 - - 32 - X t.

sec sec 2

From the first equation the solutions are t = 0 and t = 5 sec; that is, the ball is
at y = 0 at both of these times. The first of the solutions is trivial; the second one
shows that the ball will be back at its starting position 5 sec after it is projected.
Substituting the value into the second equation, we find Vy = -80 ft/sec. Thus
the ball returns to its initial position with exactly the same speed it had when it
started, but in the opposite direction.

(c) and (d) To find the position and velocity of the ball after 6 sec of motion,
we again substitute appropriate values into our two equations. This time the
known quantities are t = 6 sec, U y = 80 ft/sec, a y = -32 ft/sec 2, and the un­
known quantities are y and Vy • Once again we have two equations in two un­
knowns, and a complete algebraic solution is possible. Substituting, we find that

ft ft
y = 80 - X 6 sec - ! X 32 --2 X (6 sec) 2,

sec sec

ft ft
Vy = 80 - - 32 -- X 6 sec.

sec sec 2

The first equation immediately yields y = -96 ft, and the second equation
gives Vy = -112 ft/sec. This is the same speed that a body would acquire if it
fell from the highest point inthe path, a distance of 196 ft.

2-9 Motion of a Projectile

The motion of a projectile after it leaves the muzzle of the gun is a special
case of a freely falling body in which the initial velocity of the projectile is
at any arbitrary direction to the vertical. We shall again limit our discus­
sion to the ideal case in which the air resistance is neglected. Suppose that
a bullet is fired horizontally with an initial velocity u, as illustrated in
Figure 2-9. Once the bullet leaves the muzzle of the gun, its acceleration
is vertically downward and is equal to g (directed vertically downward).
This means that, in addition to its horizontal motion with velocity u, the
bullet will acquire an additional velocity vertically downward equal to gt;
that is, the downward velocity will increase with the time just as if it were
dropped. In fact, if a second bullet were dropped at the same time that
the first bullet was fired, both would reach the ground at exactly the same
time. The actual velocity v at any instant will be the vector sum of these
two velocities; that is,

as shown in Figure 2-9.
v = U + gt, (2-28)
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To determine the path of the bullet, let us choose a set of rectangular
coordinates with the origin 0 situated at the muzzle of the gun and choose
the x axis in the horizontal direction. Remembering that there is no
acceleration in the x direction, we find from Equation (2-27b) that

x = ut; (2-29)

that is, the motion of the projectile in the x direction is one with constant
velocity. Since the initial velocity has no component in the y direction
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Fig. 2-9 Path of a bullet fired
horizontally is a parabola.

u y = O. The acceleration is entirely in the y direction with ay = -g.
We rewrite Equation (2-27b) with the symbol y replacing each x to get the
general equation appropriate to vertical motion, and substitute values
appropriate to the problem to find

y = -!gt2• (2-30)

These values of x and yare plotted in Figure 2-9, and the curve obtained
shows the path of the bullet. To obtain the equation of the path, we
eliminate t from the two equations displayed above to obtain

-g 2
y=-x.

2u2
(2-31)

This is the equation for the path, which is a parabola.

Illustrative Example. A bomber flying eastward with a velocity of 480
mi/hr drops a bomb from an elevation of 1,600 ft, Assuming that we can neglect
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air resistance, determine where the bomb will land and how long it will take to
get there.

Since the bomb was in the airplane until the instant it was released, its
initial velocity is the same as that of the airplane; that is, U x = 480 mi/hr =
704 ft/sec. We can obtain the time of fall for the bomb from Equation (2-30).
Substituting y = -1,600 ft, we get

-1,600ft = _1. X 32~ X t 2

2 sec 2 '

from which t = 10 sec.

Using Equation (2-29), we can find where it will strike the ground 10 sec after it
was released:

ft
x = 704 - X 10 sec = 7,040 ft.

sec

The bomb will strike at a distance of 7,040 ft east of the point at which it was
released. If the plane continues to move with a velocity of 480 mi/hr after drop­
ping the bomb, the latter will strike the target when the plane is directly overhead.

