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Background: White matter (WM) integrity declines with normal aging. Physical activity may attenuate
age-related WM integrity changes and improve cognitive function. This study examined brain WM integrity
in Masters athletes who have engaged in life-long aerobic exercise training. We tested the hypothesis that
life-long aerobic training is associated with improved brain WM integrity in older adults.
Methods: Ten Masters athletes (3 females, age = 72.2 ± 5.3 years, endurance training >15 years) and 10
sedentary older adults similar in age and educational level (2 females, age = 74.5 ± 4.3 years) participated.
MRI fluid-attenuated-inversion-recovery (FLAIR) images were acquired to assess white matter hyperintensities
(WMH) volume. Diffusion tensor imaging (DTI) was performed to evaluate the WM microstructural integrity
with a DTI-derived metric, fractional anisotropy (FA) and mean diffusivity (MD).
Results: After normalization to whole-brain volume, Masters athletes showed an 83% reduction in deep WMH
volume relative to their sedentary counterparts (0.05 ± 0.05% vs. 0.29 ± 0.29%, p b 0.05). In addition, we found
an inverse relationship between aerobic fitness (VO2max) and deep WMH volume (r = −0.78, p b 0.001). Using
TBSS, Masters athletes showed higher FA values in the right superior corona radiata (SCR), both sides of superior
longitudinal fasciculus (SLF), right inferior fronto-occipital fasciculus (IFO), and left inferior longitudinal fasciculus
(ILF). In addition, Masters athletes also showed lower MD values in the left posterior thalamic radiation (PTR)
and left cingulum hippocampus.
Conclusions: These findings suggest that life-long exercise is associated with reducedWMH andmay preserveWM
fiber microstructural integrity related to motor control and coordination in older adults.

© 2013 Elsevier Inc. All rights reserved.

Introduction

The hallmark of brain aging includes declines in several aspects
of cognitive function such as processing speed, working memory, in-
hibitory function, and long-term memory (Park and Reuter-Lorenz,
2009). Concurrently, structural as well as physiologic changes also
occur in the brain with advancing age (Raz et al., 2005). Brain aging
is likely to be determined by both genetic and environmental factors
(Seshadri et al., 2007). Increasing evidence demonstrates that physi-
cal activity is a modifiable factor important not only for cardiovascu-
lar fitness, but also for brain health (Hillman et al., 2008). Specifically,
previous studies have shown that aerobic exercise training from

several months to a year increased regional brain volume in older
adults (Colcombe et al., 2006) and that the magnitude of brain volume
changewas associatedwith physicalfitness level (Erickson et al., 2011).
In addition, functional magnetic resonance imaging (fMRI) studies sug-
gest that physical activity modulates brain activation during executive
or memory tasks (Smith et al., 2011) and increases functional connec-
tivity (Voss et al., 2010) as well as processing speed (Rosano et al.,
2010) in older adults.

“Masters athletes” (http://www.usatf.org/groups/Masters/) com-
prise a unique group of older adults who have participated in life-long,
high volume and high intensity exercise training and competed in sports
at the elite level. Previous studies have shown marked cardiovascular
benefits accredited to life-long aerobic training (Okazaki et al., 2005).
In addition, preliminary results have shown that life-long exercise is
beneficial for executive function and may attenuate age-related brain
volume loss in the regions related to visuospatial function,motor control,
and working memory (Tseng et al., in press). The purpose of this study
was to test the hypothesis that life-long exercise training inMasters ath-
letes is associated with improvedWM integrity when compared to sed-
entary but otherwise healthy older adults.
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White matter hyperintensities (WMH), or leukoaraiosis, most
likely represents cerebral microangiopathies and/or white matter
(WM) fiber dysmyelination (Debette and Markus, 2010). WMH are
commonly revealed by fluid-attenuated-inversion-recovery (FLAIR)
magnetic resonance (MR) images. The presence and extent of WMH
have been linked to the increased risks for stroke, cognitive impair-
ment and/or dementia in older adults (Debette et al., 2010). Diffusion
tensor imaging (DTI) is one of the MRI modalities which measures
water diffusion in multiple directions to probe the structural and
functional properties of biological tissues. Two frequently used DTI
metrics are tissue fractional anisotropy (FA) and mean diffusivity
(MD), which can serve as a non-invasive measures ofWMmicrostruc-
tural integrity (Huang et al., 2012). Tract-based-spatial-statistics
(TBSS) is a voxelwise analysis method which has advantages of allevi-
ating errors caused by partial volume effects when conducting voxel
level comparisons (Smith et al., 2006). Both FLAIR imaging (Grueter
and Schulz, 2012) and DTI (Kennedy and Raz, 2009) have been used
in study of age-related decline in brainWM integrity and neurodegen-
erative diseases. Age-related increases in WMH (Grueter and Schulz,
2012) and decreases in FA (Kennedy and Raz, 2009) have been well
documented. Although a few studies have suggested a positive rela-
tionship between physical activity (as estimated by self-reported
questionnaires) and brain white matter integrity (Gow et al., 2012;
Ho et al., 2011; Rosano et al., 2010), to our knowledge, no study has
been conducted to reveal the effects of life-long exercise training on
WM integrity in older adults. In the present study, we hypothesized
that higher aerobic fitness in older adults attributing to long term
(>15 years) endurance training is associated with better white mat-
ter integrity as measured by WMH volume, FA and MD.

