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Abstract A lithoautotrophic, Fe(II) oxidizing, nitrate-
reducing bacterium, strain 2002 (ATCC BAA-1479; =DSM
18807), was isolated as part of a study on nitrate-dependent Fe
(II) oxidation in freshwater lake sediments. Here we provide
an in-depth phenotypic and phylogenetic description of the
isolate. Strain 2002 is a gram-negative, non-spore forming,
motile, rod-shaped bacterium which tested positive for
oxidase, catalase, and urease. Analysis of the complete 16S
rRNA gene sequence placed strain 2002 in a clade within the
family Neisseriaceae in the order Nessieriales of the
Betaproteobacteria 99.3% similar to Pseudogulbenkiania

subflava. Similar to P. sublfava, predominant whole cell
fatty acids were identified as 16:17c, 42.4%, and 16:0,
34.1%. Whole cell difference spectra of the Fe(II) reduced
minus nitrate oxidized cyctochrome content revealed a
possible role of c-type cytochromes in nitrate-dependent Fe
(II) oxidation. Strain 2002 was unable to oxidize aqueous or
solid-phase Mn(II) with nitrate as the electron acceptor. In
addition to lithotrophic growth with Fe(II), strain 2002 could
alternatively grow heterotrophically with long-chain fatty
acids, simple organic acids, carbohydrates, yeast extract, or
casamino acids. Nitrate, nitrite, nitrous oxide, and oxygen
also served as terminal electron acceptors with acetate as the
electron donor.

Keyword Fe(II) oxidation . Anaerobic . Nitrate .

Bioremediation . Uranium

Introduction

Microbial oxidation of Fe2+ and solid-phase Fe(II)-bearing
minerals can significantly affect the geochemistry of
saturated soils and sediments by the formation of reactive
Fe(III) minerals, including mixed Fe(II)–Fe(III) minerals,
which may result in the sorption or coprecipitation of
metals and/or nutrients (Chaudhuri et al. 2001; Cornell &
Schwertmann 2003; Lack et al. 2002b; Weber et al. 2001;
Weber et al. 2006c). In recent years, the demonstration of
anaerobic microbial Fe(II) oxidation, light-dependent or
nitrate-dependent, has been identified as a mechanism in
which biological re-oxidation of Fe(II) in an anoxic
environment can occur (Straub et al. 1996; Weber et al.
2006a; Widdel et al. 1993). To date, several microorgan-
isms have been identified that are capable of anaerobic Fe
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(II) oxidation (Bruce et al. 1999; Chaudhuri et al. 2001;
Edwards et al. 2003; Finneran et al. 2002; Hafenbradl et al.
1996; Lack et al. 2002a; Straub et al. 1996; Straub et al.
1999; Widdel et al. 1993), however, few of these grow by
the metabolism (Weber et al. 2006a). Given that light
penetration of soil and particulate matter is only between
8 to 200μm (Ciania et al. 2005), light independent
reactions such as nitrate-dependent Fe(II) oxidation are
more likely to dominate bio-oxidative processes in saturat-
ed and subsurface soil/sedimentary environments.

Nitrate-dependent Fe(II)-oxidizing microorganisms have
been identified in both the Archaea and Bacteria (Weber et
al. 2006a). Among the isolates currently described only a
hyperthermophilic archaeum (Hafenbradl et al. 1996) and
the Betaproteobacterium strain 2002 (Weber et al. 2006b)
have been demonstrated to oxidize Fe(II) as the sole
electron donor and couple this metabolism to autotrophic
growth. For all other isolates described to date either
growth was not demonstrated or a co-substrate (acetate or
H2) was required under iron oxidizing conditions (Benz et
al. 1998; Chaudhuri et al. 2001; Edwards et al. 2003;
Finneran et al. 2002; Lack et al. 2002a; Sheloblina et al.
2003; Straub & Buchholz-Cleven 1998; Straub et al. 1996;
Straub et al. 2004). To date, the only other microbial isolate
in pure culture capable of autotrophic growth with Fe(II) as
the sole electron donor and nitrate as a terminal electron
acceptor is the hyperthermophilic archaeum, Ferroglobus
placidus (Hafenbradl et al. 1996). It is worthwhile to note
that under autotrophic growth conditions Thiobacillus
denitrificans has also been demonstrated to oxidize metals
coupled to nitrate reduction; however, metal oxidation is
dependent on H2 as a co-electron donor (Beller 2005; Beller
et al. 2009). It is unclear if Fe(II) could serve as the sole
electron donor for nitrate reduction in this bacterium.