The velocity with which the bomb will strike the ground will be the vector
sum of the horizontal velocity

ft
u = 704­

sec
and the vertical velocity

gt = 320 ft/sec.

ft ft
Hence v = V(704)2 + (320)2 - = 772-

sec sec

directed at an angle of about 22° with the horizontal.

While a projectile may be fired in any direction, the only acceleration it
experiences is vertical. The projectile follows a parabolic path; hence the
motion lies entirely within a plane determined by the vertical and the direc­
tion of the barrel of the gun. We can describe the motion most conven­
iently in two dimensions, considering the y direction as vertical and the
x direction as the direction of the horizontal projection of the gun barrel.
A convenient origin of coordinates is the mouth of the gun barrel. The
path of the projectile is shown in Figure 2-10. If the projectile is fired with
an initial velocity u, at an angle of elevation 0 with the horizontal, the x
component of the initial velocity vector will be

U x = ucosO,

and the y component of the initial velocity vector will be

U y = U sin O.

The motion may be completely described from Equations (2-27a) and
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Fig.2-10 Projectile fired from a cliff.

(2-27b), giving the x and y positions and velocity as functions of time. Re­
writing these equations under the conditions of the problem, with U x =
u cos 0, U y = U sin 0, ax = 0, ay = - g, we have

x position: x = ut cos 0; (2-32a)

X velocity: Vx = u cos 0; (2-32b)

Y position: y = ut sin °- ~gt2: (2-32c)

y velocity: Vy = u sin°- gt. (2-32d)

To find the magnitude and direction of the velocity vector v at the time t,
we utilize the techniques of Chapter 1:

magnitude of v: v = (v; + v;) 72 ; (2-32e)

direction of v:
v

cf> = arc tan -..J! ;
Vx

(2-32f)

where cf> is the angle between the velocity vector and the positive x axis.

Illustrative Example. A gun located on a cliff 160 ft high fires a shell with a
muzzle velocity of 1,600 ft/sec at an angle of elevation of 37°, as in Figure 2-10.
Find the time of flight, the horizontal distance the shell will travel, and the
velocity with which the shell will strike the ground.

From the statement of the problem, the shell will strike the ground at a
point where y = -160 ft. Other known quantities are 11 = 1,600 ft/sec,°= 37°.
The unknown quantities are Vx , Vy , x, and t. Since there are four unknowns, we
require four independent equations for the solution of the problem. Equations
(2-32a to d) fulfill the requirements of the problem. With four equations and
four unknowns the problem has been reduced to algebra. Putting numerical
values in Equation (2-32a) yields

ft
x = 1,600- X 0.8 X t;

sec
Equation (2-32b) yields

ft ft
Vx = 1,600 - X 0.8 = 1,280 - ;

sec sec
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Equation (2-32c) yields
ft ft

-160ft = 1,600- X 0.6t -! X 32- X t 2
;

sec sec2

and Equation (2-32d) yields

ft ft
Vy = 1,600- X 0.6 - 32-. X t.

sec sec 2

Solving Equation (2-32c) for t, we get

t 2 - 60t - 10 = 0,

60 ± v3.600 + 40
so that t = ,

2

from which t = 60.2 sec.

The negative value of t obtained in this solution has been discarded as physically
meaningless. With this result, the other parts of the problem yield

ft
x = 1,600 - X 0.8 X 60.2 sec = 77,000 ft;

sec

ft it ft
V y = 1,600- X 0.6 - 32- X 60.2 sec = -966-·

sec sec 2 sec

From Equation (2-32e) we find

(
ft)2 ( ft)2v2 = v; + V~ = 1,280- + -966-'

sec sec

= (1.28 X 103)2 + (0.966 X 103)2

= 2.57 X 106
;

ft ft
v = 1.60 X 103 - = 1,600-'

sec sec

From Equation (2-32£) we find

Vy -966
cf> = arc tan - = arc tan--

Vx 1,280

= arc tan (-0.755)

= -37.1°.

The magnitude of v and its direction could have been predicted either from
the properties of the parabola or from the fact that the shell is a freely falling body
once it leaves the gun.

Problems

2-1. A car is driven over a measured mile in 1.5 min. Determine the speed
of the car (a) in miles per hour and (b) in feet per second.