Materials and methods

Subjects

The Institutional Review Board of the University of Texas South-
western Medical Center and Texas Health Presbyterian Hospital
Dallas approved this study. Informed consent was obtained from all
study participants. Two groups of subjects were recruited: 1) Masters
athletes (MA) — 12 Masters athletes with a history of endurance
training >15 years, who were still engaged in endurance exercise at
the time of this study. Masters athletes were regionally/nationally
ranked runners and were recruited mainly from the running clubs
or the records of competitive running events. 2) Sedentary elderly
(SE) — 12 sedentary but otherwise healthy older adults similar in
age, sex, and educational level to Masters athletes were recruited
locally with newsletters or from senior centers. A sedentary lifestyle
was defined as not engaging in moderate or high intensity aerobic ex-
ercise for more than 30 min, 3 times/week over the past two years.
All subjects were free of major medical problems based on a detailed
medical history and physical exams including 12-lead electrocardio-
gram (ECG) and echocardiogram. Subjects were excluded if they were
smoking or used recreational drugs. They were also excluded if they
had clinical evidence of cardiovascular (e.g., hypertension, diabetes
mellitus, hyperlipidemia) or cerebrovascular diseases (e.g. history of
stroke, transient ischemic attack or the presence of cortical infarction
on MRI scans), dementia, major psychiatric and neurologic disorders.
Of note, 2 Masters athletes and 2 sedentary elderly were unable to par-
ticipate in MRI scans due to metal or other exclusion criteria.

Experimental protocol

All subjects underwent MRI and exercise testing on 2 separate
visits. At least 48 h was given between 2 tests to eliminate potential
effects of acute exercise on MRI study of brain structure. On testing
days, subjects were asked to refrain from exercise, caffeine and alco-
hol at least 12 h prior to testing.

Magnetic resonance imaging

MRI scans were performed on a 3 T scanner (Philips Medical
System, Best, The Netherlands) using a body coil for radiofrequency
transmission and a 8-channel head coil with parallel imaging capability
for signal reception. T1-weighted high-resolution (1 × 1 × 1 mm3)
images were acquired using a sagittal 3D magnetization-prepared-
rapid-acquisition-of-gradient-echo (MPRAGE) sequence (Brant-
Zawadzki et al., 1992) and brain tissue volumes were calculated
with FreeSurfer (http://ftp.nmr.mgh.harvard.edu) (Dale et al., 1999).
To assess WMH, we acquiredFLAIR images in the transverse plane:
FOV = 230 × 230 mm2, acquisition resolution = 0.65(anterior–
posterior) × 0.87(right–left)mm2, slices = 24, thickness = 5 mm,
gap = 1 mm, TR/TI/TE = 11000 ms/2800 ms/150 ms, and dura-
tion = 3.6 min. DTI data were acquired using a single-shot-echo-
planar-imaging (EPI) sequence with sensitivity encoding (SENSE)
parallel imaging scheme (reduction factor = 2.2). The imaging matrix
was 112 × 112 with FOV = 224 × 224 mm2 (nominal resolution of
2 mm), which was zero filled to 256 × 256. Axial slices of 2 mm thick-
ness (gap = 1 mm) were acquired parallel to the anterior–posterior
commissure (AC–PC) line. A total of 60 slices covered the entire hemi-
sphere and brainstem. TE/TR = 51 ms/11.9 s. The diffusion weighting
was encoded along 30 independent orientations and the b value was
1000 s/mm2. Automated image registration was performed on the
raw diffusion weighted images to correct distortions caused by motion
artifacts or eddy current (Woods et al., 1998). Six elements of 3 × 3 dif-
fusion tensor were determined for each voxel by multivariate
least-square fitting of diffusionweighted images. The tensor was diago-
nalized to obtain three eigenvalues (λ1–3) and eigenvectors (ν1–3). The
tensor fitting and fractional anisotropy (FA) and mean diffusivity (MD)
calculations were done using DtiStudio (Jiang et al., 2006).