Strain 2002 was isolated from a nitrate-dependent Fe(II)
oxidizing microbial community in freshwater lake sedi-
ments (Weber et al. 2006b). The natural abundance of strain
2002 within the freshwater lake sediment was estimated
at 2.4×103 cells g-1 wet sediment based on most probable
number enumeration studies (Weber et al. 2006b).
Strain 2002 was described as a member of the family
Nesseriaceae (Weber et al. 2006b). This family is comprised
of organisms commonly identified as environmental bacteria
as well as mammalian, avian, and invertebrate pathogens
and commensals (Corpe 1951; Gillis & Logan 2005;
Hungria et al. 2005; Thomsen et al. 2007; Weber et al.
2006c). From among the environmentally relevant genera of
the Nesseriaceae, Chromobacterium spp. are frequently
identified in freshwater aquatic environments, soils, and
sediments (Corpe 1951; Gillis & Logan 2005; Hungria et al.
2005; Thomsen et al. 2007; Weber et al. 2006c). The
metabolic versatility of Chromobacterium spp., specifically
C. violaceum, has resulted in a variety of industrial

applications (Vasconcelos et al. 2003). Related to metal
biogeochemistry, the biogenic production of cyanide during
aerobic growth of C. violaceum has been demonstrated to
mobilize precious metals such as silver, gold, and platinum
as a result of the formation of metal–cyanide aqueous
complexes (Brandl et al. 2007; Reith et al. 2007). The
ability of this microorganism to oxidize aqueous Fe(II) to an
insoluble Fe(III) oxide mineral under anaerobic conditions
at neutral pH in addition to strain 2002 was recently demon-
strated (Weber et al. 2006b). However, similar to many other
known Fe(II)-oxidizing organisms, C. violaceum did not
grow by this metabolism (Weber et al. 2006b). The
coprecipitation of heavy metal and radionuclide contami-
nants with biogenic Fe(III) oxides has been proposed as a
bioremediation strategy (Lack et al. 2002b). Thus, implicat-
ing the role of members within the family Nesseriaceae to
participate in metal biogeochemical cycling. Because of its
associated growth, strain 2002 presents a novel opportunity
to study nitrate- dependent metal oxidation and the
environmental implications of this microbial metabolism in
pure culture. However, it is first necessary to detail the
taxonomic and physiological characteristics of this microor-
ganism for further study. Here we further describe the
physiology and phylogenetic placement of the novel
lithoautotrophic, nitrate-dependent Fe(II) oxidizing bacteri-
um, strain 2002, as a member of the recently described
genus Pseudogulbenkiania in relation to closely related
genera in the family Nesseriaceae.

Materials and methods

Source and culturing of microorganisms Strain 2002
(ATCC BAA-1479; =DSM 18807) was previously isolated
from a nitrate-dependent Fe(II) oxidizing most probable
number enumeration series initiated from sediments col-
lected from a freshwater lake, Southern Illinois University
campus, Carbondale, Illinois (Weber et al. 2006b) and
maintained on freshwater basal medium. Freshwater basal
medium contained the following components (l−1): 0.25 g
NH4Cl, 0.6 g NaH2PO4, 0.1 g KCl, 0.42 g NaNO3, and
2.52 g NaHCO3. The vitamin and trace mineral solution
was added from sterile stock solution (10 ml l−1). The
vitamin solution contained (l−1): 2 mg D-biotin, 2 mg folic
acid, 10 mg pyridoxine HCl, 5 mg riboflavin, 5 mg
thiamine, 5 mg nicotinic acid, 5 mg pantothenic acid,
0.1 mg vitamin B12, 5 mg p-amino benzoic acid, and 5 mg
D,L-6,8-thiotic cid. The trace mineral solution was prepared
by dissolving the following in a 1.5 g l−1 nitrilotriacetic
acid disodium salt solution (l−1): 3 g MgSO4⋅7H2O, 0.5 g
MnSO4, 1.0 g NaCl, 0.1 g FeSO4⋅7H2O, 0.1 g CaCl2⋅2H2O,
0.1 g CoCl2⋅6H2O, 0.13 g ZnCl, 0.01 g CuSO4⋅5H2O,
0.01 AlK(SO4)2⋅12H2O, 0.01 g H3BO3, 0.025 g Na2
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MoO4⋅2H2O, 0.024 g NiCl2⋅6H2O, 0.025 g Na2WO4⋅2H2O,
0.02 g Na2SeO4. Anoxic freshwater basal medium was
prepared by heating the solution to 100°C and immediately
cooling it to room temperature under an anoxic atmosphere
(N2:CO2; 80:20). The anoxic basal medium was then
dispensed into pressure tubes under an N2:CO2 atmosphere
(80:20, v/v), sealed with blue butyl stoppers, and auto-
claved. Fe(II) source was added from a concentrated anoxic
sterile stock solution to achieve a final concentration of
10 mM. A concentrated soluble sterile Fe(II) stock solution
(1 M) was prepared by adding FeCl2 to anoxic (100% N2