2-2. A river steamer can travel at the rate of 15 milhr in still water. How
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long will the trip between two cities 60 mi apart take (a) downstream and (b) up­
stream, if the river current is 3 mi/hr? (c) What will be the average speed for
the round trip?

2-3. A ferryboat which can sail at the rate of 8 mi/hr in still water travels
straight across a river t mi wide in which there is a current of 2 mi/hr. (a) What
is the velocity of the ferryboat with respect to the shore? (b) How long does a
trip take?

2-4. The first three runners in a 100-yd race were clocked in 9.5 sec, 10.0 sec,
and 10.5 sec, respectively. (a) What was the average speed of each runner and
(b) how far apart were the first and last runners when the first one reached the
finish line?

2-5. An airplane heads due north with a velocity of 250 mi/hr. A west wind
is blowing with a velocity of 40 mi/hr. What is the velocity of the airplane
relative to the ground?

2-6. An airplane whose normal speed in still air is 260 mi/hr must travel
due east. (a) What course must the aviator set for the plane when there is a
steady southwest wind of 40 mijhr? (b) How long will it take to travel 850 mi?

2-7. An automobile starting from rest acquires a speed of 40 mi/hr in 12 sec.
What is its average acceleration?

2-8. How long will it take for a car, starting from rest, to acquire a speed of
60 mi/hr if its acceleration is 12 ft/sec 2?

2-9. The brakes are applied to the wheels of a locomotive when it is traveling
at 70 mi/hr. It comes to rest 24 sec after the brakes are applied. What is its
average acceleration?

2-10. An automobile which is traveling at a speed of 55 mi/hr must be
brought to a stop within 150 ft. What is the minimum acceleration that must be
given to the car to accomplish this?

2-11. An airplane taking off on a runway 1,200 ft long must acquire a speed
of 80 mi/hr to get safely into the air. (a) What is the minimum safe acceleration
for this airplane? (b) How long will it take for the airplane to acquire this speed
when so accelerated?

2-12. A car approaching a turn in the road has its speed decreased from 50
mi/hr to 30 mi/hr while traversing a distance of 120 ft. (a) What was its accelera­
tion and (b) how long did it take to traverse this distance?

2-13. A boy drops a stone from a bridge 80 ft above the water. (a) With
what speed did the stone strike the water? (b) With what speed would the stone
have struck the water if it had been thrown down with a speed of 24 ft/sec?

2-14. A boy throws a ball vertically upward and catches it 1 sec later.
(a) How high up did the ball go? (b) With what speed was it thrown upward?

2-15. A boy throws a stone horizontally with a speed of 30 ft/sec from a cliff
256 ft high. (a) How long will it take the stone to strike the ground? (b) Where
will the stone land? (c) With what velocity will the stone strike the ground?

2-16. A small block starting from rest takes 5 sec to slide down an inclined
plane 80 cm long. (a) What was its acceleration and (b) with what speed did it
reach the bottom of the incline?

2-17. Two horizontal wires are placed parallel to each other 100 cm apart,
one directly above the other. A falling ball is clocked as it passes each of these
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wires. If the time elapsed is 0.20 sec, determine the speed the ball had when it
passed each wire.

2-18. Fighter planes fly at 35,000 ft elevation. What must be the muzzle
velocity of an antiaircraft shell to reach this height. neglecting air resistance?

2-19. A rifle fires a bullet with a speed of 30,000 cm/sec. If the elevation of
the rifle is 30° with the horizontal, determine (a) the range of the bullet on hori­
zontal ground and (b) the velocity of the bullet when it reaches the ground.

2-20. A projectile is fired vertically upward with an initial velocity of 1,800
ft/sec. (a) How high does it rise? (b) What velocity will it have 5 sec after
leaving the gun? (c) What is its altitude 5 sec after leaving the gun?

2-21. A car moving with a speed of 30 mi/hr reaches the top of a hill. As
it goes down the hill, its speed increases to 45 mi/hr in 1.5 min. (a) What is the
acceleration of the car and (b) what distance does it travel in this time?