Imaging data processing

White matter hyperintensities (WMH)
WMH regions were identified from FLAIR images using a semi-

automatic method (Marquez de la Plata et al., 2007). Briefly, the
FLAIR images were skull-stripped and the voxels with a signal inten-
sity greater than 2 standard deviations above the average were delin-
eated as possible lesions. This was followed by manual editing to
remove spurious voxels due to fat signal, motion and edge effect, or
coil sensitivity inhomogeneity (Marquez de la Plata et al., 2007).
The differentiation between periventricular and deep WMH was
performed by assessment of the lesion location and cluster continua-
tion confirmed by superimposing FLAIR images on high-resolution T1
anatomical images (DeCarli et al., 2005a).

Detection of disrupted white matter clusters
Tract-based-spatial-statistics (TBSS) from FMRIB software library

(http://www.fmrib.ox.ac.uk/fsl) was used for voxelwise comparison
(Smith et al., 2006). This voxelwise method compared FA and MD
values of each group at the core (skeleton) of WM to alleviate partial
volume effects. Modifications were made to the standard TBSS pro-
cessing pipeline to incorporate information of WM labeling from a
previously established digital WM atlas (Mori et al., 2008). Specifically,
the single subject template used for nonlinear registration process in
the TBSS was identical to the template used for establishing the digital
WM atlas JHU-ICBM-DTI-81 (Mori et al., 2008). Using this method,
all FA and MD data were transformed into JHU-ICBM-DTI-81 space,
and the atlas labeling was overlaid to the mean skeleton in the JHU-
ICBM-DTI-81 space such that each skeleton voxel could be categorized
into one of the 50 major tracts (Fan et al., 2010).

Randomize -c option in TBSS (ver 1.1) was used to reveal the clus-
ters. The significant clusters with p b 0.005 (t-test, uncorrected) in
the skeleton voxels of WM were identified for group comparisons. To
avoid false positive results, only clusters with continuous voxels > 10
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and mean FA > 0.25 were retained. After randomize processing in
TBSS, the cluster filtering procedures described above were conducted
with a home-made IDL program (ITT, Boulder, CO). Furthermore,
small-volume false discovery rate (FDR) correction (Cullen et al.,
2010; Saxena et al., 2012; Versace et al., 2008) was employed with R
software package (R-2.13.1). Specifically, the small volumes were ana-
tomically defined regional masks with the disrupted clusters detected
above as the centers and containing skeleton voxels 100 times larger
than the disrupted clusters.

Measurement of cardiopulmonary fitness level

Maximal oxygen uptake (VO2max) was assessed using a modified
Astrand–Saltin protocol (Balke et al., 1965) involving incremental
exercise on a treadmill. Subjects walked, jogged or run at a constant
speed, which was determined by an exercise physiologist based on
the individual subjects' fitness level in order to achieve a peak work
rate during maximal exercise testing (Okazaki et al., 2005). After
data collection under resting conditions and 2 min of exercise at
grade of 0%, the grade was increased incrementally by 2% every
2 min until exhaustion. Oxygen uptake (VO2) during the second min-
ute of each stage of exercise was measured by using the Douglas bag
method (Hill et al., 1924) and breath-by-breath VO2 was monitored
continuously using an online computer system. Gas fractions were
analyzed by mass spectrometry (Marquette MGA 1100) and ventila-
tory volume at rest and during exercise was measured with a Tissot
spirometer (Wenzel et al., 1990). Electrocardiogram (ECG) and heart
rate (HR) were monitored continuously by a registered nurse or a
board-certified cardiologist. Fingertip capillary blood was obtained
during approximately 1 min and 50 s to 1 min and 59 s of each
stage of exercise for the measurement of lactate concentration (Yellow
Springs Instruments (YSI) 23L, Yellow Springs, OH). Calibrations of
all instruments and gas sampling were performed by highly-trained
and -experienced technicians and exercise physiologists.