headspace) distilled deionized water and sealed with a blue
butyl stopper under an anoxic atmosphere (100% N2

headspace). The solution was filter sterilized by passing
the solution directly through a sterile 0.22μm nylon filter
and sterile needle into a sterile, anoxic (100% N2

headspace), stoppered serum bottle. For the purposes of
this study, strain 2002T was routinely maintained under
anaerobic conditions on basal medium with a soluble
electron donor and acceptor, acetate (10 mM) and nitrate
(10 mM) respectively. Standard anaerobic microbiological
culture techniques were employed as previously described
(Hungate 1969). Studies determining the optimal pH,
temperature, and salinity were carried out on basal medium
containing sodium acetate (10 mM) and sodium nitrate
(10 mM).

Electron donors and acceptors The ability of strain 2002 to
utilize alternative electron donors and acceptors was tested
by adding chemicals from anoxic, sterile stock solutions to
freshwater basal medium as described above. Ferric iron
was added from a filter sterilized 1 M soluble iron stock
solution prepared as previously described by dissolving
nitrilotriacetic acid disodium salt (NTA), sodium bicarbon-
ate, and ferric chloride (Roden & Lovely 1993). Benzene,
toluene, and hexadecane were added directly to culture
medium. Growth after three successive transfers was
recorded as positive. Growth was determined by changes
in optical density at 600 nm. In cultures containing solid-
phase electron donors and/or acceptors cell density was
monitored by direct cell counts (Petroff-Hausser Counter,
0.02 mm depth). Samples collected for direct cell counts
were immediately fixed in formaldehyde (final concentra-
tion 3.7%).

Analytical techniques Ion chromatrography with conduc-
tivity detection (IonPac® AS9-HC analytical column,
Dionex DX-500 system, Dionex Corp., Sunnyvale, CA).
was used to analyze NO3

− and NO2
−. Concentrations of

NH4
+ in growth experiments were determined spectro-

photometrically according to Wetzel & Likens (1991).
Batch culture headspace N2 was quantified using a gas
chromatograph equipped with a thermal conductivity

detector (Shimadzu GC-8A; Porapak N, 80-100 mesh,
12ft.×1/8 in. column).

Electron microscopy Cells for electron microscopy were
grown anaerobically in freshwater basal medium (described
above) amended with acetate (10 mM) and NO3

− (10 mM).
Cells were harvested by centrifugation during log growth
phase under an anaerobic atmosphere (N2:CO2; 80:20),
washed twice with 0.1 M sodium cacodylate buffer pH 7.2,
and fixed with glutaraldehyde (final concentration 3% v/v).
Cells were then resuspended in 1% osmium tetroxide in
sodium cacodylate buffer for 2 h and rinsed in sodium
cacodylate buffer. Cells were dehydrated subsequently for
10 min in 35%, 50%, 70%, 80%, 95%, 100%, and 100%
ethanol followed by critical point drying. Cells were mounted
onto stubs and sputter coated with palladium/gold and viewed
with a Hitachi S5000 scanning electron microscope at 20 kV.

Phospholipid fatty acids, DNA base composition, and
phylogenetic analyses Major phospholipid fatty acids of strain
2002T were determined using methods described by Singleton
et al. (2003) when grown under heterotrophic (10 mM acetate
and 10 mM nitrate) and lithoautotrophic (10 mM Fe(II) and
5 mM nitrate) conditions. Whole cell fatty acids of strain 2002
and pure culture relatives, Chromobacterium violaceum
ATCC 12472T, Chromobacterium subtsugae PRAA4-1T,
Aquitalea magnusonii TRO-001-1DR8T, and Gulbenkiania
mobilis E4FC31T, grown aerobically on tryptic soy agar
were determined as previously described (Komagata &
Suzuki 1987; MIDI 2001). G + C content of strain 2002
was calculated from the ratio of deoxyguanosine (dG) and
thymidine (dT) as previously described (Mesbah et al. 1989).

