1987

Nucleotide Sequence of an Anti-Fluorescyl Hapten Antibody Heavy Chain Variable Region Gene from a BALB/c Mouse Hybridoma Cell Line

Zhen-qian Liu
Northwestern University

Charles Wood
University of Nebraska-Lincoln, cwood1@unl.edu

Tai Te Wu
Northwestern University

Follow this and additional works at: http://digitalcommons.unl.edu/virologypub

Part of the Virology Commons

Liu, Zhen-qian; Wood, Charles; and Wu, Tai Te, "Nucleotide Sequence of an Anti-Fluorescyl Hapten Antibody Heavy Chain Variable Region Gene from a BALB/c Mouse Hybridoma Cell Line" (1987). Virology Papers. 179.
http://digitalcommons.unl.edu/virologypub/179

This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Nucleotide sequence of an anti-fluorescyl hapten antibody heavy chain variable region gene from a BALB/c mouse hybridoma cell line

Zhen-qian Liu, Charles Wood and Tai Te Wu

Northwestern University, Evanston, IL 60201 and 1University of Kansas, Lawrence, KS 66045, USA
Submitted June 30, 1987

Acknowledgements

We report here the nucleotide sequence of an anti-fluorescyl hapten antibody heavy chain variable region gene from a BALB/c mouse hybridoma cell line 3-13 (1). This gene segment was contained in a 5.0 kb EcoRI fragment isolated by a 700 bp probe 3' to the mouse heavy chain joining minigene region between the XbaI and EcoRI sites. Mature protein starts at *. The first 21 amino acid residues have also been confirmed by direct amino acid sequencing and they are identical to those of immunoglobulin MOPC104E heavy chain (2). Complementarity determining regions (CDRs) are underlined. The third CDR is unusually long and does not match any of the mouse heavy chain diversity minigene sequences (3). However, GGCTAC is found in the DFL16.2-minigene, and GTAA in the Dsp2.5-minigene, suggesting that ten of the 30 nucleotides in CDR3, GGCTACGTAA, may be derived from a D-D.

GGCTGCTGCTTTGAGTCCCCTGTCTCATTATGGCAAATTACCTGAGTCTATGGTCATTAAAACAGGATGT

ACKNOWLEDGEMENTS

Supported by a grant from the Leukemia Research Foundation of Chicago to TTW, and a grant from the University of Kansas General Research Fund to CW.

References