2-22. A stone thrown horizontally from a hill takes 6 sec to reach the ground.
Determine, in meters, the height of the hill.

2-23. A falling stone is seen to pass a window 2 m high in 0.3 sec. (a) Deter­
mine the average speed of the stone. (b) Determine the speed with which it
reaches the level of the top of the window. (c) Determine the height above this
point from which it fell.

2-24. The distance between two stop lights on a cross-town street is 800 ft.
If the acceleration of a certain car, both positive and negative, is kept at 6 ft/sec 2

,

and if the speed limit on this street is 30 mi/hr, determine the minimum time to
traverse this distance.

2-25. A ball is thrown a distance of 65 it in 1.2 sec. Assuming that it was
caught at the same level as it was thrown, (a) determine how high the ball rose
in its path of motion. (b) With what velocity was the ball thrown?

2-26. A gun fires a shell with a velocity of 600 m/sec at an angle of 45°
with the horizontal. Neglecting ail' resistance, (a) determine the range of this
gun, (b) determine the maximum height reached by the shell, and (c) determine
the time of flight of this shell on level ground.

2-27. Derive the equation for the range of a projectile fired on level ground,

R = u
2

sin 2() , where R is the range, () is the angle of elevation, and u is the initial
g

velocity. Show that the maximum range is achieved when () = 45°.
2-28. The x coordinate of an object moving along the x axis is given by the

equation x = 3 - 5t + 12t2 ft. Find the corresponding equation for the velocity
and acceleration of the object at any time t.

2-29. A body moving in space has its motion described by the equations
x = 12t + 15, Y = 6t 2 where the distances are in meters and the time is given
in seconds. Find the magnitude and direction of the velocity and the acceleration
when t = 3 sec.

2-30. A ball is thrown toward a building 50 ft distant at a speed of 100 it/sec.
At what angle must it be thrown if it is to pass through a window 42 ft from the
ground?

2-31. A railroad caris moving due north at a speed of 60 mi/hl'. A ball is
thrown from the window due east at an angle of elevation of 30° and a speed of
40 ft/sec. (a) Find the time at which it strikes the ground 10 it below the window
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of the car. (b) How far east of the track does the ball land? (c) How far north
of the point of projection does the ball land?

2-32. By differentiation with respect to time, show that the equation

x = Xi + ut + !at2

describes the position of a particle whose initial position is Xi and whose initial
speed is u moving along the X axis with constant acceleration a.

2-33. When a balloon is at a height of 6400 ft and rising at a speed of 32
ft/sec, a stone is thrown vertically out of the balloon. The stone hits the ground
directly below in 20 sec. (a) What was the initial velocity of the stone relative
to the balloon? (b) Relative to the ground?

2-34. Motorist A, starting from rest, accelerates at a rate of 6 ft/sec 2
• At

the same time that A begins, motorist B, starting from rest at a point 100 ft
ahead of A, accelerates at a rate of 4 ft/sec 2

• (a) How far does motorist A travel
before they meet? (b) At the instant they meet each motorist decelerates at the
rate of 5 ft/sec 2 until his car comes to rest. How far apart are they when they
have stopped?

2-35. A train is moving with uniform speed along a level road. A man on
the observation platform drops a ball. What is the path of the ball as observed
(a) by the man on the train and (b) by another person standing at a short distance
from the tracks?

2-36. In a laboratory experiment an air rifle is clamped in position and
aimed by sighting along the barrel. The target is released just as the bullet
leaves the muzzle of the rifle. Show that the bullet will always hit the target.

2-37. If there is no wind, raindrops fall vertically with uniform speed. A
man driving a car on a windless rainy day observes that the tracks left by the
raindrops on the side windows are all inclined at the same angle. Show how the
vertical speed of the raindrops can be determined from the inclination of the
tracks and the reading of the speedometer.

2-38. Show that the speeds of a projectile are the same at any two points
in its path which are at the same elevation.

2-39. A boy seated in a rapidly moving railroad car tosses a ball up into
the air. Will the ball come down in front of him; behind him; into his hand?
What will happen when the car is accelerating in the forward direction? Going
round a curve?
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