Maximal oxygen uptake (VO2max) was defined as the highest oxy-
gen uptake (VO2) measured from at least a 40-second Douglas bag
during the last stage of testing. The criteria to confirm that VO2max

was achieved included 1) an increase in VO2 b 150 ml/min, despite
increasing work rate of 2% grade (plateau); 2) a respiratory exchange
(RER) ratio > 1.1; 3) HR within 5 beats/min of age-predicted maximal
values (220 − age); and 4) blood lactate > 8.0 mmol/l. In all cases, at
least three of these criteria were achieved, confirming the identification
of VO2max per the American College of Sports Medicine guidelines
(ACSM, 2010). Of note, our previous studies have demonstrated that
by using these methods, VO2max can be measured reliably in sedentary
elderly subjects (Fujimoto et al., 2010; Okazaki et al., 2005).

Statistical analysis

For the small sample size of this study, non-parametric statistical
data analysis methods were used. Specifically, Spearman correlation
was performed to determine the relationship between aerobic fitness
and measurements of WM integrity. Mann–Whitney Rank Sum Test
was conducted to detect differences inWMH volume and cardiopulmo-
nary fitness between groups. Data analyses were performed using
SigmaPlot 11.0 (SSTI, San Jose, CA).

Results

Subjects characteristics

Ten Masters athletes (3 females; median age 72 years, range =
61–80 years; median BMI 22.9, range = 17.9–28.4) and 10 sedentary
older adults similar in age and educational level (2 females; median age
74 years, range = 66–82 years; median BMI 25.6, range = 20.6–30.8)
participated. Subject characteristics are also presented in Table 1.

White matter hyperintensities

No significant differences were found in GM, WM, CSF, WBV, ICV,
total WMH, and periventricular WMH volumes between the groups
(Table 2). No sex differences within and between groups were ob-
served for these measures when they were normalized to WBV or
ICV (data not shown). Notably, Masters athletes showed 83% reduc-
tion in deep WMH volume (p = 0.002) when compared to the sed-
entary elderly (Table 2, Fig. 1). In addition, Masters athletes also
showed 44% reduction in total WMH volume relative to the sedentary
elderly although this difference was not statistically significant most
likely due to the small sample size of this study (statistical power =
0.20 for this index) (Table 2).

White matter microstructural integrity

Relative to the sedentary elderly, Masters athletes showed higher
FA values (PFDR-corrected b 0.05) in right superior corona radiata (SCR),
right and left superior longitudinal fasciculi (SLF), right inferior
fronto-occipital fasciculus (IFO), and left inferior longitudinal fascicu-
lus (ILF) as illustrated in Table 2 and Fig. 2. In addition, Masters ath-
letes also showed lower MD values (PFDR-corrected b 0.001) in the left
posterior thalamic radiation (PTR) and left cingulum hippocampus
as illustrated in Table 2.

Cardiopulmonary fitness

As expected, Masters athletes showed significantly higher VO2max

(p b 0.01) and lower resting heart rate (p b 0.01) (Table 1). Using
Spearman correlation, an inverse relationship between aerobic fitness
(VO2max) and normalized deepWMH volume was found (r = −0.78,
p b 0.001) (Fig. 3). Furthermore, a strong positive relationship between
VO2max and FA was observed in the left SLF (r = 0.725, p b 0.001), and
left ILF (r = 0.760, p b 0.001) (Fig. 4) in addition to the moderate pos-
itive relationship found in the right SCR (r = 0.524, p b 0.05), left SCR
(r = 0.492, p b 0.05), right SLF (r = 0.554, p b 0.05), and right IFO
(r = 0.591, p b 0.001).