Fig. 1 Scanning electron micrograph of strain 2002 grown under
heterotrophic nitrate reducing conditions, 10 mM acetate and 10 mM
nitrate. Bar denotes image scale, 0.5μm
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Phylogenetic analysis was conducted using 1395 MUSCLE
aligned characters from the 16S rRNA gene sequences of
members from strain 2002 (AY609199), close relatives, and
the family Neisseriaceae as follows: Pseudogulbenkiania

subflava (EF626692), clone JH WH6 (EF492895), Paludimo-
nas yongneupensis (AM396358), Gulbenkiania mobilis
(AM295491), Chromobacterium violaceum (M22510), Chro-
mobacterium str. MBIC3901 (AB017487), Chromobacterium

Fig. 2 Bayesian consensus phy-
logenetic tree of 1,359 aligned
characters from the 16S rRNA
gene sequence of strain 2002
and members of the family
Neisseriaceae after 4,000,000
generations with a sample fre-
quency of 1,000. Results from
Bayesian posterior probability
are indicated at the nodes as
follows: filled circle 1.00, empty
circle >0.90, filled square, 0.80–
0.90; empty square <0.80.
Methylophilus methylotrophus, a
member of the family Methylo-
philaceae within the Betapro-
teobacteria, served as the
outgroup. The same topology
was obtained with maximum-
likelihood analysis
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str. MBIC3903 (AB017489), Chromobacterium subtsugae
(AY344056), Aquitalea magnusonii (DQ018117), Aquitalea
sp. LT 5 (EU287928), Aquitalea sp. H4 4 (AB277845),
Aquitalea sp. PGP 1 (AB277847), (L06174), Alysiella
filiformis (AB087263), Uruburuella suis (AJ586614), Con-
chiformibius steedae (AF328153), Neisseria gonorrhoeae
(X07714), Bergeriella denitrificans (L06173), Simonsiella
muelleri (AF328147), Eikenella corrodens (M22512),
Kingella denitrificans (M22516), Vogesella indigofera
(AB021385), Aquaspirillum serpens (AB074518), Microvir-
gula aerodenitrificans, (U89333), Laribacter hongkongensis
(AF389085), Iodobacter fluviatilis (M22511), Chitinibacter
tainanensis (AY264287), and Silvimonas terrae (AB194302)
with Methylophilus methylotrophus (M29021) as the outgroup.
Bayesian consensus analysis of aligned 16S rRNA gene
sequences was performed using MRBAYES using GTR +
gamma model of evolution for 4,000,000 generations with a
tree sample frequency every 1,000 generations creating a
posterior probability distribution (Huelsenbeck & Ronquist
2001). The alignments were also subjected to maximum-
likelihood analysis in Bio-Edit version 7.0.9.0 using default
parameters (Hall 1999).

Results

Cell morphology and growth conditions Cells of strain
2002 as previously described (Weber et al. 2006b) were

rod-shaped, gram-negative, non-spore forming, flagellated,
and motile, occurring as single cells or in pairs or multiples
(Fig. 1). Colonies of strain 2002 grown aerobically on
tryptic soy agar (TSA) or solidified nutrient broth, appear
pink–orange, smooth, convex, and circular with a 1–2 mm
diameter. When grown anaerobically on acetate (10 mM)
and NO3

− (10 mM), rod-shaped cells of strain 2002 were
ca. 0.5μm in diameter and 1.5μm in length. Hemolytic
activity was observed when strain 2002 was grown
aerobically on TSA with 5% sheep’s blood (Environmental
Microbiology Laboratory, Inc. Part #1643). Strain 2002
grew over a temperature range 15-40°C with an optimal
growth temperature of 37°C. No growth was observed at 4°C
and 45°C. Growth was observed over a pH range of 6.75–8.0
and salinity (NaCl) range of 0–1%. Optimal pH and salinity
were determined to be 7.25 and 0% respectively.