Discussion

White matter hyperintensity and physical activity

The current understanding is that age-related WMH is prevalent
(Grueter and Schulz, 2012), and progresses approximately linearly

Table 1
Subject characteristics. Values are means ± SD.

MA (n = 10) SE (n = 10)

Male/female 7/3 8/2
Age(years) 72.4 ± 5.6 74.6 ± 4.3
Education(years) 16.2 ± 2.2 15.8 ± 2.3
Height(cm) 173.4 ± 10.1 171.7 ± 7.4
Weight(kg) 70.52 ± 15.48 76.15 ± 11.09
BMI 23.2 ± 3.1 25.7 ± 3.0
Resting HR(bpm) 53.9 ± 5.9⁎ 65.3 ± 6.5
MAP(mm Hg) 89.1 ± 10.7 89.5 ± 9.3
SBP(mm Hg) 126.6 ± 11.4 125.5 ± 19.0
DBP(mm Hg) 70.4 ± 11.7 71.5 ± 5.9
VO2max (ml/kg/min) 41.0 ± 5.8 22.9 ± 3.3⁎

MA Masters athletes
SE sedentary elderly
BMI body mass index
HR heart rate
MAP mean arterial pressure
SBP systolic blood pressure
DBP diastolic blood pressure
VO2max maximal oxygen uptake

⁎ Significant difference between groups p b 0.01.
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with age (DeCarli et al., 2005b). In a large cohort study, periven-
tricular and deep WMH were detected in 80% and 92% of older adults
age 60 and older, respectively; and it was reported that only 5% of

elderly people were free of any WMH (de Leeuw et al., 2001). These
findings are consistent with the present study where we found that
90% of the participants exhibited age-related WMH, suggesting that
even in normal aging, WMH can occur in the absence of any major
medical problems and/or vascular risk factors such as hypertension,
diabetes or dyslipidemia.

It is generally agreed that the presence of WMH is clinically signif-
icant due to their close associations with small vessel disease, cerebral
amyloid angiopathy, and cerebral atherosclerosis (Greenberg, 2006).
WMH has several profound pathological consequences such as in-
creased stroke risk (Debette et al., 2010), cognitive decline (Debette
and Markus, 2010), and motor deficits (Srikanth et al., 2009). As indi-
cated in Table 2, Masters athletes showed nearly a 44% reduction of
total WMH volume relative to the sedentary elderly although this
trend did not reach statistical significance, likely due to a small sam-
ple size. On further examination, a substantial reduction (83%) in
deep WMH volume was detected in Masters athletes, suggesting the
potential salutary effect of life-long aerobic exercise on white matter
integrity. Consistently, an inverse relationship between aerobic fit-
ness (VO2max) and deep WMH volume was found. These findings
are in agreement with the results of a recent large cohort study that
examined physical activity level and white matter lesion burden
using in 691 older adults and reported that a physically active lifestyle
may be associated with reduced white matter lesion burden (Gow
et al., 2012). In addition, Ho and colleagues also reported that BMI, an
index that can be profoundly influenced by physical activity, accounts
for some variance in brain white structure (Ho et al., 2011).

The pathogenesis of WMH remains controversial (DeCarli et al.,
2005a). A common ischemic etiology has been suggested regardless
of the anatomical location of the lesions (DeCarli et al., 2005a). How-
ever, some have suggested a non-ischemic origin for WMH related to
arterial stiffness (Poels et al., 2012) and increased pulse-pressure
(Kim et al., 2011) which may have different impacts on periven-
tricular and deep WMH. This may explain our observation of the
close association between deep WMH and aerobic fitness, as regular
exercise has been shown to reduce arterial stiffness and improve
brain perfusion. Although the biological significance of deep WMH
is not known, distinctions in pathogenesis suggest different WMH
subtypes (Chimowitz et al., 1992). The finding of the present study
suggests that aerobic exercise is associated with the alleviation of
white matter damage via a mechanism(s) that is relatively specific
to deep WMH.