Phylogenetic and chemotaxonomic comparisons Pairwise
comparison of 16S rRNA gene sequences of cultivated
bacteria identified Pseudogulbenkiania subflava as the
nearest cultured relative (99.3% 16S rRNA gene sequence
identity) and an uncultured bacterial clone affiliated with
iron-manganese nodules (GenBank accession# EF492895;
(He et al. 2008)). Phylogenetic analysis of the complete 16S
rRNA gene sequence of pure culture representatives placed
strain 2002 in a clade with P. subflava and separated strain
2002 from the closely related genera Paludimonas, Gulben-
kiania, Chromobacterium, and Aquitalea, as well as and

Mol % heterotrophically grown Mol % lithoautotrophically grown

Saturated

14:0 0.89 0

15:0 0.34 0

16:0 36.67 36.74

17:0 0.05 0

18:0 0.4 1.06

Branched chain monounsaturated

br19:1 0.1 0

Monounsaturated

16:1ω9c 0.18 0

16:1ω7c 32.82 23.53

16:1ω7t 0.19 0.98

16:1ω5c 0.35 0.61

17:1 0.06 0

Cy17:0 15.45 21.15

18:1ω7c 11.82 14.73

18:1ω7t 0 0.53

18:1ω5c 0.13 0

Cy19:0 0.47 0.68

Hydroxy

3OH16:0 0.09 0

Table 1 Phopholipid fatty acid
composition of strain 2002T

grown under heterotrophic con-
ditions (10 mM Acetate and
10 mM NO3

−) and lithoautotro-
phic conditions (10 mM FeCl2
and 5 mM NO3

−)
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other pure culture relatives of the family Nesseriaceae in the
order Neisseriales within the Betaproteobacteria (Fig. 2).
Commercial (Deutsche Sammlung von Mikroorganismen
und Zellkulturen GmbH, DSMZ) determination of the G+C
content (Mesbah et al. 1989) of the genomic DNA of strain
2002 gave a value of 64 mol%, within the range of the DNA
base composition described within the family Neisseriaceae
(44–69%; Tonjum 2005); Pseudogulbenkiania subflava
(63%), Paludimonas spp. (63%; Kwon et al. 2008),
Gulbenkiania spp. (59%; Vaz-Moreira et al. 2007), Chromo-
bacterium spp. (65–68 mol%; Gillis & Logan 2005), and
Aquitalea spp. (65%; Lau et al. 2006).

The major phospholipid fatty acids identified under
lithoautotrophic and heterotrophic growth conditions were
16:0 (38 mol%), 16:1ω7c (24–33 mol%), Cy17:0 (16–
21 mol%), and 18:1ω7c (12–15 mol%; Table 1). Similar
phospholipids fatty acid profiles were obtained under both
growth conditions. A subsequent analysis of the whole cell
fatty acid content of strain 2002 identified the predominant
fatty acids as 16:1ω7c, 42.4%, and 16:0, 34.1%, using
previously described methods (Komagata & Suzuki 1987;
MIDI 2001). Other fatty acids detected greater than 1 mol
%, 3oh10:0, 12:0, 3oh12:0, 14:0, Cy17:0, and 18:1ω7c
(Table 2) totaled 21.2 mol%. Principle components and

Table 2 Phenotypic and biochemical characteristics of strain 2002 (1) and relative cehtnothe type strains of the closely related genera within the
family Neisseriaceae, Psuedogulbenkiania subflava BP-5T (2), Pauldibacterium yongneupense 5YN8-15T (3), Chromobacterium violaceum
ATCC 12472T (4), Chromobacterium subtsugae PRAA4-1T (5), Aquitalea magnusonii TRO-001-1DR8T (6), and Gulbenkiania mobilis
E4FC31T (7)

Characteristic 1 2a 3b 4c 5f 6g 7h

Isolation source Freshwater lake
sediment

Stream water Wetland peat Soil/water Soil Humic lake Municipal
wastewater

Colony color Pink–orange Yellow Violet Violet Tan No pigment

DNA G + C content (mol%) 64 63 63 65–68 65 59 63

Growth Temperature 15–40 15–42 4–35 28–40 4–40 28–37 15–45

pH Growth 6.75–8 6–8 4–8 5–8 4.5–9.0 5–8 5.5–9

NaCl tolerance (%) <1 <1 <5 <4 <3 <1.5 <3

Urease + − − −e NT − −
Lithoautotrophic + NT NT − NT NT −
Carbon utilization of

Maltose + + + − NT − −
Glucose + + + + + + −
Sucrose + + NT − − − −
Trehalose + + NT + + − −
Capric acid + + − +e + NT +

Mannose − − − + + − −
N-acetylglucosamine − − + + + + −
Use of electron acceptors

Nitrous oxide + − NT −d − + −
Fermentation of

Glucose − − + + + + −
Ribose − − − + NT − −
HCN production − NT NT + NT NT −
Hydrolysis of Gelatin − NT − + + − −

NT Not tested
a Characteristics of P. subflava obtained from Kwon et al. (2008) and Lin et al. (2008)
b Characteristics of P. yongneupense obtained from Kwon et al. (2008)
c Characteristics of C. violaceum obtained from Gillis & Logan (2005) unless otherwise noted
d Characteristics of C. violaceum obtained from Bazylinski et al. (1986)
e Characteristics of C. violaceum obtained from the Identification table of the bioMérieux API 20 NE kit
f Characteristics of C. subtsugae obtained from Martin et al. (2007) unless otherwise noted
g Characteristics of A. magnusonii obtained from Lau et al. (2006) unless otherwise noted
h Characteristics of G. mobilis obtained from Vaz-Moreira et al. (2007) unless otherwise noted

Table 2 Phenotypic and biochemical characteristics of strain 2002 (1)
and relative type strains of the closely related genera within the family
Neisseriaceae, Psuedogulbenkiania subflava BP-5T (2), Pauldibacte-
rium yongneupense 5YN8-15T (3), Chromobacterium violaceum

ATCC 12472T (4), Chromobacterium subtsugae PRAA4-1T (5),
Aquitalea magnusonii TRO-001-1DR8T (6), and Gulbenkiania mobi-
lis E4FC31T (7)
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cluster analyses (Minitab 15.1.1.0) of the whole cell fatty
acid data indicated that strain 2002 was chemotaxonomi-
cally similar to P. subflava but different from other near
relatives in pure culture, Paludimonas spp., Microvirgula
spp., Gulbenkiania spp., Chromobacterium spp., Aquitalea
spp. (Fig. 3a & b). Principal component analysis extracted
two factors which accounted for 86% of the total variance
(Fig. 3a), and clearly placed strain 2002 in a cluster with P.
subflava (Fig. 3b).

Metabolic characterization Phenotypic characterization
was conducted with a commercial biochemical kit, API 20

NE (bioMérieux), according to the manufacturer’s instruc-
tions using supplemented freshwater basal medium. Strain
2002 tested positive for oxidase, catalase, urease, and
arginine dihydrolase, and is capable of utilizing D-glucose,
D-malate, potassium gluconate, capric acid, malic acid, and
trisodium citrate. Strain 2002 cannot utilize L-arabinose, D-
mannose, D-mannitol, N-acetylglucosamine, adipic acid, or
phenylacetic acid and it does not produce hydrogen sulfide,
gelatinase, β-glucosidase, or β-galactosidase (Table 2).
Strain 2002 had been previously described as capable of
anaerobically growing with Fe(II) as an electron donor
coupled to the reduction of nitrate under autotrophic

Fig. 3 Principle components
analysis of whole cell fatty
acids of strain 2002 and closely
related genera. The first two
factors extracted account for
86% of the total variance. In-
clusion of the third factor
accounts for 97% of the total
variance and further separates
strain 2002 from Pauldibacte-
rium, Gulbenkiania, Aqualitea
and Chromobacterium strains. a
Cluster analysis of the chemo-
taxonomic data set supported the
separation of strain 2002 from
Pauldibacterium, Gulbenkiania,
Aqualitea and Chromobacterium
strains and supported the simi-
larities of the whole cell fatty
acid content of strain 2002 with
Pseudogulbenkiania subflava. b
Clusters in the principle compo-
nents analysis are denoted by
the circles
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conditions (Weber et al. 2006b). Difference spectrum of the
Fe(II)-reduced minus nitrate oxidized cytochrome content
of whole cells of strain 2002 revealed an absorption
spectrum consistent with c-type cytochromes (absorption
maxima at a wavelength at 424, 521, and 553 nm; Fig. 4).
In addition to the ability of strain 2002 to oxidize Fe(II),
this bacterium has also previously been shown to oxidize
uraninite, U(IV), in the presence of nitrate (Weber KA et
al., 2009). In contrast to the oxidation of Fe(II) and U(IV),
strain 2002 was incapable of anaerobically utilizing Mn(II)
as an electron donor under these growth conditions
(Table 3).