The extent of WMH has been well documented in large population-
based studies (de Leeuw et al., 2001; DeCarli et al., 2005b) as well as in
controlled clinical observations (Yoshita et al., 2006). More specifically,
de Leeuw and colleagues reported that the deep WMH volume ranges
from 0.61 cm3 to 3.25 cm3 in subjects 60 and older (de Leeuw
et al., 2001); while DeCarli et al. detected approximately 8.39 cm3

of total WMH in people 70 and older (male = 6.33 cm3, female =
10.35 cm3) (DeCarli et al., 2005b). In the present study, we found
0.49 cm3 of deep WMH and 4.56 cm3 of total WMH in Masters
athletes, suggesting that Masters athletes showed marked attenua-
tion in WMH volume when compared to the general population. In
addition, our sedentary elderly showed 3.15 cm3 of deep WMH and
8.97 cm3 of total WMH, within the normal range previously reported
in people of the same age group. This discussion supports our specu-
lation that the lack of significant differences in total WMH between
Masters athletes and the sedentary elderly is likely due to the limita-
tion of small sample size of this study.

To date, no study has yet demonstrated the effects of life-long aer-
obic training on brain white matter integrity although a few attempts
have been made to demonstrate the relationship between physical
activity and brain white matter integrity using self-reported ques-
tionnaires and MR measurements (Gow et al., 2012; Ho et al., 2011;
Rosano et al., 2010). One particular study has reported that exercise
is beneficial for brain health by demonstrating regional brain volume

Table 2
Brain volumetric and voxel-wise measurement. Values are means ± SD.

Brain volumetric measurements MA (n = 10) SE (n = 10)

GM
(cm

3
) 559 ± 27 565 ± 39

WM
(cm

3
) 522 ± 41 506 ± 57

WBV
(cm

3
) 1080 ± 62 1071 ± 60

CSF
(cm

3
) 320 ± 44 321 ± 40

ICV
(cm

3
) 1630 ± 130 1661 ± 168

Deep WMH volumea 0.05 ± 0.05⁎ 0.29 ± 0.29
Periventricular WMH volumea 0.41 ± 0.62 0.53 ± 0.42
Total WMH volumea 0.46 ± 0.66 0.82 ± 0.68

MNI coordinates (X, Y, Z)

Regional FA
Right SCR 68, 122, 91 0.592 ± 0.035⁎⁎ 0.523 ± 0.039
Right SLF 43, 91, 105 0.401 ± 0.039⁎⁎ 0.328 ± 0.028
Left SLF 125, 70, 114 0.401 ± 0.076⁎⁎ 0.266 ± 0.089
Right IFO 59, 60, 99 0.494 ± 0.053⁎⁎ 0.388 ± 0.062
Left ILF 113, 57, 95 0.553 ± 0.069⁎⁎ 0.428 ± 0.085

Regional MD
Left PTR 120, 56, 78 0.0020 ± 0.0002⁎⁎⁎ 0.0025 ± 0.0002
Left CH 113, 99, 54 0.0017 ± 0.0002⁎⁎⁎ 0.0021 ± 0.0001

GM gray matter
WM white matter
WBV whole brain volume
CSF cerebral spinal fluid
ICV intracranial volume
WMH white matter hyperintensities
MNI Montreal Neurological Institute
FA fractional anisotropy
MD mean diffusivity
SCR superior corona radiata
SLF superior longitudinal fasciculus
IFO inferior fronto-occipital fasciculus
ILF inferior longitudinal fasciculus
PTR posterior thalamic radiation
CH cingulum hippocampus

⁎ Significant difference between groups p b 0.05.
⁎⁎ Significant difference between groups PFDR-corrected b 0.05.

⁎⁎⁎ Significant difference between groups PFDR-corrected b 0.0001.
a Standardized to whole brain volume.

Fig. 1. Individual deep WMH volume indicates that sedentary older adults showed
higher deep WMH volume (p = 0.002) than Masters athletes. A Mann–Whitney's U
test was conducted after excluding one sedentary subject with unusually high deep
WMH volume.
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gains after several months to 1 year of moderate aerobic training in
older adults (Colcombe et al., 2006; Erickson et al., 2011). In conjunc-
tion with the present study, this evidence supports the hypothesis
that the age-related brain structural changes may be modulated by
physical activity or exercise. On the contrary, a large 5-year follow-
up cohort study assessed the relationship between physical activity
and the progression ofWMH among community dwellers and reported
that physical activity was not associatedwith the rate ofWMH progres-
sion (Podewils et al., 2007). However, as acknowledged by the authors
of this study, the use of self-reported questionnaires to estimateweekly
caloric expenditures and a qualitative method to assess WMH progres-
sion may have contributed to the negative findings.