In the absence of Fe(II), strain 2002 grew heterotrophi-
cally with several simple organic compounds including
acetate, propionate, butyrate, ethanol, pyruvate, and succi-
nate as the sole carbon and energy source (Table 3). In
addition, strain 2002 is also capable of utilizing other short
chain volatile fatty acids, a variety of simple dicarboxylic
acids, hexoses, yeast extract, and casamino acids as well as
the long-chain fatty acids palmitic acid, stearic acid, lauric
acid, behenic acid, and lignoceric acid as the sole carbon
and energy source with nitrate as the terminal electron
acceptor (Table 3).

Strain 2002 was relatively limited in the range of
alternative electron acceptors used and with acetate as the
electron donor; it grew aerobically or anaerobically with
nitrate, nitrite, or nitrous oxide. Denitrification by strain
2002 terminated with the production of dinitrogen gas
(Fig. 5). Reduction of Fe(III) to Fe(II) was observed in the
initial transfer of an anaerobic acetate oxidizing, nitrate-
reducing culture into fresh anaerobic medium amended
with Fe(III)-NTA as the sole electron acceptor, however

strain 2002 could not be continuously cultured under Fe
(III)-reducing conditions (Weber et al. 2006b). In contrast
to Chromobacterium spp., strain 2002 is not capable of
fermentation as no growth was observed with any of the
above electron donors or in complex organic medium
containing yeast extract (1 g L−1), casamino acids (1 g L−1),

Fig. 4 Whole cell difference spectrum of the Fe(II) reduced minus
nitrate oxidized cytochrome content within intact live cells of strain
2002 suspended in anoxic (100% N2 atmosphere) PIPES buffer
(20 mM, pH7.0). Arrows indicate absorption maxima with the
corresponding wavelength denoted above the arrow. Vertical scale
bar indicates a change of 0.025 absorbance units

Table 3 Electron donors and accepters tested

Electron donors Electron acceptors

Utilized Utilized

Fe(II) (10 mM) O2

Acetate (10 mM) NO3
−

Fumarate (25 mM) NO2
−

Lactate (10 mM) N2O

Malate (10 mM)

Succinate (10 mM)

Citrate (10 mM)

Glucose (10 mM)

Sucrose (10 mM)

Yeast Extract (1 g/L)

Pyruvate (5 mM)

Fructose (10 mM)

Maltose (10 mM)

Propionate (10 mM)

Trehalose (10 mM)

Ethanol (10 mM)

Valeric acid (5 mM)

Casamino acids (1 g L−1)

Butyric acid (5 mM)

Palmitic acid (1 mmol L−1)

Stearic acid (1 mmol L−1)

Lauric acid (1 mmol L−1)

Behenic acid (1 mmol L−1)

Lignoceric acid (1 mmol L−1)

Tested not utilized

Formate (10 mM) SO4
2− (10 mM)

Glycerol (10 mM) ClO3
− (10 mM)

Methanol (5 mM) ClO4
− (10 mM)

Lactose (10 mM) U(VI) (1 mM)

Benzoate (1 mM) AQDS (10 mM)

Phenol (1 mM) As(V) (0.5 mM)

Benzene (0.03 mM) Fumarate (25 mM)

Toluene (0.03 mM) Thiosulfate (10 mM)

Thiosulfate (10 mM) Fe(III)-NTAa

n-eicosane (1 mM)

n-tetracosane (1 mM)

Mineral oil hexadecane

Mn(II) (10 mM)

a Strain 2002 could not be consistently maintained under Fe(III)
reducing conditions, however Fe(III) reduction was observed in initial
transfers
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or glucose (10 mM) unless a suitable electron acceptor was
added. Strain 2002 was capable of incorporating CO2 into
biomass when grown under autotrophic nitrate-dependent
Fe(II)-oxidizing conditions (Weber et al. 2006b).