White matter fiber microstructural integrity and physical activity

FA was calculated to characterize brain white matter microstruc-
tural integrity. Associations between FA and physical activity have
been suggested in older adults (Johnson et al., 2012). Using TBSS,
we found that Masters athletes showed higher FA values in the
right SCR. Corona radiata is a white matter structure that continues
ventrally as the internal capsule and dorsally as the centrum semiovale
(Wakana et al., 2004). It contains both descending and ascending axons
that carry nearly all of the neural traffic from and to the cerebral cortex.
As part of the projection tract group of human brain white matter, the
SCR is associated with motor function as demonstrated in both human

Fig. 2. Fractional anisotropy (FA, as shown in panels A–D) and mean diffusivity (MD, as shown in panels E and F) and white matter (WM) skeleton (green pixels) derived from all
subjects are superimposed onto a standard single-subject template in the ICBM-DTI-81space. The red pixels demonstrate disruptions of WM fiber tracks in sedentary elderly when
compared to Masters athletes as identified by TBSS in (A) right superior corona radiata; (B) right superior longitudinal fasciculus; (C) left superior longitudinal fasciculus; (D) right
inferior fronto-occipital fasciculus; (E) left posterior thalamic radiation; and (F) left cingulum hippocampus. The yellow crosshair identifies the MNI coordinates of each cluster
(reported in Table 2). A = anterior, P = posterior, L = left, R = right.

Fig. 3. Higher aerobic fitness (VO2max) is associated with reduced deep WMH volume
(indexed to whole-brain volume).

Fig. 4. Higher aerobic fitness (VO2max) is associated with better white matter micro-
structural integrity (FA) in the left superior longitudinal fasciculus (SLF) and left infe-
rior longitudinal fasciculus (ILF).
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(Sasson et al., 2012) and non-human primate studies (Morecraft et al.,
2002). Our data suggested structural differences of white matter in
regions associated with motor function in Masters athletes.

Masters athletes also showed higher FA values in bilateral superior
longitudinal fasciculus (SLF), right inferior fronto-occipital fasciculus
(IFO), and left inferior longitudinal fasciculus (ILF). The SLF is a long
fiber tract connecting the front and the back of the cerebrum (i.e. fron-
tal, occipital, parietal, and temporal lobes). It travels from the frontal
lobe and passes through the operculum and ends up at the posterior
area of the lateral sulcus where numerous neurons radiate into the
occipital lobe while many others turn downward and forward around
the putamen and radiate to anterior temporal lobe (Wakana et al.,
2004). The IFO connects the frontal and occipital lobes, running along
the lateral border of the caudate nucleus, and the ILF connects the tem-
poral and occipital lobes, running along the lateral walls of the inferior
and posterior cornua of the lateral ventricle. In addition, we also
found lower MD values in left posterior thalamic radiation (PTR) and
left cingulum hippocampus (CH) in Masters athletes. The PTR fibers
connect through the retrolenticular part of the posterior limb of the
internal capsule, the pulvinar complex and lateral geniculate nucleus,
and the posterior parietal and occipital lobes of the cerebral cortex.
The cingulum bundle projects from the cingulate gyrus to the entorhi-
nal cortex and allows both input and output to cingulate gyrus in the
limbic system (Wakana et al., 2004). The findings of the present study
suggest that life-long aerobic exercise may preserve brain network of
front-and-back connections related to visuospatial function, motor
control and coordination. This contention is supported by the positive
relationship between VO2max and FA in the left SLF and left ILF observed
in the present study (Fig. 4). In addition, life-long aerobic exercise may
preserve white matter integrity related to memory function as sug-
gested by the lower MD in the CH.

A previous study using functional magnetic resonance imaging
(fMRI) to investigate the effects of aerobic training on brain networks
in older adults reported increased functional connectivity between
frontal, posterior, and temporal lobes and that the improvement
was associated with enhanced executive function (Voss et al., 2010).
Similarly, a recent fMRI study (Rosano et al., 2010) examining the ef-
fect of a 1-year walking program on psychomotor processing speed
in 30 older adults reported that those who were physically active
showed better brain activations than their sedentary counterparts in
the dorsolateral prefrontal cortex (Brodmann area 9), which is associ-
ated with motor planning, organization, and executive function. Fur-
thermore, a one-year exercise intervention study reported the positive
association between improved aerobic fitness and changes in WM
integrity in the frontal and temporal lobes (Voss et al., in press). These
observations highlighted the significance and potential role of exercise
in brain aging not only at the structural, but also at the functional level.

Potential mechanisms of effects of exercise on brain health

Although it is undetermined via what mechanism(s) exercise
protects the brain from its normal aging process, a growing body of
evidence suggests that one of the factors may be brain derived
neurotrophic factor (BDNF) (Pedersen, 2009; Seifert et al., 2010).
These investigators report that during dynamic exercise BDNF is pro-
duced in the exercising muscle and in the brain tissue; and the BDNF
emanating from the exercisingmuscle acts as amyokine,while the BDNF
produced in the brain has paracrine or autocrine effects (Rasmussen
et al., 2009).

The dogma of “use it or lose it” or activity-dependent neural plastic-
ity is supported by studies in individuals who had an enlarged regional
brain volume associated with either long-term, repeated stimuli or
training in particular areas (Gaser and Schlaug, 2003). In addition, our
pilot work suggests that life-long exercise may have protective effects
on age-related brain volume loss in the regions related tomotor control,
visuospatial function, and working memory (Tseng et al., in press).

Johnson and colleagues studied 26 community dwellers between
the age of 60 and 69 and reported a positive correlation between aer-
obic fitness and FA primarily in the corpus callosum (Johnson et al.,
2012). Using a tractographymethod, they further reported that the por-
tions of the corpus callosum associated with aerobic fitness involved
those interconnecting frontal regions associated with high-level motor
planning and concluded that physical activity may attenuate age-
related myelin declines involved in motor planning. However, we
were unable to confirm these observations in highly screened healthy
control subjects and Masters athletes, suggesting that regional FA may
be modulated by other factors besides physical activity.

Study limitations

This study was based on a small, but unique sample size. Thus,
the results must be interpreted with caution. However, by utilizing
the FLAIR and DTI techniques in carefully screened healthy subjects,
we were able to detect differences in white matter integrity between
Masters athletes and their sedentary counterparts. The findings of the
present study are consistent with the emerging literature supporting
the notion that exercise is beneficial to brain health.

Given the limitation of a cross-sectional study design, differences
in the WM integrity observed in Masters athletes may not be solely
attributed to exercise training. Many uncontrolled genetic and life-
style factors may have an impact on our findings. Nonetheless, we
implemented a stringent screening protocol to control for potential
cardiovascular confounding factors and have matched sex, age and
educational levels to the best of our ability to minimize the influence
of potential confounding factors. Notably, our control group was
healthier than average community dwellers of similar age regardless
of the sedentary lifestyle. It is possible that the differences inWM integ-
rity might be even greater had the comparisons been made between
Masters athletes and a population-based sample of older adults.

We did not administer specific tests designed to measure motor
function and thus cannot infer if the higher FA values observed in
Masters athletes can be translated to superior motor control than
their sedentary counterparts as it might be expected. In this regard,
future studies using fMRI in combination with comprehensive cogni-
tive function assessments in a larger sample size study may provide
further insights.

Conclusion

This was the first MRI study of Masters athletes to reveal potential
relationship between life-long aerobic exercise and brain white matter
integrity. Our data suggest that life-long exercise may preserve age-
related changes in brain WM integrity by demonstrating 1) lower
deep WMH volume, and 2) higher white matter microstructural integ-
rity as assessed by FA andMD in the regions related tomotor andmem-
ory function as well as the front-and-back network connections in the
brain in Masters athletes relative to sedentary older adults. These find-
ings suggest the potential salutary effects of physical activity on brain
health in older adults.
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