Discussion

Strain 2002 was previously described as capable of
anaerobically growing with Fe(II) as an electron donor
coupled to the reduction of nitrate under autotrophic
conditions (Weber et al. 2006b). To date, strain 2002 remains
the only mesophilic isolate in pure culture described as
capable of autotrophic growth with Fe(II) serving as the sole
electron donor. Isolation of strain 2002 from freshwater lake
sediments harboring an abundant nitrate-dependent Fe(II)-
oxidizing microbial community suggests that microorgan-
isms such as this could play a significant role in iron
biogeochemical cycling and iron mineral formation in
freshwater sediments. Given the ability of strain 2002 to
utilize not only Fe(II) but also simple dicarboxylic acids,
short chain volatile fatty acids, hexoses, yeast extract,
casamino acids and long-chain fatty acids, it is thus likely
that strain 2002 also plays a significant role in the
degradation of organic matter in freshwater soils and
sedimentary environments. Strain 2002 represents a recently
recognized lineage within the family Neisseriaceae as
determined by phylogenetic and chemotaxonomic analyses
(Figs. 2 and 3). The recent identification of P. subflava, strain
2002, and uncultured bacterial clones affiliated with rice
roots, iron-manganese nodules, and freshwater lake sedi-
ments (He et al. 2008; Scheid et al. 2004; Tamaki et al. 2005;
Weber et al. 2006b) indicates that this genus is present in
various surface soil/sedimentary environments and could
potentially play a role in metal redox cycling. Given the
significance of biogenic Fe(III) oxide precipitation to iron
biogeochemical cycling and metal mobility (Weber et al.

2006a), it is necessary to understand the phylogenetic and
metabolic characters of strain 2002.

Strain 2002 was capable of autotrophic growth with Fe
(II) as the sole electron donor (Weber et al. 2006b).
Consistent with previously published reports demonstrating
the metabolic role of c-type cytochromes in anaerobic iron
oxidation (Chaudhuri et al. 2001; Croal et al. 2007; Jiao et
al. 2007), the difference spectrum of the Fe(II) reduced
cytochrome content in cells of strain 2002 suggested that
c-type cytochromes in strain 2002 may also be involved in
Fe(II) oxidation (Fig. 4). While strain 2002 has been
demonstrated to oxidize Fe(II) as well U(IV) (Weber KA
et al., 2009), physiological characterization revealed that
Mn(II) could not serve as an electron donor. While the net
reaction of neutrophilic, anaerobic Mn(II) oxidation may
be energetically favorable according to Eq. 1, the initial
nitrate reduction reaction to nitrite would consume energy
(Eq. 2). As such, the unfavorable thermodynamics of this
initial reaction step may preclude strain 2002 from using
Mn(II) as an electron donor under conditions tested in this
study.

5Mn IIð Þ þ 2NO�
3 þ 4H2O ! 5MnO2 þ N2

þ8Hþ �55:8 kJmol�1 electron
� �

ð1Þ

Mn IIð Þ þ NO�
3 þ H2 :O :! MnO2 þ NO�

2

þ2Hþ 2:48 kJmol�1 electron
� �

ð2Þ

Strain 2002 does not have the ability to produce cyanide.
As such, strain 2002 could not mobilize metals via the
formation of metal–cyanide complexes, in a similar manner to
C. violaceum (Brandl et al. 2007; Reith et al. 2007).
However, the ability of strain 2002 to directly oxidize metals
can directly influence metal mobility in the environment
(Chaudhuri et al. 2001; Cornell & Schwertmann 2003; Lack
et al. 2002b; Weber et al. 2001; Weber et al. 2006c). A recent
study demonstrated the potential bioremediative applicability
of this metabolism for the attenuation of soluble contami-
nating heavy metals and radionuclides in aquifer systems
(Lack et al. 2002b). In that study, stimulation of nitrate-
dependent Fe(II) oxidation resulted in the rapid precipitation
and immobilization of over 50% of the uranium and 80% of
the cobalt in solution within five days.

To date, C. violaceum and strain 2002, represent the
members within the family Neisseriaceae capable of
metabolically influencing metal biogeochemical cycling.
While there are many metabolic dissimilarities from strain
2002 there are several metabolic similarities with the nearest
pure culture relative P. subflava. These two organisms are
capable of using the following carbon sources: maltose,
glucose, sucrose, trehalose, and capric acid (Table 2). In

Fig. 5 Denitrification by strain 2002. Error bars indicate standard
deviation of triplicate samples. filled inverted triangle Optical density,
filled circle NO3

−; filled upright triangle Live NO2
−, filled diamond N2
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contrast to strain 2002, P. subflava tested negative for urease
and nitrous oxide reduction (Table 2). Together, the phyloge-
netic, chemotaxonomic, and phenotypic distinctions between
strain 2002 and other members of the family Neisseriaceae
support placement as a member of the Psuedogulbenkiania
genus (=ATCC BAA-1479 = DSM 18807).
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